
Tesfaye et al. BMC Medicine           (2023) 21:12  
https://doi.org/10.1186/s12916-022-02701-w

RESEARCH ARTICLE

This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2023. Open 
Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, 
distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is 
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco 
mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi cdoma in/ 
zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Medicine

Prenatal social support in low-risk pregnancy 
shapes placental epigenome
Markos Tesfaye1,2, Jing Wu3, Richard J. Biedrzycki3, Katherine L. Grantz4, Paule Joseph1† and Fasil Tekola‑Ayele4*† 

Abstract 

Background Poor social support during pregnancy has been linked to inflammation and adverse pregnancy 
and childhood health outcomes. Placental epigenetic alterations may underlie these links but are still unknown in 
humans.

Methods In a cohort of low‑risk pregnant women (n = 301) from diverse ethnic backgrounds, social support was 
measured using the ENRICHD Social Support Inventory (ESSI) during the first trimester. Placental samples collected at 
delivery were analyzed for DNA methylation and gene expression using Illumina 450K Beadchip Array and RNA‑seq, 
respectively. We examined association between maternal prenatal social support and DNA methylation in placenta. 
Associated cytosine‑(phosphate)‑guanine sites (CpGs) were further assessed for correlation with nearby gene expres‑
sion in placenta.

Results The mean age (SD) of the women was 27.7 (5.3) years. The median (interquartile range) of ESSI scores was 
24 (22–25). Prenatal social support was significantly associated with methylation level at seven CpGs (PFDR < 0.05). The 
methylation levels at two of the seven CpGs correlated with placental expression of VGF and ILVBL (PFDR < 0.05), genes 
known to be involved in neurodevelopment and energy metabolism. The genes annotated with the top 100 CpGs 
were enriched for pathways related to fetal growth, coagulation system, energy metabolism, and neurodevelopment. 
Sex‑stratified analysis identified additional significant associations at nine CpGs in male‑bearing pregnancies and 35 
CpGs in female‑bearing pregnancies.

Conclusions The findings suggest that prenatal social support is linked to placental DNA methylation changes in a 
low‑stress setting, including fetal sex‑dependent epigenetic changes. Given the relevance of some of these changes 
in fetal neurodevelopmental outcomes, the findings signal important methylation targets for future research on 
molecular mechanisms of effect of the broader social environment on pregnancy and fetal outcomes.
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Background
Social support promotes mental and physical health in 
low stress environments [1, 2] and buffers the effects of 
stress in high stress environments [3, 4]. Maternal resil-
ience factors such as prenatal social support have been 
linked to higher leukocyte telomere length in newborns 
[5] and lower adiposity during infancy [6]. Moreover, 
poor social support in early childhood may influence 
health outcomes later in life [7]. However, little is known 
about the biological mechanisms that underlie the rela-
tionship between prenatal social support and subsequent 
health outcomes.

The placenta undergoes dynamic DNA methylation 
changes throughout pregnancy in response to biologi-
cal and environmental factors to provide an optimal 
environment for fetal development [8, 9]. Emerging 
evidence suggests that epigenetics may partly explain 
the link between prenatal psychosocial factors, such as 
maternal stress and depression, and child health out-
comes [10]. Therefore, it is possible that social support 
during pregnancy may influence fetal development and 
long-term health outcomes by altering the placental 
epigenome. However, there is no published study on the 
association between social support and genome-wide 
DNA methylation of human placenta. Prenatal social 
support in humans has been associated with DNA 
methylation in maternal blood [11], and social rank 
in primates has been associated with placental DNA 
methylation [12]. Low social support has been linked 
to inflammation [13], and quality of prenatal social sup-
port has been linked to inflammation during pregnancy 
and early infancy [14, 15]. Therefore, identifying placen-
tal DNA methylation changes associated with prenatal 
social support in low-risk pregnancies may shed light 
on the molecular mechanisms underlying the effects 
of social support on fetal development, crucial infor-
mation for developing interventions to promote fetal 
development and long-term health outcomes.

Using the Eunice Kennedy Shriver National Institute of 
Child Health and Human Development (NICHD) Fetal 
Growth Studies (FGS) cohort data [16], we investigated 
the association between maternal social support during 
pregnancy and genome-wide DNA methylation in pla-
centa at delivery. Given accumulating evidence on sex 
differences in placental methylation [17–20] and pla-
cental response to adverse prenatal environments [10, 
21, 22], we also investigated the association separately 
in male and female fetuses. For cytosine-(phosphate)-
guanine sites (CpGs) found to be significantly associated 
with social support, we examined whether methylation of 
CpGs was associated with expression of nearby genes in 
placenta.

Methods
Setting and subjects
We used data from the Eunice Kennedy Shriver NICHD 
FGS – Singletons. Among the total 2802 participants, 312 
had placenta samples collected at delivery. Participants 
who provided placenta and those who did not provide 
placenta did not have significant differences in mater-
nal age, fetal sex, job status, educational status, social 
support, or perceived stress scores (Additional file  1: 
Table  S1). The study was approved by the Institutional 
Review Boards of NICHD and all respective participating 
clinical sites. All participants provided informed consent 
at enrollment into the study.

The participants were low risk pregnant women 
enrolled at gestational ages of 8 to 13 weeks from 12 
clinics in the USA during the period between July 2009 
and January 2013. The inclusion criteria were age 18–40 
years, viable singleton pregnancy, and planning to give 
birth at the participating health facilities. Exclusion cri-
teria were previous history of poor obstetric outcomes, 
pre-existing chronic medical and psychiatric conditions, 
smoking in the previous 6 months or use of illicit drugs 
during the previous 12 months, and consumption of ≥ 1 
alcohol drink daily [16].

Main exposure variable
Maternal social support was assessed at enrollment using 
the self-report Enhancing Recovery in Coronary Heart 
Disease Social Support Instrument (ESSI) [23]. ESSI uses 
seven items for assessing the degree of social support an 
individual has. The higher total scores higher scores indi-
cate greater degree of social support.

Covariates
Data on maternal age, parity, education, maternal job 
status, pre-pregnancy BMI, self-identified race/eth-
nicity, gestational age at delivery, and fetal sex were 
obtained through interviews and from medical records as 
described elsewhere [16]. Perceived stress was measured 
using the self-report ten-item Cohen’s Perceived Stress 
Scale (PSS-10). A higher PSS-10 score indicates greater 
level of perceived stress [24].

Placenta sample collection and DNA methylation 
quantification
Placentas obtained at delivery were rinsed with sterile 
saline, pat dried with paper towel, and had nonadher-
ent clots removed. The placental membrane and umbili-
cal cord were trimmed before biopsies were taken. 
Four biopsies measuring 0.5  cm × 0.5  cm × 0.5  cm were 
collected directly below the fetal surface of each pla-
centa within 1 h of delivery. The samples were placed 
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in RNALater and frozen at – 80 °C for molecular analy-
sis. The placental biopsy samples were processed at the 
Columbia University Irving Medical Center as described 
previously [25]. DNA was extracted from the samples 
and assayed using the Illumina Infinium Human Meth-
ylation450 Beadchip (Illumina Inc., San Diego, CA) array. 
A total of 301 placental samples that passed quality con-
trol were included in the analysis [26]. Eleven samples 
were excluded because they were outliers from the distri-
bution of genetic clusters of the sample (n = 6), genotype 
sex mismatch between fetus and placenta (n = 4), and 
mismatch of sample identifiers (n = 1).

Standard Illumina protocols were followed for back-
ground correction, normalization to internal control 
probes, and quantile normalization. The Illumina 450k 
array’s plating scheme was adjusted according to the 
assay’s internal QC design. The GenomeStudio QC 
standard was implemented during data preprocessing, 
and the internal probes have been used for background 
correction, dye bias correction, normalization, probe-
design bias correction, and an offset for Infinium I and 
II probe intensity. The assay quality controls comprised 
of controls for measuring staining sensitivity and con-
trols for testing efficiency of bisulfite conversion. Bisulfite 
modification was performed using the EZ Methylation 
kit (Zymo Research, CA). Bisulfite-converted sequences 
without CpGs served as negative controls; the mean of 
the negative control probes was used as the system back-
ground. The resulting intensity files were processed with 
Illumina’s Genome Studio which generated average beta 
values for each CpG site (i.e., the fraction of methylated 
sites per sample by calculating the ratio of methylated 
and unmethylated fluorescent signals) and detection 
P-values which characterized the chance that the target 
sequence signal was distinguishable from the negative 
controls. The method was corrected for probe design 
bias in the Illumina Infinium Human Methylation450 
BeadChip and achieved between-sample normalization. 
Normalization was performed using the modified Beta 
Mixture Quantile dilation (BMIQ) method to correct the 
probe design bias in the Illumina Infinium Human Meth-
ylation450 BeadChip and achieve between-sample nor-
malization [27].

Missing CpGs were imputed by the k-nearest neigh-
bors method, setting k = 10. Beta values with an asso-
ciated detection P ≥ 0.05 were set to missing. Probes 
with mean detection P ≥ 0.05 (n = 36), cross-reactive 
(n = 24,491), non-autosomal (n = 14,589), and CpG sites 
within 20  bp from a known single nucleotide polymor-
phism (SNP) (n = 37,360) were removed [20]. Conse-
quently, methylation data for 409,101 were obtained 
for analysis. We transformed the beta values to M value 

scale before analysis as recommended using the formula 
M = log2(Beta/(1-Beta)) [28].

RNA extraction and quantification
RNA from 80 placenta samples was isolated using TRI-
ZOL reagent (Invitrogen, MA, USA). The mRNA librar-
ies were sequenced on an Illumina HiSeq2000 machine 
with 100 bp paired-end reads as described elsewhere 
[25]. Data from 75 participants who had both DNA 
methylation and RNA-seq data were used for the meth-
ylation and gene expression association tests.

Statistical analysis
Association between CpG sites and social support
We performed epigenome-wide analyses using multi-
ple linear regression models with the DNA methylation 
CpG site as response variable on the M value scale and 
maternal social support scores as predictor. We also per-
formed similar analyses by subgroups based on fetal sex. 
All regression analysis models were adjusted for maternal 
age, parity, education, maternal job status, pre-pregnancy 
BMI, self-identified race/ethnicity, gestational age at 
delivery, fetal sex, maternal perceived stress scores meas-
ured at recruitment, 10 genetic principal components 
computed from genome-wide autosomal SNP genotypes 
of placenta from HumanOmni2.5 Beadchips (Illumina 
Inc., San Diego, CA) to adjust for population structure, 
three methylation-based principal components, meth-
ylation sample plate, and components based on putative 
cell-mixture estimates using surrogate variable analysis 
(SVA) to account for confounding by variation in cell 
composition [29]. In sensitivity analyses, linear regres-
sion models were additionally adjusted for cell composi-
tion variables created using methods developed by Yuan 
et al. [30]. Further sensitivity analysis was performed to 
assess whether the significant associations remain in a 
statistical model that did not include maternal sociode-
mographic factors (i.e., by excluding maternal age, parity, 
education, maternal job status, pre-pregnancy BMI, self-
identified race/ethnicity, and gestational age at delivery 
from list of adjusted covariates). We assessed the direc-
tion of association and correlation of methylation fold-
changes (logFC) between the fully adjusted model and 
the model without sociodemographic covariates.

Differentially methylated CpG sites were mapped 
to genes within 250kb using R/Bioconductor package 
(IlluminaHumanMethylation450kmanifest) with a ref-
erence consisting of all genes present in the Illumina 
450k platform. P-values were corrected for false discov-
ery rate (FDR) using the Benjamini-Hochberg method. 
P-values were further corrected for genomic inflation (λ) 
by applying a Bayesian method in R/Bioconductor pack-
age (BACON) [31]. Quantile-Quantile (QQ) plots were 
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generated for the regression models before and after 
BACON correction. The QQ plots do not exhibit signifi-
cant inflation of the p-values with λ = 1.0, λ = 1.03, and 
λ = 0.97 after BACON correction for the overall, male-
specific, and female-specific results, respectively (Addi-
tional file 1: Figure S1–S3). For sex-stratified analyses, we 
followed the approach described by Randall et al. which 
implements Welch’s t-test [32] to categorize the associa-
tions into one of three groups: (i) concordant effect direc-
tion (CED) defined, for effects sizes in the same direction, 
as association that is significant at PFDR < 0.05 in one fetal 
sex and at least nominally significant in the other fetal 
sex; (ii) single sex effect (SSE) when significant associa-
tion is present in one fetal sex (PFDR < 0.05) and no asso-
ciation observed in the other fetal sex; or (iii) opposite 
effect direction (OED) defined, for effect sizes in oppo-
site direction, as association that is significant in one fetal 
sex (PFDR < 0.05) and at least nominally significant in the 
other fetal sex. Post hoc statistical power analysis was 
performed using two-tailed tests assuming probability of 
error (α) = 0.05 and demonstrated that the study power 
was ≥ 90% for detecting the effect sizes of 82% of the 
CpGs found to be associated with social support in the 
overall as well as sex-stratified analyses (Additional file 1: 
Figure S4).

We employed the R package dmrff to identify differen-
tially methylated regions (DMR) in placenta associated 
with maternal social support at 5% FDR [33]. A DMR 
was defined to have a maximum length of 500 base pairs 
harboring a set of CpGs with EWAS P < 0.05 and identical 
effect direction.

Association between DNA methylation and gene expression
We analyzed association between DNA methylation at 
differentially methylated CpG sites and placental expres-
sion of protein-coding genes located within 250kb 
up- and downstream from the CpG sites using linear 
regression. Correlations between expression of the genes 
and social support scores were assessed using Pearson’s 
correlation test.

Functional annotations and regulatory enrichment
We examined whether genetic variants influence DNA 
methylation levels of the CpGs associated with social 
support. For this, we explored the CpGs in the list of 
known placental methylation quantitative trait loci 
(mQTLs) [25].

Using eFORGE version 2.0 [34], we examined enrich-
ment and depletion of the CpGs significantly associated 
with social support (PFDR < 0.05) for tissue or cell-type 
specific regulatory features. The CpGs identified in 
the total, male, and female samples were submitted to 
eFORGE and evaluated separately for overlap with DNase 

I hypersensitive sites, all 15-state chromatin marks, and 
all five H3 histone marks (i.e., H3K27me3, H3K4me1, 
H3K4me3, H3K36me3, H3K9me3).

Pathway enrichment analysis
We examined the biological functions of genes annotated 
to the top 100 CpG sites associated with social support 
using Ingenuity Pathway Analysis (IPA, Qiagen, Redwood 
City, CA, USA), separately for the overall and sex-strati-
fied analysis results. Enriched biological pathways which 
contain at least two of the query genes and with P-values 
less than 0.05 were considered significantly enriched.

Results
The characteristics of the 301 participants have been 
described previously [35]. Briefly, the mean age (SD) 
of the women was 27.7 (5.3) years; 50.5% of the fetuses 
were male. The median (interquartile range, IQR) of ESSI 
scores was 24 (22–25). The ESSI scores were relatively 
low with the 75th centile being equivalent to the 25th 
centile of the ESSI tool development study where the 
participants were individuals who had recent myocardial 
infarction [36]. The median (IQR) perceived stress score 
was 11 (6–14) as described elsewhere [21], which is lower 
than the corresponding figures in a US cohort of preg-
nant women during the first trimester [37] and norma-
tive data of Swedish women 14 (10–19) [38]. ESSI scores 
were positively correlated with having high school or 
higher educational status (r = 0.16, P = 0.007) and being 
employed (r = 0.12, P = 0.046) and inversely correlated 
with higher PSS-10 scores (r = − 0.34, P = 2.2 ×  10−9).

Maternal social support and DNA methylation in placenta 
at delivery
Higher maternal social support during the first trimes-
ter of pregnancy was associated with higher methyla-
tion at seven CpGs (located within/near genes HAUS3, 
ARHGEF7, VGF, FAM210B, SBF1, ILVBL and EIF3F) 
(BACON-corrected PFDR ≤ 0.05). Most of these CpGs 
were either in promoter regions or gene bodies of the 
annotated genes. Also, the majority (6/7) loci were 
located in CpG islands (Table  1). In sensitivity analysis 
using a model additionally adjusted for cell composition 
variables, the methylation at these CpGs was associated 
with social support at PFDR < 0.001 (Additional file  1: 
Table  S2). In sensitivity analysis without maternal soci-
odemographic factors, all seven association directions 
remained the same and the correlation in logFC between 
the fully adjusted model and the model without sociode-
mographic covariates was perfect (r = 1, P = 2.8 ×  10−6) 
(Additional file 1: Table S2).
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Maternal social support and fetal sex‑specific DNA 
methylation in placenta
In analyses grouped by fetal sex, maternal social sup-
port was associated with higher methylation at nine 
CpGs in males (all exhibiting SSE, PFDR < 0.05) and with 
higher methylation at 32 CpGs and lower methylation 
at three CpGs in females (32 exhibiting SSE, 2 exhibit-
ing OED, PFDR < 0.05) (Table  2; Additional file  1: Tables 
S3 & S4). In sex-stratified sensitivity analyses where 
the model additionally included cell composition vari-
ables, methylation at the 44 CpGs were associated with 
social support at PFDR < 0.001 (Additional file  1: Tables 
S5 & S6). In sensitivity analysis without maternal soci-
odemographic factors, all sex-specific association direc-
tions remained the same and the correlation in logFC 
between the fully adjusted model and the model without 
sociodemographic covariates was nearly perfect (male 
r = 0.99, P = 1.3 ×  10−6; female r = 0.99, P < 2.2 ×  10−16) 
(Additional file 1: Tables S5 & S6). Only two social sup-
port-associated CpGs in the overall sample, cg11364468 
[VGF] and cg02672368 [ARHGEF7], were significant in 
male- and female-stratified analysis, respectively (Fig. 1). 
None of the CpGs associated with social support demon-
strated concordant effects by fetal sex (Table 2).

Correlation between methylation of CpGs and expression 
of nearby genes in placenta
Higher methylation at cg11364468 (found to be associ-
ated with higher social support in the overall sample 
and male sample) was associated with lower expression 
of VGF. Higher methylation at cg16763895 (found to 
be associated with higher social support in the overall 
sample) was associated with lower expression of ILVBL 
(Table  3). VGF is a protein-coding gene known to be 
highly expressed in parts of the brain and neuroendo-
crine cells (Additional file 1: Figure S5). Several peptide 
proteins encoded by VGF have important roles in brain 

development and behavioral phenotypes [39] and regu-
lation of energy metabolism [40]. Gene ontologies indi-
cate that the protein encoded by ILVBL, which is widely 
expressed across different tissues (Additional file 1: Fig-
ure S6), is involved in fatty acid alpha-oxidation in the 
endoplasmic reticulum [41] and biosynthesis of isoleu-
cine and valine [42].

Functional annotations and regulatory enrichment
CpGs associated with social support in the female sam-
ple showed enrichment for DNase 1 hypersensitive sites 
in fetal brain (PFDR < 0.05), but no enrichment was found 
for the overall or male-specific CpGs associated with 
social support (Additional file  2: Tables S7–S24). None 
of the social support-associated CpGs has previously 
been identified as cis-mQTL in placenta [25] which fur-
ther suggests the observed methylation differences are 
likely to be the effect of social support rather than that of 
genetic variants.

Differentially methylated regions
Analyses of DMRs identified 18, 28, and 22 DMRs asso-
ciated with social support in the overall, male, and 
female samples, respectively. Two genes (KNDC1 and 
KIAA0664) annotating DMRs overlapped with genes 
annotating CpGs identified in the male sample (Addi-
tional file 3: Tables S25–S27).

Pathway analysis
The genes annotating the top 100 social support-associ-
ated CpGs in the overall sample showed enrichment of 
IPA canonical pathways related to fetal growth, coagula-
tion system, energy metabolism, and neurodevelopment 
(Table 4). For male-specific CpGs, enrichment was found 
for pathways related to immune system, cell cycle, tissue 
growth, and endocrine receptors signaling (Additional 
file 4: Table S28). For female-specific CpGs, enrichment 

Table 1 Methylation sites in placenta associated with level of social support during pregnancy (n = 301)

a Adjusted for maternal age, race/ethnicity, pre-pregnancy BMI, education, job status, gestational age, parity, fetal sex, perceived stress, methylation principal 
components, genotype principal components, and surrogate variable

CpG cytosine-(phosphate)-guanine site, FDR false discovery rate, LogFC logarithm of fold change, S.E standard error, SD standard deviation

CpG Gene Chr: position Relation to Gene Relation to Island Mean methylation
Beta (SD)

Methylation 
LogFC ± S.E.

P‑valuea PFDR

cg14806252 HAUS3 4:2244001 TSS200 Island 0.008 (0.005) 0.22 ± 0.04 4.6 ×  10−8 0.019

cg01924481 SBF1 22:50898563 Body Island 0.865 (0.020) 0.02 ± 0.003 1.3 ×  10−7 0.021

cg11364468 VGF 7:100807505 Body Island 0.011 (0.006) 0.11 ± 0.02 1.5 ×  10−7 0.021

cg00549575 EIF3F 11:8008752 TSS200 N_Shore 0.040 (0.016) 0.08 ± 0.02 3.3 ×  10−7 0.030

cg19499754 FAM210B 20:54919155 Island 0.029 (0.013) 0.11 ± 0.02 3.7 ×  10−7 0.030

cg16763895 ILVBL 19:15235973 5’UTR Island 0.030 (0.010) 0.07 ± 0.01 6.0 ×  10−7 0.041

cg02672368 ARHGEF7 13:111805930 Body; TSS200 Island 0.017 (0.008) 0.13 ± 0.03 8.4 ×  10−7 0.049
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was found for pathways relevant for immune system, 
neurodevelopment, and endocrine receptors signaling 
as well as processes important in placental development 
and maturation such as cell proliferation and cellular 
migration (Additional file 4: Table S29).

Discussion
In this first report of epigenetic signatures of social 
support in human placentas, we found that the level of 
prenatal social support during the first trimester of preg-
nancy is associated with differential methylation of seven 
CpGs in placenta at delivery. We also identified an addi-
tional 42 social support-associated CpGs in placenta 

Fig. 1 Placental methylation sites associated with social support during pregnancy by sex of the fetus. All models are adjusted to maternal age, 
ethnicity, pre‑pregnancy body mass index (BMI), education, job status, gestational age, parity, perceived stress, methylation principal components 
(PCs), genotype PCs, and surrogate variable. The model for the total sample is additionally adjusted for sex of the fetus

Table 3 Association between methylation levels of social 
support‑related placental methylation sites and placental 
expression level of nearby genes (n = 75)a

CpG cytosine-(phosphate)-guanine site, S.E standard error, FDR false discovery 
rate
a Only FDR-significant associations are shown

CpG Gene β coeff. ± S.E. P‑value PFDR

cg16763895 ILVBL − 542.1 ± 151.3 0.0006 0.007

cg16763895 OR7A17 − 0.04 ± 0.02 0.0154 0.085

cg11364468 VGF − 0.66 ± 0.22 0.0038 0.037

cg11364468 MUC17 − 0.06 ± 0.02 0.0057 0.037

Table 4 Ingenuity pathway analysis canonical pathways of genes annotated to the top 100 social support associated methylation 
sites in placenta (total sample, n = 301)

Ingenuity canonical pathways Log P‑value Ratio Molecules

Extrinsic prothrombin activation pathway 2.71 0.125 F3, THBD

Coagulation system 2.04 0.057 F3, THBD

White adipose tissue browning pathway 1.72 0.022 ADCY9, FGFR1, VGF

Regulation of eIF4 and p70S6K signaling 1.42 0.017 AGO3, EIF3F, ITGAE

Synaptogenesis signaling pathway 1.38 0.013 ADCY9, ARHGEF7, EFNA5, THBS2

FGF signaling 1.33 0.024 FGFR1, FRS2

Hippo signaling 1.32 0.024 SCRIB, TEAD4
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dependent on fetal sex. The social support-associated 
epigenetic signatures in placenta are independent of pre-
natal stress; hence, social support may have impact on 
placental methylation even when maternal stress levels 
are not high. The association between placental expres-
sions of VGF, ILVBL and MUC17, and DNA methylation 
at two of the social support-associated CpGs hints at the 
potential gene regulatory roles of the DNA methylation 
changes. Studies have previously demonstrated the epi-
genetic regulation of VGF [43, 44] and MUC17 [45, 46] 
expressions in different tissues. Genes annotated to social 
support-associated CpGs were enriched for pathways 
related to the immune system among others. Collectively, 
our findings support the biological effects of prenatal 
social support on the in-utero environment which may 
potentially have fetal programming effects [47], extend-
ing previous reports on the relations between social fac-
tors during pregnancy and methylation in maternal blood 
[11] and in placenta of Rhesus monkeys [12].

A positive effect of social support on health and well-
being even under low stress environment has long been 
recognized [2]. While social support may mitigate the 
negative effects of stress on health outcomes, it is pos-
sible that social support independently promotes health 
and pregnancy outcomes. For example, prenatal social 
support has been linked to higher newborn leukocyte 
telomere length [5] and higher birth weight [48–51]—a 
marker of fetal growth and a predictor of adulthood 
health outcomes. The enrichment of FGF signaling and 
Hippo signaling pathways, which are reportedly involved 
in regulation of telomerase activity [52, 53], also suggests 
a potential mechanism for the effect of prenatal social 
support on fetal outcomes.

The enrichment of pathways related to the immune 
system and cytokines supports shared mechanisms for 
the potential effects of social support, stress, infections, 
and other factors. A meta-analytic review has found evi-
dence supporting the link between low social support 
and inflammation [13]. The quality of social support dur-
ing pregnancy has also been associated with inflamma-
tion during pregnancy and early infancy [14, 15]. Given 
the link between MUC17 expression level in different 
tissues and inflammatory activation [54, 55], our finding 
of decreased MUC17 expression with increased meth-
ylation at cg11364468 which in turn is associated with 
higher social support suggests involvement of inflam-
matory pathways. Therefore, we speculate that prena-
tal social support may promote fetal outcomes through 
attenuation of excessive inflammatory activation in pla-
centa in response to various environmental and biologi-
cal factors. Since psychosocial stress is only one of many 
proinflammatory environmental factors [56], the positive 

effect of social support on fetal outcomes may extend 
beyond pregnancies with high levels of stress.

The placenta has functional roles in fetal neurodevel-
opment via the “placenta-brain axis,” with potential pro-
gramming for future mental health outcomes [57]. VGF 
is a protein-coding gene with biased expression in the 
brain (Figure S5), and its dysregulation has been linked 
to abnormalities in neural progenitor cell differentiation 
[58]. In animal studies, dysregulation of VGF had effect 
on brain development and behavioral phenotypes [39], 
depression-like behaviors [59], and memory consolida-
tion and stress resilience [60, 61]. In humans, VGF has 
been suggested as a biomarker of different neuropsy-
chiatric diseases [62]. The decreased expression of VGF 
associated with hypermethylation of cg11364468, enrich-
ment of CpGs for fetal brain cells, and enrichment of 
annotated genes for pathways involved in brain devel-
opment suggest that prenatal social environment may 
be involved in fetal programming for neuropsychiatric 
outcomes.

On the other hand, research suggests that VGF-derived 
peptides have an important role in the regulation of 
energy balance [40]. Although different mechanisms 
may exist, VGF activity in the hypothalamus, which is 
key in the regulation of feeding and energy metabolism, 
has been implicated [63, 64]. Increased methylation at 
cg16763895 associated with decreased expression of 
ILVBL which is involved in oxidation of fatty acids, sug-
gesting fetal programming effect of social support on 
pathways relevant to energy metabolism. However, fur-
ther research is needed to elucidate whether the epige-
netic changes associated with prenatal social support in 
placenta are associated with later health outcomes in the 
offspring.

Our findings indicate sex-specific responses of pla-
cental epigenome to prenatal social environment. Nev-
ertheless, pathway analyses revealed convergence in 
enrichment of canonical pathways such as those related 
to the immune system for the genes annotated to the top 
100 social support associated CpGs in pregnancies with 
male and female fetuses. Studies have previously demon-
strated that epigenetic programming of placenta occurs 
in a sex-dependent manner [65, 66], and in the case of 
social support, both converge at immune response and 
inflammation pathways, despite involvement of different 
CpG sites. We found hypermethylation of cg00140191 
(FKBP5) with higher social support in only male preg-
nancies. Prenatal stress-associated differential methyla-
tion of FKBP5 in placenta has previously been linked to 
infant neurobehavioral outcomes [67]. Hypomethylation 
of cg00140191 was reported in peripheral blood of ado-
lescents who had childhood victimization [68]. Overall, 
our findings indicate that sex-specific analyses offer the 
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opportunity for better understanding the effects of social 
support and perhaps other environmental factors on pla-
cental epigenome. The potential implications of these sex 
differences on long term health outcomes may be crucial 
for understanding health disparities in men and women.

We acknowledge the following limitations arising from 
our design. First, our study may have been underpowered 
to detect additional associations because of relatively 
small sample size, particularly for subgroup and gene 
expression analyses. However, the post hoc power esti-
mates indicate that most of the DNA methylation effect 
sizes were adequately powered. Second, the participants 
were selected to study low risk pregnancy, and this may 
have led to exclusion of individuals with low social sup-
port, e.g., individuals with drug addiction or psychiatric 
disorders. Finally, the level of social support may have 
changed later during pregnancy. Despite these limita-
tions, we found novel CpGs in placenta associated with 
social support which withstood correction for multiple 
testing and adjustment for several important confound-
ers, including estimates of placental cell composition and 
genetic ancestry. Our data support placental epigenetic 
programming effect of social support in racially diverse 
pregnant women with implications for offspring neu-
ropsychiatric and cardiometabolic health. These findings 
need to be interpreted in the light of the shared genetic 
risk between loneliness, neuropsychiatric and cardiovas-
cular morbidities [69].

Conclusions
We identified placental DNA methylation changes asso-
ciated with prenatal social support independent of the 
level of prenatal stress during pregnancy. Some of these 
placental DNA methylation changes varied by fetal sex. 
The genes annotated to the DNA methylation loci are 
enriched for pathways involved in the immune system, 
placental growth and maturation, brain development, 
and energy metabolism. Research in molecular mecha-
nisms of effect of social support on health outcomes may 
provide useful insight for developing interventions that 
promote fetal neurodevelopment. Further research is 
needed to replicate the findings and identify molecular 
mechanisms of effect of the broader social environment 
on pregnancy and fetal outcomes.
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