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Abstract 

Background:  Branched-chainamino acids (BCAAs; valine, leucine, and isoleucine) are essential amino acids that are 
associated with an increased risk of cardiometabolic diseases (CMD). However, there are still only limited insights into 
potential direct associations between BCAAs and a wide range of CMD parameters, especially those remaining after 
correcting for covariates and underlying causal relationships.

Methods:  To shed light on these relationships, we systematically characterized the associations between plasma 
BCAA concentrations and a large panel of 537 CMD parameters (including atherosclerosis-related parameters, fat 
distribution, plasma cytokine concentrations and cell counts, circulating concentrations of cardiovascular-related 
proteins and plasma metabolites) in 1400 individuals from the Dutch population cohort LifeLines DEEP and 294 over-
weight individuals from the 300OB cohort. After correcting for age, sex, and BMI, we assessed associations between 
individual BCAAs and CMD parameters. We further assessed the underlying causality using Mendelian randomization.

Results:  A total of 838 significant associations were detected for 409 CMD parameters. BCAAs showed both common 
and specific associations, with the most specific associations being detected for isoleucine. Further, we found that 
obesity status substantially affected the strength and direction of associations for valine, which cannot be corrected 
for using BMI as a covariate. Subsequent univariable Mendelian randomization (UVMR), after removing BMI-associated 
SNPs, identified seven significant causal relationships from four CMD traits to BCAA levels, mostly for diabetes-related 
parameters. However, no causal effects of BCAAs on CMD parameters were supported.

†Marwah Doestzada and Daria V. Zhernakova have equal contributions.

*Correspondence:  j.fu@umcg.nl

1 Department of Genetics, University Medical Center Groningen, University 
of Groningen, Groningen, the Netherlands
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-022-02688-4&domain=pdf
http://orcid.org/0000-0001-5578-1236


Page 2 of 15Doestzada et al. BMC Medicine          (2022) 20:485 

Conclusions:  Our cross-sectional association study reports a large number of associations between BCAAs and CMD 
parameters. Our results highlight some specific associations for isoleucine, as well as obesity-specific effects for valine. 
MR-based causality analysis suggests that altered BCAA levels can be a consequence of diabetes and alteration in lipid 
metabolism. We found no MR evidence to support a causal role for BCAAs in CMD. These findings provide evidence to 
(re)evaluate the clinical importance of individual BCAAs in CMD diagnosis, prevention, and treatment.

Keywords:  Branched-chain amino acids, Cardiometabolic diseases, Population-based studies, Mendelian 
randomization

Background
The worldwide obesity epidemic represents a major 
health burden, with obesity leading to a spectrum of 
comorbidities that are the basis for cardiometabolic dis-
eases (CMD). CMD are multifactorial metabolic diseases 
that can include insulin resistance (IR), type 2 diabetes 
(T2D), and cardiovascular disease (CVD) [1, 2], with 
other conditions like hyperlipidemia and hypertension 
also related to CMD. Circulating concentrations of the 
branched-chain amino acids (BCAAs), isoleucine, leu-
cine, and valine have consistently been associated with 
CMD and CMD risk factors in various studies [3–5]. 
BCAAs are essential amino acids strictly sourced from 
diet that have several physiological and metabolic roles 
and have been established to be risk factors for IR and 
diabetes [6–8]. Recent literature, however, has challenged 
the role of BCAAs as mere risk factors by suggesting that 
they also play an etiological role in CMD development. 
For IR and diabetes, multiple prospective and mechanis-
tic studies have now produced evidence for BCAAs play-
ing a causal role. For instance, in a prospective cohort 
of 6244 individuals, higher baseline concentrations of 
BCAAs were associated with IR and found to predict 
incident T2D in a 7.5-year follow-up, independent of 
other risk factors [9]. Similarly, higher concentrations of 
BCAAs also predicted the development of diabetes in 
women with a history of gestational diabetes and IR [10], 
even in young non-glycemic adults [11].

Mechanistic studies using mouse models have shed 
light on the pathways potentially involved. One leading 
hypothesis suggests that BCAAs, or their breakdown 
products (branched-chain keto acids), have a direct 
influence on key factors involved in the pathogenesis 
of diabetes through their interaction with the mamma-
lian target of rapamycin (mTOR) signaling pathway [3, 
12] and through induction of oxidative stress [13–16], 
mitochondrial dysfunction [17, 18], apoptosis [19, 20], 
and IR and/or impaired glucose metabolism [3, 21–28]. 
In line with this, White et al. were the first to show that 
BCAA supplementation to a high fat diet downregulated 
the AKT pathway (pAKT), a marker of insulin signal-
ing in muscle, leading to impaired glucose tolerance 
via hyperactivation of mTOR signaling in muscle [29]. 

This finding is further supported by a study showing 
that BCAA metabolites downregulated pAKT [25] and 
by other studies showing that BCAA supplementation 
with a high fat diet or defective BCAA oxidation in mice 
induces IR [3, 26].

Relationships between BCAAs and other CMD traits 
are also emerging, but it is still unclear whether they rep-
resent important indicators of CMD risk or even play a 
causal role. In this regard, some of the most extensively 
studied CMD traits are CVDs, a set of diseases including 
atherosclerosis and myocardial infarction, that affect the 
heart and the circulatory system. Several studies demon-
strated that increased concentrations of various BCAAs 
were associated with increased CVD risk [30] (e.g., for 
hypertension [31]) and that their presence in plasma is an 
independent predictor for adverse cardiovascular events 
[32]. Yet, the BCAA–CVD nexus is not as straightforward 
for other CVDs and clinical contexts, e.g., for atheroscle-
rosis. While a strong correlation between atherosclerosis 
and BCAAs has been reported, the association was not 
as clear in obese individuals [33]. Indeed, the influence 
of BCAAs in CVD in obese subjects, as well as their role 
in the severity of obesity, has yet to be properly under-
stood. This is mostly because atherosclerosis and body fat 
distribution are closely related to CVD, but there is also 
mounting evidence that fat-tissue metabolism is key in 
determining blood concentrations of BCAAs [34, 35].

One way to better understand the correlation 
between BCAAs and CMD would be to look at a wide 
range of CMD-related parameters, including CVD 
risk factors [36]. The OLINK panel provides a large 
toolkit of known CVD-related proteins and could 
potentially unravel a correlation of BCAAs and CMD 
[37]. Several other emerging CVD biomarkers, such 
as trimethylamine N-oxide (TMAO) and its precur-
sors, should also be considered for this screening given 
their recently confirmed correlation in T2D patients 
[38–40]. Likewise, several other important compo-
nents of CMD, such as lipid metabolism, inflamma-
tion, and immunity, are also potential biomarkers, 
but their relationships with BCAAs are poorly under-
stood. The interplay between BCAAs and lipids in 
the onset of various CMD, such as IR and chronic 
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hyperinsulinemia, has been widely suggested [3, 25, 
26, 41, 42], but the relationship between BCAAs and 
lipids has not been systematically explored, even 
though it could shed light on a common pathway to 
CMD. Similarly, BCAAs can pose as donors of nitro-
gen and carbon skeletons for the synthesis of other 
amino acids that have major roles in immune cell 
function [43]. BCAAs have also been shown to acti-
vate inflammatory signals and increase the release 
of inflammatory cytokines, which exacerbates IR by 
blocking insulin signaling transduction in adipocytes 
and skeletal muscle cells [44]. Still, as a nascent field of 
research, many aspects of BCAAs and their effects on 
inflammation and immune function, along with their 
concomitant role in CMD, are poorly explored, and a 
first step toward resolving this knowledge gap would 
be to systematically explore the relation of BCAAs and 
inflammatory and immune parameters in large human 
cohorts.

Taken together, the relationship between BCAAs 
and some components of CMD, such as IR/diabe-
tes, have been extensively studied, but the relation-
ship of BCAAs and other CMD parameters has yet to 
be established, as most studies to date are either pre-
clinical or performed for sex- and disease-specific 
conditions. In addition, while many of the mechanis-
tic studies in animal models have provided evidence 
of individual-level causality, systematic evaluation in 
human cohorts is crucial to provide population-level 
evidence and identify the potential etiological roles of 
BCAAs in CMD. Moreover, previous results about the 
direction of the causal relationship between BCAAs 
and CMD are conflicting. For example, a causal role 
for BCAAs in IR was supported in a study by Lotta 
et al. [45], while reverse causality of IR on BCAAs has 
been suggested by other studies [46, 47]. Here, we pre-
sent a systematic, cross-sectional association analy-
sis between fasting plasma concentrations of BCAAs 
and a large panel of 537 parameters (including clinical 
CMD measures such as non-invasive measures of ath-
erosclerosis, fat distribution, circulating CVD-related 
proteins, plasma metabolites and inflammatory cell 
counts and immune cytokines) in 1400 individuals 
from the general population–based LifeLines DEEP 
(LLD) cohort [48] and 294 overweight/obese individu-
als from 300OB the cohort [49]. In this study, we (1) 
establish association relationships between BCAAs 
and CMD-related traits that are independent of age, 
sex, BMI, and other potential covariates; (2) estimate 
and compare the association strength between differ-
ent BCAAs; and (3) interrogate the potential causal 
direction of associations using a bi-directional Mende-
lian randomization (MR) approach.

Methods
Cohort description
LifeLines DEEP
The LifeLines study is a large prospective, population-
based cohort study from the north of the Netherlands. 
This study started in 2006 and aims to follow 167,729 
participants for 30 years in order to identify the biomedi-
cal, socio-demographic, behavioral, physical, and psy-
chological factors that contribute to health and disease 
in the general Dutch population [48]. The study includes 
a three-generation design. Individuals aged 25–50  years 
and their family members (partner, parents, and chil-
dren) were invited by their general practitioner to par-
ticipate in the LifeLines study. The study employs a broad 
range of phenotypic measures and questionnaires. At 
baseline, all participants filled in two extensive baseline 
questionnaires at home and then twice visited one of the 
LifeLines research sites for physical examinations. At the 
first visit, anthropometry, blood pressure, cognitive func-
tioning, and pulmonary function, as well as other fac-
tors, were measured. At the second visit, approximately 
2 weeks later, a fasting blood sample was collected. After-
wards, each participant receives a follow-up question-
naire every 18  months. Follow-up measurements of the 
health parameters are performed every 5 years.

LifeLines DEEP (LLD) is a sub-cohort of the LifeLines 
cohort that consists of 1539 individuals. From April to 
August 2013, all participants registered at the LifeLines 
research site in Groningen were invited to participate in 
the LifeLines DEEP study, a study with deep omics profil-
ing in addition to the regular LifeLines program. Eventu-
ally, 1539 randomly selected individuals participated in 
LLD. For these participants, extra biomaterials (plasma, 
exhaled air and feces) were collected for various omics 
profiling, such as genetics, methylation, transcriptomics, 
metabolomics, proteomics, and microbiome. A detailed 
cohort description can be found in Tigchelaar et al. [48] 
and Zhernakova et  al. [50]. For the current study, we 
included 1400 LLD participants after excluding individu-
als with missing information for most omics data and 23 
diabetes patients. A total of 537 CMD-related pheno-
types were assessed in our study. Due to different missing 
values for each dataset, the number of individuals ana-
lyzed differs as shown in Additional file 1: Table S1. The 
method description of datasets is also listed below.

300OB
300OB is an obese cohort of 302 individuals aged 
54–81  years old, who were enrolled in the study at the 
Radboud University Medical Center, Nijmegen, the 
Netherlands. A detailed description is provided in our 
earlier paper [49]. In brief, all participants had a body 
mass index (BMI) ≥ 27 kg/m2 at screening (mean = 30.73, 
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median = 29.89). Exclusion criteria were a recent cardio-
vascular event (myocardial infarction, transient ischemic 
attack or stroke < 6 months), a history of bariatric surgery 
or bowel resection, inflammatory bowel disease, renal 
dysfunction, increased bleeding tendency, use of oral or 
subcutaneous anti-coagulant therapy, use of thrombocyte 
aggregation inhibitors other than acetylsalicylic acid and 
carbasalate calcium (antithrombotic), or a contra-indica-
tion for magnetic resonance imaging (MRI). Participants 
who used lipid-lowering therapy temporarily discontin-
ued this medication 4 weeks prior to the measurements. 
All women were postmenopausal and did not use hor-
monal replacement therapy. For all participants, blood 
samples for nuclear magnetic resonance (NMR)-based 
lipidomics, cytokines and cell counts, TMAO measures, 
and OLINK panel III CVD measurements were collected 
in the morning following an overnight fast. In the pre-
sent study, we included 294 participants for whom fasting 
plasma metabolites were available. Due to different miss-
ing values for each dataset, the number of individuals 
analyzed differs as shown in Additional file 1: Table S1.

For both cohorts, multiple concentrations of omics 
data are available. In this study, we used the detailed phe-
notypic data routinely used in clinic to assess CVD risk, 
non-invasive measures of fat distribution and carotid 
intima-media thickness (IMT) as a non-invasive meas-
ure of atherosclerosis, metabolomics (mainly including 
lipoproteins), TMAO and related metabolites, circulating 
proteins, and cell counts and cytokines.

Cardiovascular phenotyping in the 300OB cohort
In 300OB, fat distribution was assessed using MRI, 
including volumes of visceral adipose tissue and subcu-
taneous adipose tissue, divided into deep and superficial 
subcutaneous adipose tissue, respectively. Hepatic fat 
content was quantified using localized proton magnetic 
resonance spectroscopy. Non-invasive measures of ath-
erosclerosis of the carotid arteries included measurement 
of carotid IMT, carotid plaque presence and maximum 
plaque thickness, and plaque presence and maximum 
thickness in the common carotid, internal carotid, exter-
nal carotid artery, and carotid bulbus. The presence of 
plaque was defined as focal thickening of the wall of at 
least 1.5 × mean IMT or an IMT > 1.5 mm, according to 
the Mannheim IMT consensus [51]. All measurements 
were performed at Radboud University Medical Center. 
Further details are described in a previous paper [49].

OLINK circulating proteins
Blood samples of participants from both cohorts were 
collected separately and frozen at − 80  °C prior to 
any measurement. For both cohorts, circulating pro-
teins from EDTA plasma samples were measured using 

commercially available OLINK Proteomics (Uppsala 
Sweden), the AB Inflammation Panel for 300OB (162 
CVD II panel and inflammation panel), and OLINK 
Proseek Multiplex CVD III panel for LLD (92 CVD pro-
teins). OLINK provides a multiplex immunoassay for 
high-throughput detection of protein biomarkers in liq-
uid samples. Proteins are recognized by antibody pairs 
coupled to cDNA strands that bind in close proximity 
and extend by a polymerase reaction. In 300OB, proteins 
were excluded from analysis when the detection level of 
75% was not met. Quality control (QC) was performed by 
OLINK Proteomics, with two samples that did not pass 
QC subsequently excluded from the analysis. OLINK 
panel data was available for 1294 participants from LLD 
and 294 samples from 300OB. More detailed information 
can be found at the OLINK site: http://​www.​olink.​com/​
produ​cts.

NMR
For both cohorts, we profiled a wide range of plasma 
metabolites using NMR and the Nightingale Biomarker 
Analysis Platform [52]. This platform provides a wide 
range of plasma metabolites including lipid concentra-
tions; relative compositions of 14 lipoprotein subclasses; 
lipoprotein particle sizes and concentrations of apolipo-
proteins; cholesterol; triglycerides, and phospholipids; 
and several glycolysis components, fatty acids, inflam-
mation markers, ketone bodies, and amino acids. This 
platform provides measures of 231 plasma metabolome 
traits, which included the three BCAA, in both cohorts. 
For the other traits, we included 228 metabolites in LLD 
but only 223 metabolites in 300OB due to a large percent-
age of missing values for five measurements. Our group 
had previously validated platform precision by compar-
ing several traits and observed a high degree of consist-
ency [49]. All the NMR measurements in LLD samples 
were performed in one batch, whereas 300OB samples 
were randomized and measured in two batches. There-
fore, for association analyses in the 300OB cohort data, 
batch number was included as an additional covariate.

TMAO, choline, betaine and γ‑butyrobetaine profiling
We used ultra-high-performance liquid chromatography 
in combination with isotope dilution tandem mass spec-
trometry to analyze TMAO, choline, L-carnitine, and 
betaine for both cohorts and γ-butyrobetaine in plasma 
specifically in the 300OB cohort, as described elsewhere 
[49].

Cell counts and cytokine profiling
Blood cell counts were measured for both cohorts, and we 
used six cell types related to immunity for further analy-
sis: basophils, eosinophils, granulocytes, lymphocytes, 

http://www.olink.com/products
http://www.olink.com/products
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monocytes, and thrombocytes. The cytokines for the 
LLD cohorts included IL (interleukin)-1β, IL-6, IL-8, 
IL-10, IL-12p70, and tumor necrosis factor-α (TNF-α) 
measured by ProcartaPlex multiplex immunoassay (eBi-
oscience, San Diego, CA). Other inflammation markers, 
including leptin, adiponectin, IL-18, IL-18BP, and resis-
tin, were measured using commercially available sand-
wich ELISA kits (R&D Systems, Minneapolis, MN). For 
the 300OB cohort, measured cytokines included IL-1β, 
IL-6, IL-18 (including IL-18BP), and inflammation mark-
ers included adiponectin, leptin, and resistin, all meas-
ured according to protocols described earlier [49].

Association analyses
First, we identified age, sex, and BMI as important 
covariates in assessing the association between BCAAs 
and CMD parameters. Next, we explored whether other 
lifestyle and dietary factors can be potential confound-
ers. If a factor is an important confounder, we expected 
to see a significant association between this factor and 
the exposure, i.e., BCAAs. We therefore made use of the 
LLD cohort to assess the associations between BCAAs 
and all potential lifestyle and dietary covariates using 
a univariable regression model. The lifestyle and die-
tary factors assessed included current smoking status, 
intake of alcohol, meat, fruit, vegetables, and coffee and 
total energy intake in kcal and macronutrients (carbo-
hydrates, total protein, animal protein, plant protein, 
and fat) (Additional file 1: Table S2). These lifestyle fac-
tors were obtained from questionnaires filled in by each 
participant. Dietary intake was assessed using a semi-
quantitative Food Frequency Questionnaire (FFQ) [48]. 
While we did observe strong associations with age, sex, 
and BMI, we did not observe any significant associa-
tions with smoking or dietary factors (Additional file  1: 
Table S2). This led us to conclude that the potential con-
founding effects of these factors were negligible, if pre-
sent at all. We therefore only considered age, sex, and 
BMI as important covariates and assessed pair-wise 
associations between individual BCAAs and different 
CMD traits using linear regression models where phe-
notype ~ BCAA​ + age + sex + BMI. The independent 
and continuous dependent variables were scaled using a 
z-scale transformation (to obtain values ranging from − 1 
to 1) to be able to compare the effect size of different cat-
egories and in both cohorts. Logistic regression was used 
for binary phenotypes. Each BCAA was analyzed sepa-
rately without mutually adjusting for the others.

Multiple regression requires the data to fulfill several 
assumptions: the response variable is assumed to be a 
linear function of the model parameters (1) and model 
errors are assumed to be independent (2), to have a 
constant variance (3), and to be normally distributed 

(4). In addition, the predictors are assumed to be meas-
ured without error (5), and there are assumed to be no 
unmeasured confounders that affect both the response 
and predictor variables (6). To ensure that major assump-
tions 1–4 were fulfilled, we manually inspected diag-
nostic plots of the models for each BCAA–phenotype 
combination. To conform with the normality assumption, 
we log-transformed 27 phenotypes (see Additional file 1: 
Table  S1). Assumptions 5 and 6 could not be directly 
assessed, which is one of the limitations of our study.

We note that we included BMI as a covariate because its 
causal role in BCAAs and cardiometabolic traits has been 
widely studied. In this study, we wanted to correct for the 
confounding effects of BMI so we could investigate the 
associations of BCAAs with various CMD-related param-
eters, including fat distribution, independent from over-
all obesity as represented by BMI. NMR measurements 
in the 300OB cohort were also adjusted for batch num-
ber. Where applicable, we included additional covariates, 
including protein and meat intake and HOMA-IR for 
NMR analysis in LLD, as mentioned in the “Results” sec-
tion. In addition, BCAAs have been implicated in kidney 
function, which is also linked to cardiometabolic health. 
We therefore also checked the LLD cohort for associa-
tions between BCAAs and kidney function, which was 
assessed by estimated glomerular filtration rate (eGFR). 
The latter was calculated using the original Modification 
of Diet in Renal Disease formula. All three BCAAs were 
significantly associated with eGFR (Additional file  1: 
Table S2). As eGFR data was not available for the 300OB 
cohort, we did not include eGFR as a covariate but did 
compare results with or without eGFR as a covariate in 
the LLD cohort. To correct for multiple testing, P values 
were further adjusted for 537 traits × 3 BCAA for each 
cohort using the Benjamini–Hochberg method, with sig-
nificance set at a false discovery rate (FDR) < 0.05. These 
are reported as the FDR-value in both the tables and in 
the Results section where appropriate. All analyses were 
performed using R version 3.61.

Mendelian randomization
To determine causality between BCAAs and associated 
factors, two-sample bi-directional MR was performed 
using the R package TwoSampleMR v.0.5.6 with default 
settings [53]. The genetic variants used as instrumen-
tal variables for MR analyses and their effect sizes were 
obtained from publicly available summary statistics for 
genome-wide association studies (GWASs) on BCAAs 
and cardiometabolic traits. BCAA-associated SNPs 
were taken from the largest GWAS on metabolites to 
date performed in the UK Biobank and available in the 
OpenGWAS database [54] under accession IDs met-d-
Val, met-d-Ile, and met-d-Leu. Summary statistics for 
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all of the cardiometabolic traits were obtained from the 
OpenGWAS database, where we aimed recover data 
from the GWAS with the highest sample size, preferably 
based on European samples, for each CMD parameter 
tested in the association analysis. Genetic variants were 
clumped using r2 < 0.001 in 1000G EUR samples. Proxies 
were added automatically by the TwoSampleMR R pack-
age. To estimate the causal effect of BCAAs on CMD 
parameters, we used SNPs associated with the sum of all 
three BCAAs (accession id met-d-Total_BCAA) to over-
come the potential confounding effect of the other two 
BCAAs when using separate BCAAs as the exposure.

To calculate univariable MR (UVMR) estimates, we 
used Wald ratios meta-analyzed by the inverse variance 
weighted (IVW) method [55]. Instrumental variables 
(IVs) used in MR need to fulfill three major assumptions: 
(1) the IVs should be associated with the exposure, (2) the 
IVs should not share a common cause with the outcome, 
and (3) the IVs should affect the outcome only through 
the exposure. To reduce the chances of violating these 
assumptions, extensive QC and sensitivity analyses were 
performed on the candidate MR results. In detail, results 
were only considered when they met the following cri-
teria: (1) MR results were based on three or more SNPs, 
as this allowed us to perform the sensitivity analyses 
listed below; (2) MR results showed a Benjamini-Hoch-
berg-corrected p value < 0.05 using IVW and nominally 
significant results (p value < 0.05) using two other MR 
approaches (weighted median and MR PRESSO test [56, 
57]); (3) MR results did not show indications of horizon-
tal pleiotropy or heterogeneity, as estimated using MR 
Egger [57] (intercept p value > 0.05) and the MR PRESSO 
[56] outlier-adjusted test (p value < 0.05) that estimates 
the pleiotropy and tries to correct for it by removing out-
liers; (4) MR results were not driven by single SNPs, as 
tested using leave-one-out analyses (no SNP after exclu-
sion resulting in IVW MR p value > 0.05); or (5) genetic 
instruments were strong as estimated using F-statistics 
(F > 10). We also estimated heterogeneity using Cochran’s 
Q-test but did not filter out the results based on this 
measure.

BMI has previously been shown to affect both BCAA 
levels and CMD parameters. Moreover, BMI, BCAAs 
and CMD parameters have shared associated genetic 
variants. To overcome the potential violation of the 3rd 
MR assumption in the UVMR analyses, we removed 
BMI-associated SNPs published by the GIANT consor-
tium [58] from the list of genetic variants. In addition, 
we corrected for the effect of BMI using multivariable 
MR analyses (MVMR). In the MVMR analysis estimating 
the effect of CMD parameters on BCAAs, we used two 
exposures: the current CMD parameter and BMI (using 
summary statistics published by the GIANT consortium 

[58]). In the MVMR in the direction from BCAAs to 
CMD parameters, we used four exposures: valine, isoleu-
cine, leucine, and BMI. Sensitivity analyses of the MVMR 
results were performed by the MVMR v. 0.3 R package 
[59], which estimates the strength of the genetic instru-
ments (F-statistics, which we required to be > 10) and 
heterogeneity using Cochran’s Q-test.

We performed the analyses in both directions and cor-
rected for multiple testing using the Benjamini–Hoch-
berg method separately for each group of phenotypes 
(general cardiometabolic traits and NMR lipoproteins) 
and for each direction.

Results
BCAAs are widely associated with CMD parameters
The basic characteristics of the LLD (n = 1400) and 
300OB (n = 294) cohorts and their respective fast-
ing plasma BCAA concentrations are summarized in 
Additional file 1: Table S1. The average plasma levels of 
BCAAs in the population-based LLD cohort were 44.9 
μM for isoleucine, 57.9 μM for leucine, and 149 μM for 
valine. In the obesity cohort (300OB), the isoleucine con-
centration was 6.6 μM higher (p = 5.68 × 10−8), while 
the average concentrations of leucine and valine were 
3.1 μM (p = 5.16 × 10−5) and 7 μM (p = 0.0017) lower, 
respectively, compared to the LLD cohort (Additional 
file 1: Table S1). In addition, BCAA concentrations were 
generally higher in males than in females and correlated 
positively with BMI (Additional file  1: Table  S2). After 
correcting for age, sex, and BMI, we performed an asso-
ciation analysis of BCAAs with 537 CMD parameters 
available in either cohort, including 5 glycemic traits, 6 
routine lipid measures, 4 blood pressure measures, 15 
atherosclerosis-related parameters, 7 detailed fat distri-
bution parameters, 19 cell counts and cytokines, plasma 
concentrations of 248 circulating proteins, 5 parameters 
of TMAO and its precursors, and 228 plasma metabolites 
(predominantly lipidomic traits) (Fig. 1, Additional file 1: 
Table S1).

Overall, we detected 838 significant associations 
for 409 unique CMD parameters in at least one of the 
cohorts at FDR < 0.05 (Additional file  1: Table  S3). In 
addition, we looked at the confounding effect of kid-
ney function, assessed by eGFR, on the associations 
between BCAAs and CVD in the LLD cohort. Despite 
being significantly associated with all three BCAA lev-
els (Additional file 1: Table S2), correcting for eGFR did 
not influence the association results (Additional file  1: 
Table S4, Additional file 2: Figure S1).

Isoleucine shows specific associations with lipidomic traits
Different BCAAs showed different numbers of asso-
ciations with CMD parameters, and the estimated 
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association strength also differed. Isoleucine had the 
highest number of associations (373 associations), fol-
lowed by leucine (263) and valine (202) (Fig.  2). We 
found 153 CMD parameters that were associated with all 
three BCAAs. However, some associations were signifi-
cant only for specific BCAAs: 108 parameters were only 
associated with isoleucine, 1 with leucine, and 24 with 
valine. In addition, on average, association effect sizes 
were largest for isoleucine (mean betaLLD = 0.22), fol-
lowed by leucine (mean betaLLD = 0.09) and valine (mean 
betaLLD = 0.07) (one-way ANOVA P = 1.71 × 10−16). This 
observation implies that different BCAAs may have a 
divergent impact on CMD. While zooming in on different 
categories of CMD parameters, we found shared asso-
ciations of BCAAs for all five glycemic traits, including 
fasting plasma levels of glucose, insulin, HbA1c, HOMA-
IR index, and diabetes status. However, BCAA-specific 

associations were found for lipidomic traits and prot-
eomics (Fig. 2). The estimated association strength with 
NMR-based lipidomic traits was particularly strong for 
isoleucine when compared to the estimations with valine 
(Fig. 3). For example, the estimated effect size of the asso-
ciation between isoleucine and plasma levels of saturated 
fatty acids in the LLD cohort was 0.47 (p = 1.07 × 10−55), 
while the estimated effect size was 0.10 (p = 8.16 × 10−4) 
for leucine and -0.07 (p = 7.94 × 10−3) for valine (Addi-
tional file  1: Table  S3). In line with this, isoleucine also 
showed more or stronger associations with fat distribu-
tion in the 300OB cohort. For example, plasma levels of 
isoleucine were significantly associated with the ratio of 
visceral adipose tissue to subcutaneous adipose tissue 
(VAT_SAT_ratio) (βile = 0.31), while the association was 
much weaker for leucine (βleu = 0.20) and not signifi-
cant for valine (βval = 0.11) (Additional file 2: Figure S2). 

Fig. 1  Schematic overview of the study. A The analysis scheme for the association analysis between the 3 branched amino acids (BCAAs) and 537 
cardiometabolic disease (CMD) parameters, which are grouped into the nine categories indicated at the bottom of the panel. The number of the 
parameters per category is shown in parentheses. B The bi-directional Mendelian randomization analysis scheme. The causal relationship from 
BCAAs to CMD parameters is shown by the blue arrow and the causal relationship from CMD parameters to BCAAs is shown using red arrows. The 
impact of confounding factors such as BMI is shown by gray arrows
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Moreover, only isoleucine was significantly associated 
with the number of carotid artery plaques (βile = 0.16, 
p = 0.01) in the 300OB cohort (Additional file  1: 
Table  S3). For circulating proteins, proteins from the 
inflammatory panel measured in the 300OB cohort had 
more isoleucine-associated proteins, while CVD-related 
proteins measured in the LLD cohort showed more asso-
ciations with valine (Additional file 1: Table S2). We did 
not detect many associations with cytokines (except for 
adiponectin, leptin, and IL-18BP) and cell counts (except 
for lymphocytes and leucocytes) (Additional file 2: Figure 
S3). In recent years, the gut microbiome has been impli-
cated in CMD, especially through gut microbial metabo-
lites such as TMAO, and we found both TMAO and its 
precursors to be associated with BCAAs (Additional 
file 2: Figure S4).

Associations of valine with CMD phenotypes are 
dependent on obesity
Out of 756 pair-wise associations for 252 CMD param-
eters that were tested in both the LLD and 300OB 
cohorts, 202 associations showed significant hetero-
geneity between the two cohorts (I2 > 0.75 and hetero-
geneity FDR < 0.05, Additional file  1: Table  S5, Fig.  4), 
even though we had corrected for age, sex, and BMI as 

covariates. This observation was not due to the differ-
ences in the number of diabetes patients and glycemic 
traits, as the estimated effect sizes were comparable 
after removing T2D patients in 300OB (Pearson r = 0.97) 
(Additional file 1: Table S6, Additional file 2: Figure S4) or 
correcting for HOMA-IR index in the LLD cohort (Pear-
son r = 0.98) (Additional file 1: Table S7, Additional file 2: 
Figure S5). Interestingly, the most heterogeneous associa-
tions were related to isoleucine and lipidomic traits, and 
they seemed to show consistently larger effect sizes in the 
300OB cohort than in the LLD cohort (Fig. 4A). Moreo-
ver, many heterogeneous associations observed for valine 
showed opposing directions in LLD and 300OB (Fig. 4A). 
This observation inspired us to hypothesize that an indi-
vidual’s obesity status may explain these heterogeneous 
associations, which cannot be simply corrected for using 
BMI as a covariate. To examine this, we selected a sub-
set of 185 individuals from the LLD cohort with matched 
age and BMI to the 300OB cohort. The heterogeneity in 
effect size in this LLD subset was not much different for 
leucine and isoleucine (Fig.  4B, C). Strikingly, the asso-
ciation directions of valine were altered in the individu-
als with obesity from LLD, which became consistent with 
the estimations in the 300OB cohort (Fig. 4C, Additional 
file 1: Table S8).

Fig. 2  Number of CMD parameters shared between BCAAs. Venn diagrams show the numbers of CMD parameters, either all together or per 
category, associated with the three different BCAAs
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Inferred causality: going beyond associations using MR
Although we identified numerous associations between 
BCAAs and cardiometabolic traits, and specifically with 
plasma lipids, using both clinical measures and detailed 
NMR plasma lipid levels measurements, the associations 
alone are insufficient to provide insights into the underly-
ing causality. To investigate the causality of the identified 
associations, we performed bi-directional two-sample 
MR analysis using genetic variants as IVs (Fig. 1B, Addi-
tional file  3: STROBE-MR checklist) [60]. Genetic vari-
ants affecting BCAA concentrations were taken from the 
largest publicly available GWAS database of metabolites 
from the UK Biobank cohort [53, 54]. For each CMD 
parameter, we searched the MRC IEU Open GWAS data-
base for summary statistics, preferably from population-
based European GWAS studies to ensure similarity of 
SNP associations with both exposure and outcome. This 
resulted in data for 28 phenotypes and 217 lipoproteins 
(characteristics of the included GWASs can be found in 
Additional file 1: Table S9). As some of the available stud-
ies were based on UK Biobank data (see Additional file 1: 

Table S9), there was a sample overlap between exposure 
and outcome data, and some of the MR analyses may not 
be a truly two-sample MR.

Obesity has previously been reported to causally con-
tribute to both CMD parameters and BCAAs [3, 4, 41]. 
Therefore, we performed two types of MR analyses to 
deal with the confounding effect of BMI and removed 
causal estimates that failed sensitivity analyses (see the 
“Methods” section, Additional file  1: Tables S10-S11). 
In the MVMR analysis, including BMI as an additional 
exposure covariate revealed eight potential causal links 
from three phenotypes to BCAAs: increases in triglycer-
ide levels and frequency of T2D and a decrease in HDL 
cholesterol levels were all associated with an increase 
in BCAA levels (Additional file  1: Table  S10); however, 
the heterogeneity of these associations was high. A 
UVMR analysis, performed after removing BMI-asso-
ciated SNPs, identified seven significant results link-
ing four traits to BCAA levels. For example, for each 1 
SD increase in genetically predicted leucine, we saw a 
0.52 SD increase in fasting insulin, a 0.29 SD increase in 

Fig. 3  Pair-wise effect size comparison between the different BCAAs. The upper panel shows the comparisons of effect sizes in the LLD cohort and 
the lower panel shows the comparison in the 300OB cohort. The x-axis and y-axis represent the estimated effect sizes for isoleucine, leucine, and 
valine, respectively. Each dot represents an association between a BCAA and a CMD parameter, colored different based on CMD categories
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fasting glucose and a 0.05 SD decrease in total choles-
terol levels (Additional file 1: Table S11, Fig. 5). As BCAA 
levels are highly correlated, we used the combined lev-
els of all three BCAAs as the exposure when estimating 
the causal effect of BCAAs on CMD parameters. How-
ever, neither method could detect any significant causal 
relationships from BCAAs to phenotypes in our dataset 
as these MR results failed QC sensitivity analyses (Addi-
tional file  1: Table  S11). Altogether, our results suggest 
altered plasma BCAA levels are more likely the outcome 
of metabolic syndromes. This was further confirmed by 
our observation of a large number of causal effects of lipi-
domic traits on BCAAs: 504 significant estimates for 185 
unique lipidomic traits using MVMR (Additional file  1: 
Table  S10) and 252 significant estimates for 96 traits 
using UVMR (Additional file 1: Table S10). All reported 
UVMR effects passed the pleiotropy and heterogeneity 
checks performed using the MR Egger and MR PRESSO 
methods. However, a high degree of heterogeneity for 
most of the MR effects was observed based on Cochran’s 
Q-test. This implies complexity in causality and suggests 
some caution in data interpretation.

Discussion
Valine, leucine, and isoleucine—the BCAAs—are 
essential amino acids that are used for protein synthe-
sis but also play important roles in signaling pathways. 

Increased plasma BCAA concentrations have been found 
to increase the risk of IR and diabetes and some causal 
pathways have been proposed [3, 12, 14–16], but their 
relation with other CMD-related parameters is not com-
pletely understood. Previous studies investigated the 
associations of BCAAs with CMD using only a limited 
number of CMD phenotypes, or in sex-, age- or disease-
specific cohorts with small sample sizes, making it diffi-
cult to generalize their findings [61–63]. Here, we made 
use of very detailed clinical and omics-guided phenotyp-
ing data available for 1694 individuals from two cohorts, 
a general population cohort and an overweight/obese 
cohort of older individuals with high cardiovascular 
risk, to uniformly profile BCAA relations with common 
CMD-related parameters. We systematically explored the 
relationships between BCAA concentrations and a large 
panel of 537 CMD parameters and provided an estimate 
of causality of these associations using MR.

We created an inventory of 827 significant BCAA asso-
ciations with CMD-related parameters. We not only 
replicated previous findings of associations with glyce-
mic-related factors and all three BCAAs [4, 41], we also 
detected a large number of associations for a wide range 
of CMD-related parameters, particularly with lipopro-
teins and circulating protein levels. We identified fewer 
BCAA associations with cytokines, cell counts and 
TMAO metabolites.

Fig. 4  Pair-wise effect size comparison between different cohorts. A Comparison of effect sizes for the 202 heterogeneous associations between 
the LLD cohort and the 300OB cohorts. X-axis is the estimated effect size in the LLD cohort. Y-axis is the estimated effect size in the 300OB cohort. 
Each dot represents a heterogeneous association, colored by association with the different BCAAs: light blue for isoleucine, orange for leucine, and 
dark blue for valine. B Comparison of effect sizes for the 202 heterogeneous associations between age and BMI-matched 185 LLD individuals and 
the 300OB cohorts. X-axis represents the estimated effect size in the matched LLD obesity individuals. Y-axis represents the estimated effect size in 
the 300OB cohort. Each dot represents a heterogeneous association, colored by association with different BCAAs: light blue for isoleucine, orange 
for leucine, and dark blue for valine. C Effect size comparison between the whole LLD cohort and the subset of LLD individuals with age and BMI 
matched to the 300OB cohort. X-axis is the estimated effect size (beta value) in the whole LLD cohort. Y-axis is the estimated effect size (beta value) 
with LLD obesity individuals. Each dot represents an association between a BCAA and a CMD parameter. Dots are colored light blue for isoleucine, 
dark blue for valine, and orange for leucine and fitted with separate lines for the different BCAAs. The consistency between two estimations was 
assessed using Pearson correlation for all BCAAs together or for the different type of BCAAs separately
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BCAAs appear to have both common and specific 
associations. A large set of available CMD parameters 
allowed us to accurately compare the association effects 
between isoleucine, leucine, and valine. Under the pre-
sumption that these three BCAAs have similar functions, 
many studies have missed the specific effects of each 
BCAA and broaden their conclusions based on the study 
of single amino acids and/or of their individual effects 

to all BCAAs. It is becoming increasingly clear that the 
associations of specific BCAAs with CVD may differ 
substantially [64, 65]. The largest currently recognized 
difference is for leucine, which is known to have slightly 
different cellular functions compared to valine and iso-
leucine [66, 67]. Based on our findings, it appears that 
the associations with glycemic traits are shared across 
all three BCAAs; however, for other CMD parameters, 

Fig. 5  Mendelian randomization analysis. X-axes show the SNP–exposure effect. Y-axes show the SNP–outcome effect (SEs denoted as segments). 
The plots show the significant causal estimates of fasting insulin, fasting glucose, type 2 diabetes, and total cholesterol on BCAAs. The blue line 
corresponds to the causal estimate obtained using the inverse variance weighted method
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we found a large number of specific associations, espe-
cially the associations between isoleucine and circulating 
lipoprotein and protein levels. These findings are consist-
ent with a recent study proposing that both isoleucine 
and valine were responsible for the adverse metabolic 
effects of BCAAs in mice, with a particularly clear effect 
for isoleucine [65]. Furthermore, in our study, only iso-
leucine was associated with the number of carotid artery 
plaques, suggesting that it would be prudent to specify 
BCAAs when evaluating the CMD etiology. Based on the 
associations demonstrated in the current study, it would 
be plausible to consider isoleucine in clinical and experi-
mental research on atherosclerotic plaques.

Another important finding is the relationship of 
BCAAs, obesity, and lipid metabolism. As noted above, 
BCAAs appear to have particularly strong associations 
with lipid profile. We found that these associations 
depend on age and BMI. First, effect sizes were higher in 
the 300OB cohort of overweight/obese individuals, who 
were also considerably older. Second, valine showed a 
large number of associations with opposing directions 
across the two cohorts, a conflict that was resolved after 
matching for age and BMI of individuals from the two 
cohorts.

While BCAAs clearly play a role in IR and diabetes, 
previous studies reported conflicting results on the direc-
tion of causal relationship in these associations: Lotta 
et  al. reported that changes in BCAA levels contribute 
to IR and the incidence of type 2 diabetes [45], whereas 
more recent studies showed evidence of a BCAA effect 
on IR [46, 47]. Our results support the potential causal 
effect of fasting insulin and glucose on BCAA levels. In 
addition, we see multiple lipid-related causal links, e.g., 
total cholesterol levels were potentially causally related 
to a decrease in BCAA levels. Additionally, we observed 
that many NMR-based lipoproteins showed a causal 
effect on BCAA levels. However, these results should be 
interpreted with caution because of a strong correlation 
between the lipid traits and a high heterogeneity of the 
resulting MR estimates. No significant causal links from 
BCAA levels to CMD-related parameters were detected, 
potentially due to the lack of strong genetic instruments 
for this analysis, which may indicate that altered plasma 
BCAA levels are more likely to be the outcome of the 
metabolic syndrome. Further studies in other datasets, 
including non-European populations, are required to 
estimate the generalizability of the study results.

We acknowledge several limitations. This cohort-based, 
epidemiological study primarily provided population-
level association evidence, as well as future directions for 
investigating the role of BCAAs in CMD. However, the 
cross-sectional association design of the current study 
led to several limitations. First, the identified associations 

may not directly reflect the observations from animal-
based, mechanistic biology studies, as experimental set-
tings vary greatly. Second, our association approach 
assumes linear relationships between BCAAs and CMD 
parameters, which might not always be the case. Larger 
studies using non-linear models are needed to capture 
these complex relationships. Third, the identified asso-
ciations do not imply causality. While we did employ MR 
to estimate directions of causality for these associations, 
only a few causal relationships were supported, and these 
were predominantly in the direction from CMD param-
eters to BCAA levels. However, the causal effects of 
BCAAs on CMD parameters were more difficult to esti-
mate due to the lower number of BCAA-associated SNPs 
available for the analyses. Lastly, violation of assumptions 
for the MR analyses may occur even when performing a 
rigorous sensitivity analysis, potentially leading to false 
conclusions. Further studies are needed to elucidate the 
potential underlying mechanisms of the identified asso-
ciations and causal links.

Conclusions
We performed a cohort-based association study of 
BCAAs with cardiometabolic parameters. Our findings 
can serve as an extensive catalog to propagate future 
BCAA and CMD research. Interestingly, BCAAs appear 
to be a heterogeneous group of amino acids with poten-
tially diverse CMD-associated effects, which suggests 
they should be targeted separately in biomedical, clinical 
and experimental research.
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