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Abstract 

Background  The prediction of long-term mortality following acute illness can be unreliable for older patients, 
inhibiting the delivery of targeted clinical interventions. The difficulty plausibly arises from the complex, multifactorial 
nature of the underlying biology in this population, which flexible, multimodal models based on machine learning 
may overcome. Here, we test this hypothesis by quantifying the comparative predictive fidelity of such models in a 
large consecutive sample of older patients acutely admitted to hospital and characterise their biological support.

Methods  A set of 804 admission episodes involving 616 unique patients with a mean age of 84.5 years consecutively 
admitted to the Acute Geriatric service at University College Hospital were identified, in whom clinical diagnoses, 
blood tests, cognitive status, computed tomography of the head, and mortality within 600 days after admission were 
available. We trained and evaluated out-of-sample an array of extreme gradient boosted trees-based predictive mod‑
els of incrementally greater numbers of investigational modalities and modelled features. Both linear and non-linear 
associations with investigational features were quantified.

Results  Predictive models of mortality showed progressively increasing fidelity with greater numbers of modelled 
modalities and dimensions. The area under the receiver operating characteristic curve rose from 0.67 (sd = 0.078) for 
age and sex to 0.874 (sd = 0.046) for the most comprehensive model. Extracranial bone and soft tissue features con‑
tributed more than intracranial features towards long-term mortality prediction. The anterior cingulate and angular 
gyri, and serum albumin, were the greatest intracranial and biochemical model contributors respectively.

Conclusions  High-dimensional, multimodal predictive models of mortality based on routine clinical data offer 
higher predictive fidelity than simpler models, facilitating individual level prognostication and interventional tar‑
geting. The joint contributions of both extracranial and intracranial features highlight the potential importance of 
optimising somatic as well as neural functions in healthy ageing. Our findings suggest a promising path towards a 
high-fidelity, multimodal index of frailty.
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Background
As a clinical outcome of the greatest concern, mortality 
demands predictive instruments of the highest fidelity: 
to guide expectations, target interventions, and illumi-
nate modifiable mechanisms of disease [1]. Ordinarily 
narrowed to specific causes, it is also a general, consti-
tutional risk in older patients, distributed across a wide 
causal field of biological and pathological factors, both 
incident and enduring. The determinants of such vulner-
ability may inhere less in any specific condition than in 
the complex interaction of multiple accruing co-mor-
bidities and age-related physiological changes that sin-
gle disease-centred models cannot satisfactorily capture. 
Predicting mortality here arguably requires a patient-
centred, fully inclusive, yet population-scalable approach, 
capable of absorbing the wide heterogeneity of factors 
plausibly determining individual risk in older patients: 
the largest contingent of healthcare users, with the most 
variable intragroup functional and cognitive performance 
[2]. Though only 18% of the UK population, people aged 
≥ 65 account for 42% of acute hospital admissions [3], a 
gap projected to widen as those over 60 are expected to 
double in number by 2050 worldwide [4].

Several short and medium-term mortality prediction 
instruments exist, such as APACHE-III [5], HELP [6], 
BISEP [7], SAFES [8], and HOMR [9]. Their applicabil-
ity to acutely admitted unselected older patients is, how-
ever, limited by unproven generalisability beyond specific 
clinical settings such as critical care [5], poor calibration 
with age [10], variation in performance across popula-
tion groups [11], dependence on background information 
not readily available in the acute setting [9], and use of 
features, such as clinical history and service utilisation, 
that are difficult to render objectively quantifiable and 
reproducible across healthcare systems. Crucially, cur-
rent instruments rarely address two cardinal potential 
characteristics of the problem: the distribution of factors 
material to mortality across multiple clinical domains 
and investigational modalities, and the likely presence 
of heterogeneous causal interactions plausibly accessible 
only to complex, high-dimensional models. No survival 
instrument in current use attempts to draw power from 
the synthesis of multiple, individually weakly predictive 
features—clinical or investigational—that may in aggre-
gate be both highly predictive and robust to the distribu-
tional heterogeneities commonly observed in real-world 
healthcare data. Mortality risk distributed across multi-
ple investigational modalities, driven by non-linear inter-
actions between remote variables, remains unquantified.

Recent advances in complex modelling now permit 
a different approach. We can move beyond simple, uni-
modal, low-dimensional models to complex, multimodal, 
high-dimensional models that integrate rich information 

acquired during routine care [12]. This allows us to quan-
tify the benefit—evaluated on out-of-sample data—of 
flexibly integrating information from multiple sources 
compared with simpler, unimodal models. If this 
approach is shown to achieve higher predictive fidel-
ity—if we discover a multimodally distributed predictive 
signal—an efficient strategy for improving survival pre-
diction would be to deploy flexible multimodal models 
on existing, routinely collected clinical data. Crucially, 
introducing this strategy requires only algorithmic and 
digital innovation—no change to existing care path-
ways—whereas the discovery of biologically new predic-
tive markers is constrained by the long timelines needed 
to validate them, the cost of new instruments and assays, 
and disruption to established clinical management.

Here, we study a large, consecutive, unselected, fully 
inclusive cohort of older patients acutely admitted to a 
single acute general hospital, with the following comple-
mentary aims: (a) to quantify the predictability from rou-
tinely acquired multimodal clinical data of death within 
2  years, (b) to compare the performance of predictive 
models varying in input modality and dimensionality, (c) 
identify candidate mechanisms of increased mortality, 
and (d) establish the foundations of a readily deployable 
clinical tool for predicting all-cause mortality in unse-
lected older patients admitted to acute hospitals, to be 
fully developed in future large-scale, multi-centre studies. 
We focus on demographics, primary diagnosis, and cog-
nitive status as simple, readily available clinical descrip-
tors, and routine blood tests and cranial imaging as rich 
yet objectively quantifiable and reproducible descriptors 
of physiology and anatomy commonly available in our 
target population.

Methods
Study design and participants
The full study cohort consisted of 2951 consecutive 
admissions to the acute geriatrics service at University 
College London Hospital (UCLH) between March 2015 
and March 2017 evaluated in the course of an unse-
lected audit of the service. The cohort was drawn from 
all patients over the age of 70 admitted with any acute 
general medical problem: the indication for entry into the 
acute geriatrics service at UCLH. The cohort excluded 
patients whose admission diagnosis was surgical, or those 
directly admitted to the intensive care unit. Each patient 
was reviewed by a consultant geriatrician within 24 h of 
hospital admission and clinically classified as having (i) 
delirium only; (ii) dementia only; (iii) delirium super-
imposed on dementia; or (iv) no or minimal cognitive 
impairment, from the medical notes and bedside clini-
cal assessment. Admissions were considered as a single 
episode if the patient was readmitted within 28 days of 
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the prior discharge date. We linked contemporaneous 
admission information to this clinical dataset, labora-
tory and imaging investigations, corresponding as closely 
as possible to the index admission (laboratory results 
within 48 h of admission; non-contrast CT head imaging 
performed within four weeks of admission date). The full 
complement of variables was available for 804 admission 
episodes involving 616 unique patients (see Fig.  1). The 
primary diagnosis of each patient was coded as a chapter 
header of International Classification of Diseases ICD-
10. Each patient’s mortality status and date of death were 
recorded on 24 December 2018 through the hospital vital 
statistics database (Carecast, GE Healthcare). The study 
has ethical permission for the analysis of irrevocably 
anonymized data gathered in the course of routine clini-
cal care. Our reporting adopts the TRIPOD reporting 
framework.

Haematological and biochemical investigations
Routinely performed blood tests with coverage of at least 
75% of the population—full blood count differentials, red 
cell distribution width, urea, creatinine, glomerular fil-
tration rate, alanine transaminase, alkaline phosphatase, 
bilirubin, albumin, potassium, C-reactive protein—were 
linked for each admission. Where there were multiple 

values, we used both the chronologically indexed first 
value and the mean and standard deviation for the rest 
of the admission. Where only one test was performed, 
first and mean were identical and standard deviation was 
zero. This procedure yielded a set of 78 variables captur-
ing both static and dynamic changes in each test. Dis-
tributions were visually examined, transformed where 
appropriate, and clipped to enclose values within 99% of 
the density of the underlying distribution. Missingness is 
reported in Additional file 1: Table S1.

Clinical investigations are generally guided by prior, 
clinically informed belief. To capture the effect of such 
‘intention to investigate’, five levels of investigative inten-
tion combined with obtained values were defined for 
each test: (1) investigation performed or not performed 
(one binary variable); (2) counts of investigation per-
formed over the first 48 ours (one real-numbered vari-
able); (3) investigative intention level 1 and the first test 
value (two variables); (4) investigative intention level 2 
and the mean test value (two variables); and (5) the first 
test value, mean, and standard deviation (three variables).

Data were modelled at different investigative intention 
levels to quantify the relative predictive content of the 
intention to investigate vs the actual test values thereby 
obtained.

Fig. 1  Flowchart of the patient cohort. Routine clinical data from consecutive, unselected patients acutely admitted under the UCLH geriatrics 
service and evaluated for their cognitive status was linked to admission episodes, associated investigations, and mortality within 600 days
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Cranial imaging
Non-contrast CT imaging of the head performed within 
4 weeks of admission for any indication was linked to 
each patient episode. Each image was processed within 
an SPM-based (https://​www.​fil.​ion.​ucl.​ac.​uk/​spm/) pipe-
line that included, in order, rigid-body realignment to 
Montreal Neurological Institute (MNI) space, resampling 
to 1  mm3 isotropic resolution, and non-linear unified 
spatial segmentation and normalisation to MNI space 
based on a CT-optimised extension of SPM’s unified seg-
mentation and normalisation routine [13], employing 
a custom, CT-specific atlas of both intensity and spatial 
distributions [14] (https://​github.​com/​WCHN/​CTseg). 
The unified segmentation and normalisation approach 
enables robust segmentation of tissues even in the pres-
ence of focal pathological changes, which are implicitly 
modelled as outliers. The presence and nature of any 
pathology was not explicitly modelled for the following 
reasons. First, the diversity of pathological appearances 
in this population—spanning chronic vascular, degenera-
tive, benign neoplastic, metabolic, and traumatic changes 
commonly comorbid with acute medical admission—is 
too wide to be successfully captured at moderate data-
scales. Second, leaving diverse variation unmodelled can 
only reduce predictive performance—our primary task—
not spuriously enhance it. Third, our objective is not to 
create an optimal predictive model but enable a mean-
ingful comparison of model flexibility and input dimen-
sionality. Fourth, deploying an array of disease-specific 
models would greatly complicate the image analysis, 
introducing potential dependence on methodological 
specificities that would limit generalizability.

The output of the pipeline for each patient was two sets 
of probabilistic tissue segmentation maps of grey matter, 
white matter, cerebrospinal fluid, skull, and meninges/
soft tissue: one native and one non-linearly registered to 
MNI.

Summary statistics of the volumes of each tissue com-
partment were derived by thresholding each native-space 
compartment at > 0.5 and summing the result. Total 
intracranial volume was quantified as the sum of white 
matter, grey matter, and cerebrospinal fluid volumes; 
degree of atrophy, as the sum of grey and white matter 
divided by total intracranial volume.

Sets of downsampled, signal-optimised, high-dimen-
sional representations of each non-linearly registered 
compartment were created by cubic resampling of each 
compartmental image at 5  mm isotropic resolution and 
extracting all voxels meeting the following criteria: tis-
sue probability > 0.5 and voxel-wise probability variance 
across the cohort > 0.01. These representations were used 
as input to the predictive models.

Predictive modelling
Predictive models for 600 days post-admission mortality 
were constructed with the gradient boosting machines-
based algorithm XGBoost [15]. The choice of algorithm 
was motivated by the combination of robustness, flexibil-
ity, data efficiency, and optimisability given the scale of 
available data. To quantify the value of increased dimen-
sionality, we estimated an array of models incrementally 
increasing in number and range of input variables: (1) age 
and sex (two variables); (2) primary diagnosis, age and 
sex (17 variables); (3) cognitive status, age and sex (four 
variables); (4) primary diagnosis, cognitive status, age, 
and sex (19 variables); (5) bloods, primary diagnosis, cog-
nitive status, age, and sex (91 variables); (6) CT intrac-
ranial, primary diagnosis cognitive status, age, and sex 
(5367 variables); (7) CT extracranial, primary diagnosis, 
cognitive status, age, and sex (12989 variables); (8) CT 
whole brain, age, and sex (18399 variables); (9) CT whole 
brain, bloods, primary diagnosis, cognitive status, age, 
and sex (18494 variables); (10) CT whole brain, primary 
diagnosis, cognitive status, age, and sex (18422 variables). 
The target outcome for all models was survival at 600 
days from admission.

The data were randomly split into training (70%) and 
testing (30%) partitions, stratified by 600-day mortality 
outcome. Where multiple CT images were obtained in 
the same admission episode, the first image was always 
used. The test partition contained unique patients only. 
XGB models were trained and optimised using tenfold 
cross-validation from the training partition only with 
600-day mortality and the area under the receiver operat-
ing characteristic curve (AUROC) as the evaluation met-
ric. A manually targeted grid search followed a random 
initial parameter grid search to optimise model hyper-
parameters (number of estimators, maximum depth, 
minimum child weight, learning rate, gamma, subsam-
ple, column sample by tree (Additional file 1: Table S2). 
The best performing fold hyperparameters as defined by 
maximal AUROC were used to quantify performance on 
held-out test data, evaluated through ten-fold cross-vali-
dation of the test set only. For completeness, area under 
the precision-recall curves (AUPRC) are also provided, 
without model retuning to that objective. SHapley Addi-
tive exPlanations (SHAP) values for the top twenty most 
contributory non-imaging features were derived from 
the best performing model to illustrate comparative non-
anatomical feature weighting in the fitted model. Model 
calibration, decision threshold curves, and performance 
variation with age and sex, are evaluated for the best 
model. No imputation of any missing data was necessary: 
XGBoost allows missing values to be modelled explicitly.

https://www.fil.ion.ucl.ac.uk/spm/
https://github.com/WCHN/CTseg
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Anatomical inference
To understand the anatomical patterns driving the imag-
ing contribution to model fidelity, we sought to identify 
linear and non-linear voxel-wise associations with the 
target outcome. To identify linear relations, we per-
formed standard voxel-based brain morphometry of grey 
matter, white matter, soft tissue, and bone compartments 
across separate models, all implemented in SPM. At 
each voxel, the corresponding tissue concentration—the 
dependent variable—was entered into a multiple regres-
sion with survival, age, sex, delirium status, dementia 
status, degree of global atrophy, and total intracranial vol-
ume as independent variables. After model estimation, 
one-tailed t-tests were performed on the regression coef-
ficients with the resultant SPMs interpreted at a p < 0.05 
family-wise error corrected threshold and displayed at p 
< 0.001 uncorrected to convey the full spatial extent of 
anatomical association. To identify potentially non-linear 
associations captured by the XGBoost model, its feature 
importances, indexed by ranked Gini impurity, were pro-
jected back into MNI space for anatomical visualisation.

Code and data availability
The code employed in this study and derived imaging 
maps are available from the corresponding authors on 
request by email. The source data is not available for dis-
semination under the terms of ethically approved access 
owing to concerns about potential reidentification in the 
context of high-dimensional data.

Results
Over the study period, 2951 admission episodes with 
established cognitive status and primary diagnoses were 
recorded from 1855 unique patients. Following grouping 
of multiple admissions within a 28 day interval as a sin-
gle episode, 1975 admission episodes, from 1601 unique 

patients, were defined with linkage to at least one com-
plete set of blood tests within the first 48 h of admission. 
Across the entire cohort, 804 admission episodes involv-
ing 616 unique patients could be linked to a CT head 28 
days before or after the day of admission. A flowchart of 
the cohort definition is provided in Fig. 1.

The mean age was 84.5 years. Cognitive status deter-
mined during the admission episodes was distributed 
as follows: 44% were cognitively intact, 16% had a diag-
nosis of dementia alone, 21.9% delirium alone, and 18% 
delirium superimposed on dementia. A total of 36.6% 
of admission episodes resulted in death within 600 days 
(Table 1).

Mortality prediction from multimodal data
Baseline XGB predictive models of age and sex 
achieved only a modest AUROC of 0.672 on out-
of-sample test data (Fig.  2). There was no marked 
benefit from the addition of clinical features: cog-
nitive status (AUROC = 0.677) or primary diag-
nosis (AUROC = 0.698), either alone or together 
(AUROC = 0.697). The addition of blood tests to the full 
clinical model yielded no improvement over the baseline 
(AUROC = 0.692) that was not explicable by the inten-
tion to investigate alone (Additional file 1: Figure S1).

A substantial jump in predictive performance was 
observed with the addition of imaging data to the full 
clinical model. The combination of intracranial imag-
ing with demographic and clinical features yielded an 
AUROC of 0.82, substantially higher than both base-
line and demographic and clinical data alone. The use of 
extracranial features produced comparable performance 
(AUROC = 0.848) in otherwise identically specified mod-
els. Intracranial and extracranial compartments alone 
(AUROC = 0.861) or in combination with demographics 
and clinical features (AUROC = 0.854) yielded similar 

Table 1  Summary of complete admissions cohort

Mean values are presented for continuous variables, with 95% confidence intervals in brackets. The p values reported in the last column are derived from chi squared 
tests for categorical variables and two sample t-test for continuous variables. The value for cognitive status assumes ordinal progression in cognitive decline across the 
categories itemised beneath

Alive at 600 days (n = 510) Deceased at 600 days (n = 294) p value

Age (mean, 95% CI) 83.7 (69.98–97.42) 85.9 (72.38–99.42) < 0·01

Women (%, 95% CI) 27.6 (23.72–31.48) 16.8 (12.53–20.68) < 0·01

Cognitive status (%, 95% CI) 0·02

  Cognitively intact 46.70 (42.37–51.03) 39.77 (34.18–44.10)

  Delirium only 20.35 (16.86–23.84) 24.86 (19.92–28.35)

  Dementia only 17.03 (13.77–20.29) 14.36 (10.35–17.62)

  Delirium + dementia 15.93 (12.75–19.11) 22.10 (17.36–25.28)

Brain volume (mls, 95% CI) 917 (742–1091) 908 (716–1100) 0·20

Atrophy (%, 95% CI) 81.4 (77.28–85.52) 81.1 (77.18–85.02) 0·35
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performance. The highest performing model included 
the widest selection of inputs—demographics, clinical 
features, blood tests, intracranial and extracranial CT— 
exhibiting an AUROC of 0.874. The variability in perfor-
mance is captured by the cross-validation distributions 
on the training set (Fig. 2). Analysis of the area under the 
precision-response curve yielded an essentially identical 
pattern (Additional file 1: Figure S2).

The best model exhibited good calibration (Fig. 3) and 
threshold diagnostics (Additional file  1: Figure S3), as 
well as reasonably equitable performance across age and 
sex (Additional file 1: Figure S4). Note, however, that this 
does not define the limit of achievable performance: our 
objective here is to demonstrate the predictive potential 
of the approach rather than to maximise it, for which a 
larger study is appropriate.

Haematological and biochemical correlates of mortality
The SHAP values of the top twenty non-imaging features 
making the greatest contribution to the best predictive 
model highlighted renal function and plausible mark-
ers of the somatotrophic state: glomerular filtration rate, 
albumin, alkaline phosphatase, urea, creatinine, and red 
cell indices (Fig.  4). Note that these features are drawn 
from the multimodal model, where collinearities—e.g. 
between brain morphology and age—will inevitably 
influence the ranking: this is not a test of the independent 
association of each feature, only an index of its contribu-
tion to the model’s performance. Owing to their number 
and density, the imaging features are presented anatomi-
cally in the next section.

Fig. 2  The effect of feature number and modality on predictive performance. For each of a set of incrementally complicated models, the 
distribution of the area under the receiver operating curve (AUROC) values obtained from cross-validation is presented as a violin and box plot, 
and the single AUROC on the held-out test set is plotted as a red circle. Note the marked increase in performance associated with the addition of 
information, especially from cranial imaging
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Anatomical correlates of mortality
Voxel-wise mass univariate models of mortality 
revealed multiple loci of linear association distributed 
across the intracranial and extracranial compartments 
(Fig.  5). Intracranially, the most prominent associa-
tions were seen in the dorsal anterior cingulate grey 
matter. Extracranially, widespread modulation was 
seen in the vicinity of the parietal and occipital bones, 
with further loci not surviving conservative multiple 
comparisons correction observed within the sinuses, 
and the region of the pituitary fossa.

A diagnosis of dementia was strongly associated with 
loss of medial temporal grey and white matter typi-
cal of the most common clinical subtype, confirming 
the sensitivity to pathological changes of our analytic 
approach, despite the biological and instrumental het-
erogeneity inevitable in an unselected, clinical dataset, 
and the use of CT rather than MR imaging (Fig. 6).

Anatomical features of predictive importance
Projection of the anatomical feature importances 
derived from the best performing XGB model showed 
a widely distributed pattern of dependence (Fig.  7). 
Intracranially, left precentral gyrus, right anterior cin-
gulate, right angular gyrus and right temporal pole, the 
region of the dorsal corticospinal tract, and the right 
superior longitudinal fasciculus were highlighted. 
Extracranially, parietal bone was highlighted as in the 
linear models and diffusely distributed soft tissue. 
Note that a collinearity of dependence as might arise 
from hemispheric symmetry would be handled by the 

model by down weighting redundant features: this pre-
cludes strong interpretations of laterality here and is 
an inevitable feature of flexible, high-dimensional dis-
criminative models.

Discussion
Examining a large, unselected cohort of acutely hospital-
ised elderly patients evaluated for the presence of acute 
or chronic cognitive impairment and imaged with cranial 
CT, we have quantified the predictability from routinely 
acquired multimodal clinical data of death within 2 years, 
compared the performance of predictive models varying 
in input modality and dimensionality, and characterised 
the distribution of multimodal biological factors predic-
tive of mortality identify. Our findings provide the foun-
dations for developing a readily deployable clinical tool 
for predicting mortality in older patients within future 
large-scale, multi-centre studies. Here, we consider the 
merits and demerits of the proposed approach our analy-
sis suggests.

The predictability of mortality from routine clinical data
Employing strictly out-of-sample evaluation of perfor-
mance, we showed that 600-day mortality is predictable 
with high fidelity—AUROC 0.858—from the combina-
tion of basic clinical data with routine investigations. This 
suggests the presence of stronger predictive signals than 
are harnessed by current mortality prediction models—
ranging from 0.5 1[16] to 0.7 8[11]—especially when 
applied to patients aged 75 and over [11, 17]. Of note, the 
signal here is grounded primarily in fundamental, quanti-
tative biological characteristics of the patient rather than 

Fig. 3  Best model performance characteristics. Receiver operating characteristic curve on the held-out test data of the highest performing model 
(left), which included the widest selection of inputs—demographics, clinical features, blood tests, intracranial and extracranial CT. Model calibration 
is shown on the right
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the circumstances of their care—such as mode and spe-
cialty of admission—minimising the risk of poor gener-
alisability across other healthcare systems observed for 
higher-performing scores such as HOMR [9, 11, 18]. A 
critical contribution is made by intra- and extracranial 
characteristics captured by CT imaging whose quantita-
tive nature renders them more reproducibly identifiable 
than those based on non-quantitative imaging such as 
MRI. Robustness to clinical and demographic variation 
naturally requires evaluation over other, widely dispersed 
cohorts, but the level of observed fidelity motivates fur-
ther exploration of such predictive models embeddable 
within the existing clinical pathway without disruption to 
established care.

Predictive model complexity
Though desirable for their intelligibility and generalisabil-
ity, simple predictive models are constitutionally incapa-
ble of integrating information distributed across multiple 
interacting factors. Where, as here, the causal field is plau-
sibly wide and densely interdependent, models of greater 
dimensionality and flexibility are required. Exploiting the 
flexibility and robustness of gradient boosting machines, 
we have shown that escalating model dimensionality is 
rewarded by more accurate predictive performance—
quantified out-of-sample. This indicates the presence 
of distributed, possibly interacting, factors that collec-
tively strongly predict mortality even if they may be only 
weakly predictive in isolation. The scale of the informa-
tive dimensionality—thousands of variables—suggests 
room for improvement with more data and finer model 

Fig. 4  SHAP values of the top twenty haematological and biochemical contributions to the best predictive model. A higher SHAP value indicates a 
higher risk of death for the feature value indicated in the colour map. Note that lower albumin, glomerular filtration rate, alkaline phosphatase, urea, 
and creatinine, and microcytic haematological features offer the greatest support to the model, in line with sensitivity to the somatotrophic state
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architectural tuning. Note that any substantive increment 
in predictive fidelity is valuable for a model applied at the 
individual patient level—an imperfect model here can 
never be too accurate. The greater sensitivity of complex 
models to distributional shift remains a challenge but is 
no longer an insuperable obstacle: it is addressable algo-
rithmically and through expanding the scale and diversity 
of modelled data (e.g. [19–21]).

Though imaging provides the greatest incremental 
boost in fidelity, integration of multimodal data within 
a unified predictive model yields the best performance. 
Given the comparative ease of modelling routine clini-
cal and non-imaging investigations, their incorpora-
tion would be justified even by small improvements 
in model prediction. Whether or not the addition of 
any modality increases model performance nonethe-
less remains an empirical question that depends both 

on the informativity of a given modality and the cross-
modal redundancy of the predictive signal. The use of 
modalities, such as brain imaging, that provide a rich, 
distinctive, detailed perspective on biology reduces the 
likelihood of redundancy even if it always remains a pos-
sibility. A degree of redundancy is in any event desirable 
in providing some insurance against the missingness—
both during model training and at test time—common in 
real-world clinical environments.

Possible mechanisms of increased mortality
Our mass-univariate analyses of haematological, bio-
chemical, and especially imaging features point to a 
unifying association of mortality with sarco- and osteo-
penia, with especially striking modulation of parietal 
and occipital bone and cranial soft tissue. Sarcopenia, 
defined as the progressive generalised loss of skeletal 

Fig. 5  Cranial and extracranial correlates of mortality. A Voxel-based morphometry of grey and white matter concentrations shows an association 
with dorsal anterior cingulate grey matter concentrations. The t statistic map for the voxelwise contrast ‘survived’ > ‘deceased’ is shown overlaid 
on the mean of the corresponding tissue compartment, thresholded at p < 0.001 uncorrected, with the p < 0.05 FWE threshold shown on the 
colourbar. B Voxel-based morphometry of bone and soft tissue compartmental concentrations shows an association with cranial bone density. 
The t statistic map for the voxelwise contrast ‘survived’ > ‘deceased’ is shown overlaid on the mean of the corresponding tissue compartment, 
thresholded at p < 0.001 uncorrected, with the p < 0.05 FWE threshold shown on the colourbar
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muscle, is associated with increased mortality risk [22], 
potentially mediated via impaired mobility, falls, and 
respiratory complications [23, 24]. Similarly, osteopo-
rosis and the increased fractures are well recognised 
to be associated with increased mortality risk: neck of 
femur fractures are associated with one-year mortality 
of around 30 %[25]. Albumin is commonly acknowl-
edged to be a poor marker of nutritional status, par-
ticularly in the acute setting: its predictive contribution 
plausibly represents altered hepatic synthesis in favour 
of acute phase proteins, a potential marker of proin-
flammatory acute illness. The contributions of urea and 
alkaline phosphatase are consistent with modulation by 
sarcopenia and bone density respectively.

Within the brain, striking modulation of medial fron-
tal cortical areas implicated in voluntary motor behav-
iour and autonomic function—principally the anterior 
cingulate—may be explained by the potential impact 
of dysfunction in either domain. The potential impor-
tance of motor function is reinforced by the enhanced 
multivariate feature importance of voxels falling within 
the primary motor cortex and the corticospinal tract. 
Note that these changes may be explained not only by 
brain pathology—such as small vessel disease—that 
either directly or indirectly reduces grey matter con-
centrations locally but potentially by neural adapta-
tion to long term reduced mobility of non-neural 
origin. The involvement of areas with dense (angular 
gyrus) or remote (temporal pole) connectivity may also 
reflect differential rates of length-dependent degenera-
tion in white matter and the grey matter it connects. 
Further exploration of these biologically intelligible 

patterns—yet to be interrogated by others in this popu-
lation—is merited.

A multimodal index of frailty
A predictive model with high fidelity at the individual 
level has the potential to support clinical decision-making. 
Here quantifying the risk of death early on in the course 
of a hospital admission enables proportionate pre-emp-
tive action—by both patients and clinicians—to minimise 
it. Grounding an index of frailty in multimodal signals in 
principle renders it more robust to incidental variations by 
broadening its evidential support, and potentially widens 
the field of manipulable factors critical in any one patient, 
permitting more closely individuated interventions. 
Adapting the predictive model to absorb greater popula-
tion heterogeneity, and incorporating machinery for causal 
inference, require further algorithmic development with 
larger-scale data that this proof-of-concept now justi-
fies. Crucially, since routine clinical and investigational 
data models appear to be sufficiently powerful here, real-
world implementation of a decision-support tool does not 
require any changes to clinical pathways, substantially low-
ering barriers to adoption. Indeed, it may be argued that 
clinicians have a moral duty to maximise the guiding intel-
ligence extracted from the data they obtain from patients, 
often at individual, and always at institutional, cost.

Some may be tempted to use models of this kind to guide 
withdrawal of treatment. Where a plausible causal chain—
and its clinical modifiability—are not established, such 
use cannot be justified and should be proscribed, not just 
in the case of complex, high-dimensional models but any 
predictive model. Indeed, demonstrating the predictability 

Fig. 6  Grey and white matter correlates of dementia. Voxel-based morphometry of grey and white matter concentrations derived from cranial 
CT shows strong modulation of medial temporal grey and white matter typical of the most common clinical subtype. The t statistic map for 
significantly reduced concentrations is shown overlaid on the mean of the corresponding tissue compartment, thresholded at p < 0.001 
uncorrected for multiple comparisons to enable visualisation of the full extent of modulation, with the p < 0.05 FWE threshold shown on the 
colourbar
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of individual variations in risk provides a strong argument 
against any generic approach to treatment withdrawal.

A high-fidelity individual index of frailty also has 
applications in stratifying patients in observational 
and interventional research studies, where unmodelled 
structured variability could otherwise conceal or distort 
inferred effects. Furthermore, multimodal models may 

reveal heterogeneities between subpopulations exhib-
iting the same risk, suggesting potential differences 
in causation that would confound inferences unless 
explicitly modelled. Attention to heterogeneity is para-
mount in the older patient, where the multiplicity and 
diversity of observed pathologies is high. Identifying 
subpopulations of especially elevated risk facilitates the 

Fig. 7  Cranial and extracranial predictors of mortality. Glyph-based representation of voxels with high feature importance in the best-performing 
XGBoost model, overlaid on surfaces extracted from the corresponding tissue compartment. A Left precentral gyrus, right anterior cingulate, right 
angular gyrus and right temporal pole, the region of the dorsal corticospinal tract, and the right superior longitudinal fasciculus are highlighted. B 
Extracranially, parietal bone was highlighted, and diffusely distributed soft tissue. Note that laterality differences are difficult to interpret here as any 
collinearity of dependence arising from hemispheric symmetry would result in down-weighting of redundant features: this is an inevitable feature 
of flexible, high-dimensional discriminative models
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identification of mechanistic factors of potential inter-
ventional value concealed by noise or non-linearities. 
Although highlighting sarcopenia and the integrity of 
motor brain areas provides actionable targets, down-
stream studies are needed to quantify the clinical utility 
of any intervention.

We do not advocate scanning patients purely for prog-
nostic purposes, only using CT data acquired commonly 
enough for a model based on it to be widely applicable. 
If the fidelity of the approach is established over larger 
scale, multi-site studies, and clinical utility is demon-
strated—in guiding preventative interventions, for exam-
ple—a case could be made on the specific balance of risk 
and benefit. But since the model’s support is drawn from 
those in whom CT is clinically indicated, transfer to the 
wider population would need careful evaluation. The 
increasing digital maturity of radiological systems and 
their widespread integration with electronic healthcare 
records make this potentially feasible at substantial scale 
and with broad inclusivity.

Strengths and limitations
The synthesis of multimodal signals spanning demo-
graphics, clinical features, blood tests, and CT imag-
ing data is unique amongst prognostic models in this 
population. The use of objectively quantifiable features 
derived only from routinely collected data without the 
need for pre-admission information or potentially sub-
jective clinical assessment is a central strength, pro-
moting generalisation across healthcare systems and 
enabling implementation without disrupting established 
pathways. Model development and out-of-sample vali-
dation on one of the largest unselected cohorts of older 
patients evaluated for acute illness in frail patients is 
grounds for confidence in the robustness of the findings.

An array of limitations should be noted. Though the 
largest of its kind, this is a retrospective study validated 
on held-out but retrospective data from the same insti-
tution: generalisability over time and location must be 
established in subsequent studies. In keeping with all 
observational analyses of routine clinical data, a degree 
of corruption by (potentially structured) missingness, 
acquisition, and documentation errors, and clinical 
uncertainty is inevitable. Specifically, the diagnoses of 
delirium and dementia, though made by a senior clini-
cian, were not validated by dedicated instruments or (in 
the case of dementia) corroborative imaging. Equally, 
though our cohort is fully inclusive of the clinical stream, 
only those with CT imaging of the head, carried out for 
indications individual to each patient, were retained in 
the analysis. We pursued this approach to maximise eco-
logical validity, replicating the quality of data a real-world 

institution would naturally see. The impact of potential 
biases is minimised by the use of sequential, unselected 
data, enabling inference across all those in receipt of the 
criteria investigations. We explicitly quantify the effects 
of intention to investigate in relation to individual blood 
tests, finding it to contain negligible predictive signal. 
Institutional-level variability in clinical practices could, 
of course, impact generalisation and need exploration 
in future multi-centre studies. Because it was not avail-
able, we do not model the cause of death, only the pri-
mary diagnosis on the admission that triggers entry into 
the cohort. Co-morbidities were omitted for the same 
reason. There is no reason to expect the distribution of 
causes of death to differ substantially from that observed 
for the underlying population, and our focus here is the 
fact of it rather than its cause. But incorporating cause of 
death and co-morbidities, in further escalation of model 
complexity, may well increase performance and ought 
to be evaluated where possible. Finally, the use models 
that are high-dimensional in proportion to the number 
of training instances always presents a risk of overfit-
ting, here addressed by strong regularisation, a modelling 
architecture relatively resistant to overfitting, and careful 
evaluation of the model with both cross-validation and a 
fully held-out definitive test set. It is for this reason that 
further evaluation, within larger, multi-site studies is rec-
ommended here.

Conclusions
Examining the distribution of a wide array of mul-
timodal predictive factors in older patients acutely 
admitted to hospital and imaged with cranial CT, we 
have established the foundations of a multimodal 
approach to predicting medium-term mortality, opera-
tional at the point of admission, and validated for unse-
lected oldest-old patients. Our analysis demonstrates 
the benefit of using machine learning to enable mod-
els incorporating multiple modalities, highlighting the 
predictive potential of defining ‘multimodal frailty’. 
Inferences drawn from the prediction model suggest 
that unimpaired higher motor and autonomic function 
is associated with medium-long term survival. These 
results justify further investigation of the application of 
high-dimensional modelling to predicting mortality in 
the older patient.
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