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Abstract 

Background  Retinal structural abnormalities have been found to serve as biomarkers for cardiovascular disease 
(CVD). However, the association between retinal nerve fiber layer (RNFL) thickness and the incidence of CVD events 
remains inconclusive, and relevant longitudinal studies are lacking. Therefore, we aimed to examine this link in two 
prospective cohort studies.

Methods  A total of 25,563 participants from UK Biobank who were initially free of CVD were included in the current 
study. Another 635 participants without retinopathy at baseline from the Chinese Guangzhou Diabetes Eye Study 
(GDES) were adopted as the validation set. Measurements of RNFL thickness in the macular (UK Biobank) and peri-
papillary (GDES) regions were obtained from optical coherence tomography (OCT). Adjusted hazard ratios (HRs), odd 
ratios (ORs), and 95% confidence intervals (CI) were calculated to quantify CVD risk.

Results  Over a median follow-up period of 7.67 years, 1281 (5.01%) participants in UK Biobank developed CVD 
events. Each 5-μm decrease in macular RNFL thickness was associated with an 8% increase in incident CVD risk (HR = 
1.08, 95% CI: 1.01–1.17, p = 0.033). Compared with participants in the highest tertile of RNFL thickness, the risk of inci-
dent CVD was significantly increased in participants in the lowest thickness tertile (HR = 1.18, 95% CI: 1.01–1.38, p = 
0.036). In GDES, 29 (4.57%) patients developed CVD events within 3 years. Lower average peripapillary RNFL thickness 
was also associated with a higher CVD risk (OR = 1.35, 95% CI: 1.11–1.65, p = 0.003). The additive net reclassification 
improvement (NRI) was 21.8%, and the absolute NRI was 2.0% by addition of RNFL thickness over the Framingham risk 
score. Of 29 patients with incident CVD, 7 were correctly reclassified to a higher risk category while 1 was reclassified 
to a lower category, and 21 high risk patients were not reclassified.

Conclusions  RNFL thinning was independently associated with increased incident cardiovascular risk and improved 
reclassification capability, indicating RNFL thickness derived from the non-invasive OCT as a potential retinal finger-
print for CVD event across ethnicities and health conditions.
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Background
Cardiovascular disease (CVD) is one of the greatest med-
ical challenges worldwide. As the leading cause of mor-
bidity and mortality, CVD affects more than 500 million 
people and accounts for one third of all deaths globally, 
posing a substantial socioeconomic burden on the pub-
lic health system [1–3]. Most CVDs can be prevented by 
addressing behavioral risk factors. Unfortunately, many 
individuals with CVD remain undiagnosed until life-
threatening events occur. Thus, identifying individuals at 
the highest risk of developing cardiovascular event at an 
early stage is pivotal for the tailoring of timely interven-
tions to preventing CVD and its related complications.

Substantial advances have been achieved concerning 
the pathogenesis of CVD due to various omics techniques 
that have identified many biomarkers [4–6]. In contrast, 
the markers currently used for CVD risk stratification 
are non-specific (e.g., age and smoking), measures target/
end organ damage (e.g., serum creatinine levels and albu-
minuria), or have low precision (e.g., blood pressure and 
LDL cholesterol levels). Furthermore, the ability of these 
methods to track changes in CVD risk over time and in 
response to treatment remains unclear. Thus, the cur-
rently established indicators of CVD risk cannot be used 
to accurately quantify individual risk. There is an urging 
need to explore novel indicators which could provide 
increasingly accurate and personalized risk assessments.

The retina serves as a unique window of cardiovascular 
system because of their sharing similar embryonic ori-
gin, anatomical structure, and blood supply [7, 8]. Reti-
nal optical coherence tomography (OCT) enables fast, 
ultra-high resolution, and automatic segmentation of 
individual retinal layers. Using OCT, alterations of reti-
nal nerve fiber layer (RNFL) thickness have been impli-
cated in cardiovascular health, generating new insights 
into the role of retinal fingerprints in the prediction of 
CVD. However, emerging evidence has yielded conflict-
ing results. Some studies reported that localized RNFL 
thinning was strongly correlated with the presence of 
ischemic stroke in a hospital-based populations [9], 
and reduced RNFL thickness was observed in coronary 
heart disease and heart failure [10–12]. Shin et al. noted 
that Korean patients with thinner RNFL had a higher 
predicted 10-year cardiovascular risk assessed by ath-
erosclerotic cardiovascular disease (ASCVD) risk score, 
compared with those without RNFL defects [13]. How-
ever, other studies reported no such correlations [14, 15]. 

This discrepancy might be associated with the cross-sec-
tional nature of these studies, the fact that most merely 
focused on localized changes in the RNFL, the small 
sample size of the hospital patients, and the fact that con-
founding factors for CVD were not adjusted for. To date, 
prospective population-based cohort study focusing on 
the longitudinal relationship of RNFL thickness in both 
macular and peripapillary regions with the total cardio-
vascular burden is scarce.

Therefore, the objective of this study was to prospec-
tively explore the association between macular RNFL 
thickness and CVD risk using data from the UK Biobank 
cohort in the European general population. Furthermore, 
given that only macular RNFL thickness was available in 
UK Biobank, we furtherly aimed to validate the associa-
tion of peripapillary RNFL thickness with CVD onset and 
its reclassification value using data from the Guangzhou 
Diabetes Eye Study (GDES) cohort in the Chinese dia-
betic population.

Methods
Study design and population
The UK Biobank is a large population-based prospec-
tive cohort study that recruited over 500,000 participants 
aged 40 to 69 years between 2006 and 2010 throughout 
England, Scotland, and Wales. At baseline assessment, 
participants completed a touch-screen questionnaire 
covering demographic, socioeconomic, lifestyle, medica-
tion, systemic, and ocular disease information. Between 
2009 and 2010, ocular assessments were introduced at six 
assessment centers, including visual acuity, autorefrac-
tion, intraocular pressure (IOP), and OCT examinations. 
Details on the overall study protocol and the protocols 
for each test have been described elsewhere [16].

Figure 1 shows the workflow of the study. In the current 
study, a total of 67,287 participants from UK Biobank had 
available spectral domain OCT (SD-OCT) scans, among 
which 4959 with a history of CVD and/or cancer at the 
baseline were excluded. We also excluded those with 
poor-quality SD-OCT images (i.e., image quality score 
lower than 45, poor SD-OCT signal strength, poor cen-
tration certainty, or poor segmentation indicated by seg-
mentation indicators as previously depicted in the UK 
Biobank) [17–19] and missing RNFL values (N = 15,634). 
To eliminate the impact of ocular conditions on RNFL 
assessment [19–21], the following ophthalmic states 
were further excluded (N = 15,691): high refractive error 
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(± 6 diopters or greater [D]), visual acuity worse than 0.1 
logarithm of the minimum angle of resolution (20/30 
Snellen equivalent), IOP < 5 mmHg or > 22 mmHg, with 
self-reported glaucoma or retinal diseases. Finally, we 
excluded those with missing data on the main covariates 
of the present study at baseline (N = 5440). The remain-
ing 25,563 participants were included in the current anal-
ysis. (Additional file 1: Figure S1)

Assessment of RNFL thickness
In UK Biobank, SD-OCT was performed to obtain mac-
ular RNFL (mRNFL) thickness at baseline [18, 19, 22]. 
The SD-OCT imaging protocol was described in detail 
by Patel et al [23] according to the APOSTEL guidelines 
[24]. Briefly, OCT images were acquired using the Top-
con 3D OCT-1000 Mk2 (Topcon, Tokyo, Japan) with a 
raster scan protocol, 6×6-mm2 in area, centered on the 
fovea (512 A-scans by 128 B-scans) in a dark room with-
out pupil dilation. The Topcon Advanced Boundary Seg-
mentation algorithm (Version 1.6.1.1) was then used to 
automatically segment and determine RNFL thickness, 
as previously described [19, 25] (Additional file 1: Figure 
S2). The mRNFL adopted in this study was the average 
thickness of RNFL across the ETDRS (Early Treatment 
Diabetic Retinopathy Study) 9 subregions with a diam-
eter of 6 mm in a circle centered on the fovea in the mac-
ula [26].

Definition of cardiovascular events
In UK Biobank, CVD was determined using data from 
hospital admissions and death registers. At the time of 
analysis, health-related outcome data was available up 
until December 31, 2017; thus, we used this date as the 
end of follow-up or the date of CVD incidence diagnosis 
or death from CVD, whichever occurred first. Incident 
CVD was defined using the following ICD 10 (Interna-
tional Classification of Diseases, 10th revision) codes: 
I20-25, I50, and I60-64.

Ascertainment of covariates
CVD has been reported to be associated with vari-
ous potential confounders according to previous stud-
ies, which have been included as covariates in the 
present analysis [27–30]. These factors included age, sex 
(male, female), ethnicity (white, non-white), household 
income (<£18,000, £18,000–30,999, £31,000–51,999, 
£52,000–100,000, > £100,000), education qualification (O 
levels, CSEs, GCSEs; A/AS levels; professional qualifica-
tions, NVQ, HND, HNC, college or university degree), 
Townsend deprivation index (least, second, third, most 
deprived quartile), body mass index (BMI calculated as 
body weight in kilograms divided by height squared; nor-
mal [18.5 kg/m2 < BMI < 25 kg/m2], overweight [25 kg/m2 
< BMI < 30 kg/m2], obesity [> 30 kg/m2]), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), HbA1c, 
fasting glucose, smoking status (never, ever/current), 

Fig. 1  Workflow of this study. OCT, optical coherence tomography; CHD, coronary heart disease; CVD, cardiovascular disease
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drinking status (never, ever/current), moderate-to-vig-
orous physical activity (least, second, third, most MVPA 
quartile) [31], hypertension (yes, no), diabetes (yes, no), 
antihypertension drug use (yes, no), insulin usage (yes, 
no), lipid-lowering drug use (yes, no). In addition, assess-
ment center was also considered a covariate due to the 
imbalanced incident CVD events and health-related fac-
tors in different centers [32]. Given that several ocular 
measurements are associated with RNFL thickness [19, 
33], spherical equivalent refraction (SER, calculated as 
sphere plus half of cylinder), IOP and image quality score 
were further considered as covariates. The definitions of 
variables are provided in Additional file 1: Table S1 with 
the UK Biobank Data field number and Data code.

Association validated in the GDES cohort
In the present study, we furtherly validated the associa-
tion of RNFL thickness with CVD onset in the Chinese 
ethnicity. The GDES is an ongoing community-based 
cohort study that includes type 2 diabetic patients 
recruited in 2017 in Guangzhou, China [34]. A total 
of 635 participants with the same eligibility criteria as 
participants from the UK Biobank and without any dia-
betic retinopathy at baseline were finally included. Swept 
Source OCT (SS-OCT, DRI OCT Triton; Topcon, Japan) 
was used to obtain the RNFL thickness at baseline. The 
scanning mode was 3.4 mm circle scan centered at the 
disc, and the built-in software (IMAGEnet 6, Version 
1.22) was utilized for automatic retinal segmentation. 
To avoid the impact of hyperglycemia on macular RNFL 
measurement, the average peripapillary RNFL (pRNFL) 
thickness was assessed. The pRNFL thickness was also 
evaluated in four quadrants, i.e., inferior, superior, tem-
poral, and nasal. Besides, in order to reduce the effect of 
diabetes on RNFL thickness, the related factors including 
age, HbA1c, duration of diabetes, and insulin usage were 
adjusted [35, 36]. CVD onset was defined as the develop-
ment of coronary heart disease, heart failure, stroke, or 
related mortality in participants free of any CVD at base-
line through the medical records and standard question-
naires for family members.

Ethics, consent, and permissions
This study was reviewed and approved by the National 
Information Governance Board for Health and Social 
Care and the NHS North West Multicenter Research 
Ethics Committee (11/NW/0382), the Biobank con-
sortium (application no. 62489), and ethics com-
mittee of Zhongshan Ophthalmic Center (reference 
no. 2017KYPJ094). All participants provided written 
informed consent for the study. The study was per-
formed in accordance with the tenets of the Declaration 

of Helsinki and reported according to STROBE 
guideline.

Statistical analysis
If both eyes of a patient were eligible for the inclusion 
criteria, one eye was chosen at random. Baseline charac-
teristics were presented as number (percentage) for cat-
egorical variables and mean (standard deviation [SD]) for 
quantitative variables. The unpaired t-test or analysis of 
variance test was used to compare continuous variables, 
and the Pearson chi-squared test or Fisher’s exact test 
was used to compare categorical variables.

Participants were classified into three groups based 
on tertiles of baseline RNFL thickness, with those in the 
highest tertile (the thickest tertile) serving as the refer-
ence group. In the UK Biobank population, the log-rank 
test was used in the comparison of incidence rate of CVD 
among the mRNFL tertiles groups. Cox proportional 
hazard models were run to test the association between 
mRNFL thickness and incident CVD events. The associa-
tion of both per 5-μm decrease in mRNFL thickness and 
its tertiles with incident CVD risk were assessed. Model 
1 was a univariate model. Candidate variables with a 
p value < 0.10 in model 1 were selected for model 2. All 
variables met the proportional hazards assumption in 
the Cox models by Kaplan–Meier plot graphical assess-
ment. Hazard ratios (HRs) and 95% confidence intervals 
(CIs) were computed to evaluate the degree of associa-
tions. In the GDES population, logistic regression models 
were used to assess the associations of pRNFL thickness 
with cumulative CVD onset during 3-year period. The 
odds ratios (ORs) and 95% CI were calculated to quan-
tify the degree of associations between pRNFL param-
eters and CVD risk. In addition, the reclassification value 
of the average pRNFL thickness over the Framingham 
Risk Score (FRS) [4] was evaluated by additive and abso-
lute net reclassification improvement (NRI) and inte-
grated discrimination improvement (IDI) [37]. NRI and 
IDI were used to quantify whether pRNFL thickness as a 
novel biomarker tends to increase risk categories or pre-
dicted risk for patients with occurrence of CVD events 
and decrease risk categories or predicted risk for patients 
without incident CVDs [38, 39]. Categories of 3-year 
CVD risk were < 15%, 15 to 30%, and > 30% [40].

Statistical analysis was conducted using Stata (version 
17, StataCorp, Texas, USA). A two-sided p value < 0.05 
was defined as statistically significant.

Results
Baseline characteristics
In UK Biobank, among the included 25,563 partici-
pants, the mean age was 55.25 (8.20) years and 13,845 
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(54.2%) were female. Most of the participants (90.8%) 
were of white ethnicity. Participants with a thin-
ner mRNFL thickness at baseline were more likely to 
be female (lowest vs. highest thickness tertile, 5048 
[59.0%] vs. 4178 [49.2%], p < 0.001) and less likely to 
have hypertension (lowest vs. highest thickness tertile, 
1875 [21.9%] vs. 2312 [27.2%], p < 0.001) or diabetes 
(lowest vs. highest thickness tertile, 271 [3.2%] vs. 406 
[4.8%], p < 0.001) at baseline and less likely to use anti-
hypertension drugs (lowest vs. highest thickness tertile, 
1216 [14.2%] vs. 1637 [19.3%], p < 0.001) or lipid-low-
ering drugs (lowest vs. highest thickness tertile, 950 
[11.1%] vs. 1336 [15.7%], p < 0.001) (Table 1).

During a median follow-up duration of 7.67 (inter-
quartile range 7.57–7.82) years, 1281 (5.01%) par-
ticipants developed CVD events. Participants with 
incident CVD were older than those without CVD, 
with fewer female participants. There were significant 
differences in ethnicity, assessment center, household 
income, educational qualification, SBP, DBP, HbA1c, 
fasting glucose, BMI, smoking status, MVPA, history 
of hypertension or diabetes, antihypertensive drugs, 
insulin usage, lipid-lowering drugs usage, SER, and IOP 
between the two groups (Table  2). Participants with 
incident CVD had a thinner baseline RNFL compared 
with those without CVD (27.83 [4.16] μm vs. 28.55 
[4.25] μm, p < 0.001).

Association between mRNFL thickness and CVD events
The annual incidence rate of CVD was higher in patients 
with lower baseline mRNFL thickness (p log-rank test 
< 0.001; Additional file  1: Table  S2). The Kaplan–Meier 
plot of participants with mRNFL thickness in each tertile 
was shown in Fig. 2. After adjusting for age, sex, ethnicity, 
assessment center, household income, Townsend depri-
vation index, SBP, HbA1c, fasting glucose, BMI, smoking 
status, drinking status, MVPA, history of hypertension 
and diabetes, antihypertensive drugs, insulin usage, lipid-
lowering drugs, IOP, SER, and image quality score, each 
5-μm decrease in baseline mRNFL thickness was asso-
ciated with an 8% increase in incident CVD risk (HR = 
1.08, 95% CI: 1.01–1.17, p = 0.033; Table 3). Compared 
with participants in the highest mRNFL thickness tertile, 
CVD risk was significantly increased by 18% for partici-
pants in the lowest thickness tertile (HR = 1.18, 95% CI: 
1.01–1.38, p = 0.036). Additionally, mRNFL thickness 
tertiles showed a strong inverse association with incident 
CVD (p-value for trend = 0.043).

Validation analysis in the GDES cohort
In the GDES cohort, 29 (4.57%) of 635 patients devel-
oped CVD events during 3-year follow-up. The baseline 

characteristics and distribution of the pRNFL were 
shown in Additional file 1: Tables S3 and S4. The aver-
age pRNFL thickness was significantly lower in partici-
pants with incident CVD events than in those without 
CVD events (91.21 [20.14] μm vs. 110.41 [12.07] μm; 
p < 0.001). After adjusting for age, sex, SBP, drink-
ing status, duration of diabetes, HbA1c, insulin usage, 
axial length, and image quality score, a lower baseline 
average pRNFL thickness was significantly associated 
with a higher CVD risk (OR = 1.35, 95% CI :1.11–1.65, 
p = 0.003; Fig.  3). Moreover, the inverse association 
between pRNFL thickness and incident CVD events 
were demonstrated in the four quadrants (Fig. 3).

Reclassification ability of pRNFL thickness on CVDs
In the GDES cohort, the number of individuals reclas-
sified using the model that included FRS and aver-
age pRNFL thickness were depicted in Table  4. Of 29 
patients with incident CVDs, 7 were correctly reclassi-
fied to a higher risk category while 1 was reclassified to 
a lower category and 21 (72.4%) high risk patients were 
not reclassified. In people remained free of CVD events 
(n = 606), 16 were correctly reclassified to a lower risk 
category, and 9 were reclassified to a higher category. In 
all, 13 out of 635 (2.0%) participants were better clas-
sified by including pRNFL thickness. The addition of 
pRNFL thickness results in an additive NRI of 21.8% 
(p = 0.026) and an absolute NRI of 2.0%. Besides, these 
results were also confirmed by the assessment of IDI 
(13.1%, p = 0.011).

Discussion
In a large population of more than 25,000 European 
individuals, we found that each 5-μm reduction in 
macular RNFL thickness was associated with an 8% 
increased risk of new-onset CVD, independent of other 
systemic and ocular factors. Patients in the lowest base-
line RNFL thickness tertile had an 18% higher incident 
cardiovascular risk compared with those with high-
est RNFL thickness tertile. The association between 
reduced peripapillary RNFL thickness and increased 
CVD risk was further validated in the Chinese dia-
betic cohort. Furthermore, RNFL thickness improved 
the risk reclassification ability on the basis of Framing-
ham risk valuables despite the small sample. Therefore, 
OCT-derived RNFL thinning is a potentially preclini-
cal fingerprint of CVD events and could act as an early 
non-invasive surrogate for the future risk of major vas-
cular diseases.

Our prospective findings are in line with previous 
cross-sectional studies (Additional file  1: Table  S5) [9, 
10, 12–15, 41–44]. Localized RNFL thinning assessed 
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Table 1  Baseline characteristics of the study population in UK Biobank stratified by mRNFL thickness tertiles

Characteristics Total Tertile of mRNFL thickness p-value

Highest Middle Lowest

No. 25,563 8495 8515 8553 −
Age, years 55.25 (8.20) 56.32 (8.17) 55.11 (8.17) 54.33 (8.15) < 0.001
Female 13,845 (54.2) 4178 (49.2) 4619 (54.3) 5048 (59.0) < 0.001
Ethnicity < 0.001
  White 23,199 (90.8) 7534 (88.7) 7730 (90.8) 7935 (92.8)

  Non-white 2197 (8.6) 899 (10.6) 737 (8.7) 561 (6.6)

  Missing 167 (0.7) 62 (0.7) 48 (0.6) 57 (0.7)

Assessment center < 0.001
  Sheffield 7040 (27.5) 2347 (27.6) 2312 (27.2) 2381 (27.8)

  Liverpool 1933 (7.6) 648 (7.6) 637 (7.5) 648 (7.6)

  Hounslow 4738 (18.5) 1698 (20.0) 1599 (18.8) 1441 (16.9)

  Croydon 6396 (25.0) 1893 (22.3) 2126 (25.0) 2377 (27.8)

  Birmingham 5411 (21.2) 1889 (22.2) 1828 (21.5) 1694 (19.8)

  Swansea 45 (0.2) 20 (0.2) 13 (0.2) 12 (0.1)

Household income < 0.001
  < £18,000 3964 (15.5) 1468 (17.3) 1283 (15.1) 1213 (14.2)

  £18,000–30,999 5258 (20.6) 1886 (22.2) 1744 (20.5) 1628 (19.0)

  £31,000–51,999 6101 (23.9) 1963 (23.1) 2034 (23.9) 2140 (24.6)

  £52,000–100,000 5323 (20.8) 1572 (18.5) 1845 (21.7) 1906 (22.3)

  > £100,000 1613 (6.3) 473 (5.6) 521 (6.1) 619 (7.2)

  Missing 3304 (12.9) 1133 (13.3) 1088 (12.8) 1083 (12.7)

Education level < 0.001
  O levels, CSEs, GCSEs 7408 (29.0) 2728 (32.1) 2460 (28.9) 2220 (26.0)

  A/AS levels 1570 (6.1) 485 (5.7) 527 (6.2) 558 (6.5)

  Professional qualifications 16,287 (63.7) 5164 (60.8) 5438 (63.9) 5685 (66.5)

  Missing 298 (1.2) 118 (1.4) 90 (1.1) 90 (1.1)

Townsend index 0.002
  Least deprived quartile 5372 (21.0) 1715 (20.2) 1801 (21.2) 1856 (21.7)

  Second quartile 6013 (23.5) 1913 (22.5) 2066 (24.3) 2034 (23.8)

  Third quartile 7160 (28.0) 2412 (28.4) 2399 (28.2) 2349 (27.5)

  Most deprived quartile 6992 (27.4) 2448 (28.8) 2242 (26.3) 2302 (26.9)

  Missing 26 (0.1) 7 (0.08) 7 (0.08) 12 (0.1)

SBP, mmHg 132.0 (17.7) 133.6 (17.7) 131.6 (17.5) 130.7 (17.7) < 0.001
DBP, mmHg 79.82 (9.99) 80.46 (9.95) 79.58 (9.95) 79.43 (10.04) < 0.001
HbA1c, mmol/mol 35.52 (5.86) 35.95 (6.43) 35.41 (5.56) 35.20 (5.54) < 0.001
Fasting glucose, mmol/L 5.10 (0.95) 5.15 (1.05) 5.09 (0.89) 5.07 (0.89) < 0.001
Body mass index < 0.001
  Normal 8508 (33.3) 2613 (30.8) 2832 (33.3) 3063 (35.8)

  Overweight 10,934 (42.8) 3695 (43.5) 3652 (42.9) 3587 (41.9)

  Obesity 6002 (23.5) 2138 (25.2) 1994 (23.4) 1870 (21.9)

  Missing 119 (0.5) 49 (0.6) 37 (0.4) 33 (0.4)

Smoking status 0.001
  Never 8744 (34.2) 2984 (35.1) 2851 (33.5) 2909 (34.0)

  Ever/current 2492 (9.8) 896 (10.6) 813 (9.6) 783 (9.2)

  Missing 14,327 (56.1) 4615 (54.3) 4851 (57.0) 4861 (56.8)

Drinking status 0.002
  Never 840 (3.3) 289 (3.4) 284 (3.3) 267 (3.1)

  Ever/current 23,532 (92.1) 7749 (91.2) 7856 (92.3) 7927 (92.7)
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by fundus camera has been reported to be correlated 
with the presence of cerebrovascular diseases, including 
stroke and cerebral small vessel disease [9, 42]. Utiliz-
ing quantitative OCT assessment, further studies have 
reported that patients with ischemic heart diseases, 
such as coronary heart disease, serious heart failure, 
and congenital heart disease had a thinner RNFL com-
pared to age- and sex- matched healthy participants 
[10, 12, 41]. Moreover, reduced RNFL thickness was 
also delineated at an earlier stage in the condition of 
established cardiovascular risk factors. Localized RNFL 
thinning was associated with the severity of asympto-
matic carotid artery stenosis and arterial hypertension, 
in addition to retinal microvasculature abnormali-
ties [43, 44]. In animal studies, chronic experimen-
tally induced atherosclerosis and hypertension led to 
reduced visibility of RNFL with defect in rhesus mon-
keys [45]. Recently, a single-center study has demon-
strated higher 10-year predicted cardiovascular risk 
by ASCVD score in patients with RNFL thinning [13]. 

However, this cross-sectional study only included 
individuals with high cardiovascular risk and merely 
focused on localized RNFL defect. Using a large-scale 
population-based cohort and a community-based 
cohort, we provided the first longitudinal evidence for 
the association of OCT-derived average RNFL thinning 
with the total burden of incident CVD events.

Although the exact pathophysiology of RNFL thinning 
in CVD remains unknown, it has been postulated to be 
due to the impairment of ocular circulation. The retina is 
supplied by the dual end arterioles, central retinal artery, 
and short posterior ciliary arteries, with autoregulatory 
mechanisms to maintain ocular perfusion. In the case 
of subclinical cardiovascular and cerebrovascular abnor-
malities, retinal vasoconstriction reduces blood supply to 
the retina in favor of adequate perfusion to the systemic 
circulation and important organs, leaving the inner reti-
nal layers susceptible to ischemic damage [7]. It is there-
fore probable that microvascular pathologies, including 
atherosclerosis, arterial hypertension, increased rigidity 

Table 1  (continued)

Characteristics Total Tertile of mRNFL thickness p-value

Highest Middle Lowest

  Missing 1191 (4.7) 457 (5.4) 375 (4.4) 359 (4.2)

MVPA 0.042
  Least MVPA quartile 5383 (21.1) 1823 (21.5) 1772 (20.8) 1788 (20.9)

  Second MVPA quartile 5446 (21.3) 1762 (20.7) 1857 (21.8) 1827 (21.4)

  Third MVPA quartile 5025 (19.7) 1614 (19.0) 1653 (19.4) 1758 (20.6)

  Most MVPA quartile 5261 (20.6) 1771 (20.9) 1798 (21.1) 1692 (19.8)

  Missing 4448 (17.4) 1525 (18.0) 1435 (16.9) 1488 (17.4)

Hypertension at baseline < 0.001
  No 19,326 (75.6) 6183 (72.8) 6465 (75.9) 6678 (78.1)

  Yes 6237 (24.4) 2312 (27.2) 2050 (24.1) 1875 (21.9)

Diabetes at baseline < 0.001
  No 24,591 (96.2) 8089 (95.2) 8220 (96.5) 8282 (96.8)

  Yes 972 (3.8) 406 (4.8) 295 (3.5) 271 (3.2)

Antihypertension drug use < 0.001
  No 21,342 (83.5) 6858 (80.7) 7147 (83.9) 7337 (85.8)

  Yes 4221 (16.5) 1637 (19.3) 1368 (16.1) 1216 (14.2)

Insulin usage 0.305

  No 25,434 (99.5) 8449 (99.5) 8467 (99.4) 8518 (99.6)

  Yes 129 (0.5) 46 (0.5) 48 (0.6) 35 (0.4)

Lipid-lowering drug use < 0.001
  No 22,181 (86.8) 7159 (84.3) 7419 (87.1) 7603 (88.9)

  Yes 3382 (13.2) 1336 (15.7) 1096 (12.9) 950 (11.1)

SER, diopter − 0.04 (1.90) 0.31 (1.88) 0.02 (1.80) − 0.47 (1.93) < 0.001
Intraocular pressure, mmHg 15.19 (2.94) 15.21 (2.97) 15.12 (2.95) 15.23 (2.89) 0.027
Image quality score 69.52 (8.68) 68.80 (9.06) 69.82 (8.60) 69.94 (8.32) < 0.001

Data are presented as No. (percentage of participants) for categorical variables or mean (standard deviation [SD]) for continuous valuables. mRNFL macular retinal 
nerve fiber layer, SBP systolic blood pressure, DBP diastolic blood pressure, MVPA moderate-to-vigorous physical activity, SER spherical equivalent refraction
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and insufficient autoregulation, could be the main driver 
behind the reduction of RNFL thickness [46]. Moreover, 
retinal ischemia/reperfusion induced oxidative stress 
injury, cytokines release, and nerve fiber death might 
contribute to secondary RNFL thinning [47]. However, 
further studies are warranted to uncover the relevant 
underlying mechanisms.

The most notable advancement in ophthalmology was 
the advent of high-resolution OCT technology, a rapid, 
non-invasive and widely available imaging modality 
capable of producing a high-resolution cross-sectional 
image reflecting the near-histological tissue microstruc-
ture in vivo [48, 49]. As the only human tissue that allows 
direct non-invasive visualization of microvascular circu-
lation and the central nervous system, the retina provides 
a unique window for documenting systemic diseases 
[48, 50, 51]. OCT examination is increasingly being rou-
tinely performed in hospital and community settings. 

Table 2  Baseline characteristics of the study population in UK 
Biobank stratified by incident CVD

Characteristics Non-CVD group CVD group p value

No. 24,282 1281 -

Age, years 55.02 (8.20) 59.59 (7.02) < 0.001
Female 13,388 (55.1) 457 (35.7) < 0.001
Ethnicity 0.032
  White 22,013 (90.7) 1186 (92.6)

  Non-white 2112 (8.7) 85 (6.6)

  Missing 157 (0.7) 10 (0.8)

Assessment center <0.001
  Sheffield 6655 (27.4) 385 (30.1)

  Liverpool 1827 (7.5) 106 (8.3)

  Hounslow 4561 (18.8) 177 (13.8)

  Croydon 6106 (25.2) 290 (22.6)

  Birmingham 5091 (21.0) 320 (25.0)

  Swansea 42 (0.2) 3 (0.2)

Household income < 0.001
  < £18,000 3700 (15.2) 264 (20.6)

  £18,000–30,999 4971 (20.5) 287 (22.4)

  £31,000–51,999 5846 (24.1) 255 (19.9)

  £52,000–100,000 5111 (21.1) 212 (16.6)

  > £100,000 1555 (6.4) 58 (4.5)

  Missing 3099 (12.8) 205 (16.0)

Education qualification < 0.001
  O levels, CSEs, GCSEs 6923 (28.5) 485 (37.9)

  A/AS levels 1523 (6.3) 47 (3.7)

  Professional qualifications 15,566 (64.1) 721 (56.3)

  Missing 270 (1.1) 28 (2.2)

Townsend deprivation index 0.311

  Least deprived quartile 5077 (20.9) 295 (23.0)

  Second quartile 5718 (23.6) 295 (23.0)

  Third quartile 6805 (28.0) 355 (27.7)

  Most deprived quartile 6656 (27.4) 336 (26.2)

  Missing 26 (0.1) 0

Systolic blood pressure, 
mmHg

131.60 (17.59) 138.90 (18.05) < 0.001

Diastolic blood pressure, 
mmHg

79.69 (9.96) 82.26 (10.38) < 0.001

HbA1c, mmol/mol 35.41 (5.67) 37.53 (8.51) < 0.001
Fasting glucose, mmol/L 5.09 (0.92) 5.26 (1.31) < 0.001
Body mass index < 0.001
  Normal 8234 (33.9) 274 (21.4)

  Overweight 10,360 (42.7) 574 (44.8)

  Obesity 5577 (23.0) 425 (33.2)

  Missing 111 (0.5) 8 (0.6)

Smoking status < 0.001
  Never 8273 (34.1) 471 (36.8)

  Ever/current 2301 (9.5) 191 (14.9)

  Missing 13,708 (56.5) 619 (48.3)

Drinking status 0.622

  Never 792 (3.3) 48 (3.8)

Table 2  (continued)

Characteristics Non-CVD group CVD group p value

  Ever/current 22,360 (92.1) 1172 (91.5)

  Missing 1130 (4.7) 61 (4.8)

MVPA < 0.001
  Least MVPA quartile 5078 (20.9) 305 (23.8)

  Second MVPA quartile 5219 (21.5) 227 (17.7)

  Third MVPA quartile 4807 (19.8) 218 (17.0)

  Most MVPA quartile 5005 (20.6) 256 (20.0)

  Missing 4173 (17.2) 275 (21.5)

Hypertension at baseline < 0.001
  No 18,566 (76.5) 760 (59.3)

  Yes 5716 (23.5) 521 (40.7)

Diabetes at baseline < 0.001
  No 23,416 (96.4) 1175 (91.7)

  Yes 866 (3.6) 106 (8.3)

Antihypertension drug use < 0.001
  No 20,441 (84.2) 901 (70.3)

  Yes 3841 (15.8) 380 (29.7)

Insulin usage < 0.001
  No 24,175 (99.6) 1259 (98.3)

  Yes 107 (0.4) 22 (1.7)

Lipid-lowering drug use < 0.001
  No 21,228 (87.4) 953 (74.4)

  Yes 3054 (12.6) 328 (25.6)

SER, diopter − 0.06 (1.90) 0.20 (1.90) < 0.001
Intraocular pressure, mmHg 15.18 (2.94) 15.37 (2.90) 0.024
Image quality score 69.56 (8.67) 68.63 (8.78) < 0.001
Average mRNFL thickness 
(μm)

28.55 (4.25) 27.83 (4.16) < 0.001

Data are presented as No. (percentage of participants) for categorical variables 
or mean (standard deviation [SD]) for continuous valuables. mRNFL macular 
retinal nerve fiber layer, MVPA moderate-to-vigorous physical activity, SER 
spherical equivalent refraction
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The number of OCT scans increased 14-fold from 23,500 
scans in 2008 to over 330,000 scans in 2016 at Moorfields 
Eye Hospital NHS Foundation Trust [52]. Furthermore, 
it has been reported that healthcare-seeking behavior for 
eye health has surpassed that for cardiovascular disease 
[49, 53], which provides OCT with an unprecedented 
opportunity to detect systemic disease, predict its onset, 
and quantify its severity and response to treatment. With 

the emergence of automated segmentation and pre-
cise quantification of individual retinal layers by deep 
learning algorithms [54], our discovery provides a novel 
insight into the role of OCT derived morphological 
RNFL abnormalities in the pathologies of cardiovascular 
events.

About 25% individuals in UK Biobank were excluded 
due to the poor image quality in the present analysis. 
This may be attributed to the poor patients’ coopera-
tion and the inefficiency of the traditional SD-OCT sys-
tem for dense volume scanning, the scanning speed of 
which was only 27 kHz per second without eye tracking 
function. However, novel SS-OCT system could reach a 
much faster scanning speed of up to 100 kHz per second, 
which brought faster, deeper, and clearer OCT images 
[55]. Moreover, the applied eye-tracking system could 
reduce eye motion artifacts and improve the signal-to-
noise ratio [55]. In our GDES Chinese cohort, DRI Tri-
ton SS-OCT OCT was used, and the excluded rate due 
to the poor quality was less than 5%, which was compa-
rable with another RNFL study [56]. More importantly, a 
recently devised algorithm could help adjust the effect of 
poor signal strength on OCT parameters evaluation [57]. 
Therefore, with the state-of-the-art modalities and stand-
ardized operations, the OCT images of poor quality will 
be reduced and more studies with more advanced OCT 
systems and algorithms are required to validate our find-
ings in clinical practice.

Fig. 2  Adjusted Kaplan-Meier plot for CVD risk by mRNFL thickness tertiles in UK Biobank. Probability of incident CVD risk was shown over time 
for participants from UK Biobank with different mRNFL thickness tertiles. Lower tertile represents thinner mRNFL thickness. Plot was based on Cox 
proportion hazards regression models, adjusted for age, sex, ethnicity, assessment center, household income, Townsend deprivation index, SBP, 
HbA1c, fasting glucose, BMI, smoking status, drinking status, MVPA, history of hypertension and diabetes, antihypertensive drugs, insulin usage, 
lipid-lowering drugs, IOP, SER, and image quality score. Compared to participants with highest tertile of mRNFL thickness, CVD risk was comparable 
for those in the second tertile (HR = 1.16, 95% CI: 0.99–1.36, p = 0.065). The risk of incident CVD was significantly increased for participants in the 
lowest tertile of mRNFL thickness (HR = 1.18, 95% CI: 1.01–1.38, p = 0.036). CVD, cardiovascular disease; mRNFL, macular retinal nerve fiber layer; HR, 
hazard ratio; CI, confidence interval

Table 3  Association between average mRNFL thickness and 
incident CVD in UK Biobank population

CVD cardiovascular diseases, mRNFL macular retinal nerve fiber layer, HR hazard 
ratio, CI confidence interval

Model 1 was a univariate model

Model 2 was adjusted for age, sex, ethnicity, assessment center, household 
income, Townsend deprivation index, SBP, HbA1c, fasting glucose, BMI, 
smoking status, drinking status, MVPA, history of hypertension and diabetes, 
antihypertensive drugs, insulin usage, lipid-lowering drugs, IOP, SER, and image 
quality score

RNFL thickness Model 1 Model 2

HR (95% CI) p value HR (95% CI) p value

Per 5 μm decrease 1.22 (1.14–1.31) < 0.001 1.08 (1.01–1.17) 0.033
Tertiles

  Highest Reference − Reference −
  Second 1.26 (1.10–1.46) 0.001 1.16 (0.99–1.36) 0.065

  Lowest 1.49 (1.30–1.70) < 0.001 1.18 (1.01–1.38) 0.036
  P for trend − < 0.001 − 0.043
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Notably, both macular and peripapillary average RNFL 
thinning were independently associated with cardiovas-
cular risk in European and Chinese populations. More-
over, the inclusion of RNFL thickness improved the 
reclassification abilities for CVD events over the classic 

FRS prediction model. Given the non-invasive nature 
of OCT and the high adherence rate of regular eye 
examination, RNFL thickness assessment from a single 
“eye-check” is an attractive alternative for assessing car-
diovascular risk in the primary healthcare screening. In 

Fig. 3  Association of pRNFL with incident CVD risk in GDES participants using logistic regression analysis. Multivariate model adjusted for age, sex, 
SBP, drinking status, duration of diabetes, HbA1c, insulin usage, axial length, and image quality score. pRNFL, peripapillary retinal nerve fiber layer; 
CVD, cardiovascular disease; SBP, systolic blood pressure; CI, confidence interval

Table 4  Risk reclassification ability of peripapillary RNFL thickness over the Framingham Risk Score for cardiovascular events in GDES 
cohort

The addition of peripapillary RNFL thickness to the Framingham Risk Score results in an additive net reclassification improvement (NRI) of 21.8% (p = 0.026) and an 
absolute NRI of 2.0%. The green cells represent patients correctly reclassified. The yellow cells represent risk stratification that is unchanged in the novel model. The 
red cells represent patients incorrectly reclassified. RNFL retinal nerve fiber layer, CVD cardiovascular disease
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the community optometric practice, cases of RNFL thin-
ning, unexplained by glaucoma, diabetic retinopathy, or 
other ocular conditions [19] should have concomitant 
cardiovascular risk factors considered and be considered 
for referral and further cardiovascular or neurological 
investigations. This measure is instructive in the early 
identification of patients with compromised cardiovas-
cular health, translating to timely interventions target-
ing modifiable CVD risk factors, such as controlling 
hypertension, quitting tobacco and alcohol, regulating 
blood sugar and lipids, and moderately increasing physi-
cal activities [58, 59]. However, we should point out that 
the additive NRI of 21.8% was mainly based on the small 
sample with incident cardiovascular events. Twenty-one 
out of 29 patients with cardiovascular events could not be 
reclassified with the novel prediction model yet and the 
absolute NRI was 2.0%. Despite the improved prediction 
by the addition of pRNFL thickness, the small sample 
size may limit the power effect and more evidence from 
large-scale longitudinal studies is of necessity. Besides, 
further studies are needed to determine the cutoff value 
of reduced RNFL thickness in different age, sex groups 
for cardiovascular risk. This also includes more work to 
estimate the cost-effectiveness and acceptability of OCT 
application in community screenings.

To the best of our knowledge, this is the first pro-
spective study to investigate the association between 
RNFL thickness and incident CVD events. The major 
strengths of this study were its large sample size, the 
relatively long follow-up period of nearly 8  years, the 
prospective design of two cohorts for comprehensive 
analysis of RNFL thickness within the macula and peri-
papillary regions and the rigorous findings after adjust-
ments for numerous covariates. Furthermore, we have 
verified the generalization of our findings in European 
and Chinese ethnicities, in general and diabetic popu-
lations, and with different RNFL assessment devices 
(SD-OCT or SS-OCT). Nevertheless, we also acknowl-
edged the limitations in this study. First, given that the 
incidence rates of each single cardiovascular event were 
low, the endpoint in our analysis was the total CVD 
burden combining incident coronary heart disease, 
heart failure, and stroke. Further studies are warranted 
to investigate the association between RNFL thickness 
and the specific CVD outcomes and further validate 
our findings. Second, although a wide range of demo-
graphic, lifestyle, and medication factors were adjusted, 
many covariates were self-reported, and thus, residual 
confounding possibly remains. Third, the association 
of RNFL thickness with the progression, treatment 
response, and prognosis of CVD could not be inter-
preted in the present study, which requires further clar-
ification. Fourthly, despite the improved reclassification 

ability by the inclusion of pRNFL thickness over FRS, 
the sample size with incident CVD events was relatively 
small (only 29 patients) which may limit the statistical 
power. Future prospective studies with larger cardio-
vascular events sample are required to verify the prog-
nostic value of RNFL thickness.

Conclusions
In conclusion, RNFL thinning quantified by OCT were 
independent risk factors for CVD occurrence and 
improved reclassification capability, indicating RNFL 
thickness as a potential retinal fingerprint for cardio-
vascular events screening. Further prospective stud-
ies are needed to explore the predictive value of RNFL 
thickness for cardiovascular events progression, prog-
nosis, and treatment response and to elucidate the pos-
sible biological mechanisms.
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