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Abstract 

Background  Congenital heart diseases (CHDs) remain a significant cause of infant morbidity and mortality. Epide-
miological studies have explored maternal risk factors for offspring CHDs, but few have used genetic epidemiology 
methods to improve causal inference.

Methods  Three birth cohorts, including 65,510 mother/offspring pairs (N = 562 CHD cases) were included. We used 
Mendelian randomisation (MR) analyses to explore the effects of genetically predicted maternal body mass index 
(BMI), smoking and alcohol on offspring CHDs. We generated genetic risk scores (GRS) using summary data from 
large-scale genome-wide association studies (GWAS) and validated the strength and relevance of the genetic instru-
ment for exposure levels during pregnancy. Logistic regression was used to estimate the odds ratio (OR) of CHD per 
1 standard deviation (SD) higher GRS. Results for the three cohorts were combined using random-effects meta-analy-
ses. We performed several sensitivity analyses including multivariable MR to check the robustness of our findings.

Results  The GRSs associated with the exposures during pregnancy in all three cohorts. The associations of the GRS 
for maternal BMI with offspring CHD (pooled OR (95% confidence interval) per 1SD higher GRS: 0.95 (0.88, 1.03)), 
lifetime smoking (pooled OR: 1.01 (0.93, 1.09)) and alcoholic drinks per week (pooled OR: 1.06 (0.98, 1.15)) were close 
to the null. Sensitivity analyses yielded similar results.

Conclusions  Our results do not provide robust evidence of an effect of maternal BMI, smoking or alcohol on off-
spring CHDs. However, results were imprecise. Our findings need to be replicated, and highlight the need for more 
and larger studies with maternal and offspring genotype and offspring CHD data.
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Background
Congenital heart diseases (CHDs) are the most common 
congenital anomaly, affecting around 1% of live births 
and 10% of stillbirths [1, 2]. CHDs are a leading cause of 
childhood mortality and many CHD patients experience 
health problems that persist into adulthood [3, 4]. The 
causes of CHDs are largely unknown, but the pregnancy 
environment (intrauterine factors) may play a role in the 
underlying pathophysiology [5]. Identifying modifiable 
risk factors for CHDs is important for improving aetio-
logical understanding and developing preventive inter-
ventions to reduce disease burden.

Several modifiable maternal characteristics have been 
found to be associated with increased risk of CHDs, 
including maternal pre/early pregnancy body mass index 
(BMI) [6–8], smoking [9] and alcohol [10] consumption 
in pregnancy. The causal relevance of the results from 
meta-analyses is unclear, due to many studies not con-
trolling for key confounders and for the risk of residual 
confounding. Previously, using parental negative expo-
sure control analyses, we found that positive associations 
between maternal overweight and obesity with offspring 
CHDs may be being driven by confounding factors [11]. 
This work found some evidence of an intrauterine effect 
of maternal smoking on offspring CHDs. For alcohol 
consumption, results were inconclusive due to limited 
data [11]. Negative control analyses attempt to address 
the issue of residual confounding in observational stud-
ies [6, 11, 12], but rely on assumptions that cannot be 
empirically verified, such as it being implausible that the 
exposure in the father (e.g. their smoking) could influ-
ence offspring CHD risk to a similar magnitude of any 
effect in mothers.

Mendelian randomisation  (MR)  uses genetic variants 
as instrumental variables  (IVs)  to test causal effects  in 
observational data [13]. The key assumptions for MR 
are (i) relevance assumption—the genetic instruments 
are robustly associated with the exposure, (ii) independ-
ence assumption—there is no confounding of the genetic 
instrument-outcome association, (iii) exclusion restric-
tion criteria—the genetic variant is not related to the 
outcome other than via its association with the exposure 
[14]. Genetic variants are less likely to be confounded 
by the socioeconomic and environmental factors that 
might bias causal estimates in conventional multivariable 
regression [15], but may be biased by violation of their 
assumptions due to weak or irrelevant instruments, pop-
ulation stratification (causing confounding of the genetic 
instrument-outcome association) and a path from the 
genetic instrument to CHD not mediated by the expo-
sure, for example via horizontal pleiotropy or foetal geno-
type [16]. Triangulating results from negative control and 
MR analyses, whereby the key sources of bias differ can 

help improve the causal understanding of maternal risk 
factors on CHDs [17]. Consistent results from both 
would increase confidence that the relationship is causal. 
The recent acquisition of genotype information on a 
large number of maternal-offspring dyads means that 
we now have relevant data to further test the potential 
effects of BMI, smoking and alcohol with a complemen-
tary method to those used previously. The objective of 
this study was therefore to explore associations between 
genetically predicted maternal BMI, smoking and alcohol 
on offspring CHD using Mendelian randomisation.

Methods
This study is reported using the Strengthening The 
Reporting of Observational Studies in Epidemiology 
Using Mendelian Randomisation (STROBE-MR) guide-
lines (see Additional File 1: STROBE-MR Checklist) [18, 
19].

Inclusion criteria and participating cohorts
To be eligible for inclusion in this study, cohorts and 
participants were required to have genome-wide data 
in mothers and CHD data in the offspring. From previ-
ous work with large consortia, including MR-PREG [20] 
and LifeCycle [21], we identified three cohorts meeting 
these criteria: The Avon Longitudinal Study of Parents 
and Children (ALSPAC), Born in Bradford cohort (BiB), 
and the Norwegian Mother, Father and Child Cohort 
Study (MoBa). ALSPAC is a UK prospective birth cohort 
study which was devised to investigate the environmental 
and genetic factors of health and development [22–24]. 
ALSPAC enrolled pregnant women who resided in and 
around the city of Bristol in the Southwest of England 
and had an expected delivery date between April 1, 1991, 
and December 31, 1992. The enrolled cohort included 
15,247 pregnancies resulting in 14,775 live-born babies. 
Ethical approval was obtained from the ALSPAC Eth-
ics and Law Committee and the Local Research Ethics 
Committees. The study website contains details of all 
the data that are available through a fully searchable data 
dictionary and variable search tool. BiB is a population-
based prospective birth cohort including 12,453 women 
across 13,776 pregnancies who were recruited at their 
oral glucose tolerance test at approximately 26–28 weeks’ 
gestation [25]. Eligible women had an expected deliv-
ery between March 2007 and December 2010. MoBa is 
a nationwide, pregnancy cohort comprising family tri-
ads (mother-father-offspring) who are followed longitu-
dinally. All pregnant women in Norway who were able 
to read Norwegian were eligible for participation. The 
first child was born in October 1999 and the last in July 
2009 [26, 27]. One singleton pregnancy per mother in 
each cohort was included in analyses. Figure 1 shows the 
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inclusion of participants, after excluding those with miss-
ing maternal genotype data and those that did not pass 
genetic quality control (QC). A total of 65,510 mother–
offspring pairs contributed to the main analyses and 
47,970 to the adjusted (for foetal genotype) analyses.

Genetic data
Genotyping in each cohort
ALSPAC mothers were genotyped using Illumina 
human660K quad single nucleotide polymorphism (SNP) 
chip, and ALSPAC children were genotyped using Illu-
mina HumanHap550 quad genome-wide SNP genotyping 
platform. Genotype data for both ALSPAC mothers and 
children were imputed against the Haplotype Reference 
Consortium v1.1 reference panel, after performing the 
QC procedure (minor allele frequency (MAF) ≥ 1%, a call 
rate ≥ 95%, in Hardy–Weinberg equilibrium (HWE), cor-
rect sex assignment, no evidence of cryptic relatedness, 
and of European descent). The samples of the BiB cohort 
(mothers and offspring) were processed on three differ-
ent type of Illumina chips: HumanCoreExome12v1.0, 
HumanCoreExome12v1.1 and HumanCoreExome24v1.0. 
Genotype data were imputed against UK10K + 1000 
Genomes reference panel, after a similar QC procedure 
(a call rate ≥ 99.5%, correct sex assignment, no evidence 
of cryptic relatedness, correct ethnicity assignment). 
In MoBa, blood samples were obtained from both par-
ents during pregnancy and from mothers and children 
(umbilical cord) at birth [28]. Genotyping has had to rely 
on several projects—each contributing with resources 
to genotype subsets of MoBa over the last decade. 

The data used in the present study was derived from a 
cohort of genotype samples from four MoBa batches. 
The MoBa genetics QC procedure involved MAF ≥ 1%, 
a call rate ≥ 95%, in HWE, correct sex assignment, and 
no evidence of cryptic relatedness. Further details of the 
genotyping methods for each cohort are provided in the 
Supplementary Material (Additional File 2: Text S1).

GWAS data and SNP selection
We selected SNPs from the largest and most relevant 
GWAS of European ancestry participants for each expo-
sure (further information for each GWAS is shown in 
Additional File 2: Table  S1). Selected SNPs were those 
with a p-value below a p-value threshold used to indicate 
genome-wide significance after accounting for multiple 
testing. Of those reaching this threshold we ensured that 
we only took forward independent SNPs to create the 
GRSs (described below). For BMI, there were 941 near-
independent SNPs in a combined GWAS of ~ 700,000 
individuals as reported in Yengo et  al. [29] (near-inde-
pendent SNPs defined as SNPs with a P < 1 × 10−8 after 
a conditional and joint multiple SNP analysis to take into 
account linkage disequilibrium (LD) between SNPs at a 
given locus). For smoking analyses, there were 126 inde-
pendent SNPs (genome-wide significant (p < 5 × 10−8) 
SNPs that achieved independence at LD r2 = 0.001 and a 
distance of 10,000 kb). The study was a GWAS of a life-
time smoking index (which combined smoking initia-
tion, duration, heaviness and cessation), conducted in a 
sample of 462,690 current, former and never smokers in 
UK Biobank [30]. A GRS based on the lifetime smoking 
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Fig. 1  An overview of included cohorts and selection of study participants. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and 
Children; BiB, Born in Bradford; MoBa, Norwegian Mother, Father and Child Cohort; QC, quality control; UKSeRP, the secure research platform 
containing CHD data for ALSPAC; CHD, congenital heart disease; QC, quality control
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GWAS has previously been shown to be associated with 
smoking behaviours during pregnancy in the ALSPAC 
cohort [31]. For the alcohol weighted GRS, there were 
99 conditionally independent SNPs (P < 5 × 10−8), meas-
ured as the number of alcoholic drinks per week  [32]. 
This GRS has also previously been shown to be associ-
ated with alcohol consumption during pregnancy as well 
as the general population [33]. The ALSPAC cohort was 
included within the original GWAS for alcohol by Liu 
et al., accounting for 8,913 participants out of a total sam-
ple size of 941,280 (0.9%). Previous work has suggested 
any bias introduced by this level of overlap would be min-
imal [34]. Furthermore, a recent study explored this by 
excluding ALSPAC from the summary statistics and the 
results were unbiased and largely unchanged [33]. There-
fore, we proceeded to use the full summary data for gen-
erating the alcohol GRS. All GRSs were generated using 
summary GWAS data that was derived in both men and 
women. We were unable to obtain female-specific sum-
mary data for these GWAS data. However, we performed 
checks to ensure the GRSs are robustly associated with 
the maternal exposure during pregnancy.

Genetic risk score generation
Weighted GRSs were calculated for BMI, smoking and 
alcohol consumption by adding up the number of risk 
factor increasing alleles among the selected SNPs after 
weighting each SNP by its effect on the corresponding 
risk factor:

where w is the weight (i.e. the beta-coefficient for the 
SNP-exposure association reported from the published 
GWAS) and SNP is the genotype dosage of exposure-
increasing alleles at that locus (i.e. 0, 1, or 2 exposure-
increasing alleles). Selected SNPs were extracted from the 
imputed genotype data in dosage format using QCTOOL 
(v2.0) and VCF tools (v 0.1.12b) in ALSPAC and BiB, 
respectively. PLINK (v1.9) was then used to construct the 
GRS for each exposure coded so that an increased score 
was associated with increased exposure. In MoBa, we 
constructed the GRSs from the QC’d data in PLINK for-
mat. Further information on GRS construction for each 
cohort is shown in Additional File 2: Text S2 [35, 36].

Phenotype data
CHD data
In the ALSPAC cohort, cases were obtained from a 
range of data sources, including health record linkage 
and questionnaire data up until age 25 following Euro-
pean surveillance of congenital anomalies (EUROCAT) 
guidelines [37]. In BiB, cases were identified from either 
the Yorkshire and Humber congenital anomaly register 

GRS = w1× SNP1+ w2× SNP2+ . . .wn× SNPn

database, which will tend to pick up most cases that were 
diagnosed antenatally and in the early postnatal period 
of life, and through linkage to primary care (up until 
aged 5), which will have picked up any additional cases, 
in particular those that might have been less severe and 
not identified antenatally/in early life [38]. All these cases 
were confirmed postnatally and were assigned interna-
tional classification of disease Version 10 (ICD-10) codes. 
ICD-10 codes were used to assign CHD cases accord-
ing to EUROCAT guidelines. In MoBa, information on 
whether a child had a CHD or not (yes/no) was obtained 
through linkage to the Medical Birth Registry of Nor-
way (MBRN). All maternity units in Norway must notify 
births to the MBRN, and information on malformations 
is reported to the registry up to 12 months postpartum 
[39]. Further details on defining CHDs including ICD 
codes used (in ALSPAC and BiB) are shown in Additional 
File 2: Text S3 and Table S2.

Pregnancy phenotype data
As noted above, the SNP selection and weights for the 
GRS were taken from GWAS in women and men [29, 30, 
32]. To determine their relevance in women during preg-
nancy we examined the associations of the GRS with pre/
early pregnancy BMI, and pregnancy smoking and alco-
hol consumption in each cohort. In ALSPAC and MoBa, 
pre-pregnancy weight and height were self-reported dur-
ing the first pregnancy questionnaires. In BiB, weight and 
height were measured at the recruitment assessment. 
As the timing of questions and the details requested 
for smoking during pregnancy differed across the three 
cohorts [40–42] we were only able to generate a sim-
ple binary variable of any smoking in pregnancy versus 
none. There was insufficient data and/or power across 
the cohorts to be able to generate a measure of smok-
ing heaviness in pregnancy. As with smoking, the aim for 
alcohol was to determine whether the GRS was robustly 
associated with drinking status during pregnancy. We 
used questionnaire data in each cohort and used binary 
variables (yes/no) for whether women consumed any 
alcohol during pregnancy or not. Further details regard-
ing these phenotype data, including questionnaire 
information and how these variables were derived, are 
described in Additional File 2: Text S4.

Statistical analysis
Analyses were performed in R version 4.0.2 (R Foun-
dation for Statistical Computing, Vienna, Austria). A 
pre-specified analysis plan was uploaded to the Open 
Science Framework [43]. We undertook MR in each of 
the 3 cohorts, including all ALSPAC, BiB and MoBa par-
ticipants, with maternal genetic data and offspring CHD 
data. Logistic regression was used to estimate the odds 
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ratio (OR) of CHD per 1 standard deviation (SD) higher 
GRS, with adjustment for the first 10 genetic principal 
components (PCs) with additional adjustment for genetic 
chip, genetic batch, and imputation batch in MoBa.

The key assumptions of MR are (i) relevance assump-
tion, (ii) independence assumption and (iii) exclusion 
restriction. To explore the relevance of the GRS to each 
exposure in pregnancy, we undertook linear (BMI) and 
logistic (smoking and alcohol) regression to derive the 
difference in mean BMI and OR of pregnancy smok-
ing and pregnancy alcohol consumption per 1SD higher 
GRS in each cohort. For BMI, instrument strength was 
assessed with F-statistics and R2. For smoking and alco-
hol, instrument strength was assessed using the area 
under the ROC curve and pseudo-R2 by the Nagelkerke 
method [44]. To minimise the potential for confounding 
of the GRS-CHD association due to population stratifi-
cation, we adjusted for the first 10 ancestry-informative 
PCs [45]. We also repeated the MR analyses without 
the inclusion of BiB, given that BiB has a unique eth-
nic structure of South Asians and White Europeans. To 
explore horizontal pleiotropy, we checked the association 
of GRSs with known risk factors for CHD that we had 
data on (education, parity and diabetes), and as we were 
hypothesising that BMI, smoking and alcohol caused 
CHD we also explored the association of each GRS with 
the other two exposures. These analyses were performed 
using linear or logistic regression. Information on how 
these risk factors were assessed in each cohort is pro-
vided in the Supplementary Material (Additional File 2: 

Text S4). If any of the GRSs were associated with another 
risk factor, we considered that a potential horizontal 
pleiotropic effect. We then performed multivariable MR 
(MVMR) analyses if GWAS data for the potential hori-
zontal pleiotropic variable was available (with the excep-
tion BMI and diabetes as it is on the causal path from 
BMI (rather than a separate path)) [46]. Methods for 
these GRSs and the rationale for selecting these risk fac-
tors are described in Additional File 2: Text S5 [47–54]. 
In sensitivity analyses to explore potential violation of 
the exclusion restriction criteria (IV assumption 3) via 
foetal genotype we repeated the PC (and batch) adjusted 
GRS-CHD association in the subsample of participants 
with foetal genome-wide data (Fig.  1) and then com-
pared those results with the same associations addition-
ally adjusted for the foetal GRS. GRS-CHD association 
results were pooled using a random effects meta-analysis 
for all three cohorts and fixed-effect meta-analyses when 
excluding BiB in sensitivity analyses (i.e. ALSPAC and 
MoBa). Between study heterogeneity was assessed using 
the Cochrane Q-statistic and I [2, 55].

Results
Participant characteristics
Analyses included 65,510 mother–offspring pairs, of 
which 562 offspring had CHD (Fig. 1). The distributions 
of offspring and maternal characteristics for these analy-
ses in ALSPAC, BiB and MoBa are displayed in Table 1. 
The prevalence of any CHD, mean maternal age and pre-/
early-pregnancy BMI were similar in the three cohorts. 

Table 1  Participant characteristics for the 3 studies included in Mendelian randomisation analyses

Data are means ± SD or n (%) unless stated. % are based on data available (data were not complete)

Abbreviations: BiB, Born in Bradford; ALSPAC, Avon Longitudinal Study of Parents and Children; MoBa, Norwegian Mother, Father and Child Cohort Study; CHD, 
congenital heart disease; BMI, body mass index; kg, kilogrammes; m, metres
a All non-white European women with ethnicity data were not included in the analysis
b Individuals of non-European ancestries were removed based on principal component analysis

Characteristic Category ALSPAC (N = 7360) BiB (N = 7433) MoBa (N = 50,717)

Offspring
  CHD Yes 61 (0.8) 81 (1.1) 420 (0.8)

  Sex Male 3703 (50.3) 3818 (51.4) 25,729 (51.0)

Female 3657 (49.7) 3615 (48.6) 24,810 (49.0)

Maternal
  Age, years 29.2 (4.6) 27.4 (5.6) 30.2 (4.6)

  Parity Primiparous 3257 (46.6) 2963 (40.1) 27,199 (53.6)

  BMI, kg/m2 22.5 (4.2) 26.2 (5.7) 24.1 (4.3)

  Ethnicity White European 7360 (100.0) a 3084 (42.6) 50,717 (100.0) b

South Asian - 3503 (48.4) -

Other - 656 (9.1) -

  Any smoking during pregnancy Yes 1679 (26.1) 1175 (18.1) 4175 (10.1)

  Any alcohol during pregnancy Yes 4866 (79.9) 1040 (49.3) 12,602 (32.6)
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Women in ALSPAC were more likely to smoke dur-
ing pregnancy in comparison to those in BiB and MoBa 
although, the overall prevalence in BiB masks marked dif-
ferences between the two largest ancestral groups, with 
3.4% of South Asian women reporting smoking during 
pregnancy compared to 34% of White European women. 
Women in ALSPAC and BiB were more likely to con-
sume alcohol compared to those in MoBa, although, in 
BiB, there are limited data available on alcohol consump-
tion with very few South Asians responding to questions 
relating to alcohol in questionnaires.

MR results
There were similar statistically positive associations of 
the BMI GRS with pre-pregnancy BMI and the smok-
ing GRS with pregnancy smoking in all three cohorts 
(Table  2). The alcohol GRS also associated positively 
with alcohol consumption during pregnancy in all three 
cohorts with a somewhat weaker association in BiB and 
MoBa in comparison to ALSPAC. R2 and F-statistics for 
BMI suggested strong instruments, whereas for smok-
ing and alcohol in particular the AUC suggested possible 
weak instruments.

The MR effects in each study and pooled across stud-
ies of each exposure and offspring CHDs are shown 
in Fig. 2. For associations of the maternal GRS for BMI 
and offspring CHD, the pooled OR was below the null 

value of 1, with wide confidence intervals (CI) consist-
ent with 12% lower to 3% higher odds (OR (95% CI) per 
1SD higher GRS: 0.95 (0.88, 1.03), with no statistical evi-
dence of between study heterogeneity (Fig.  2A). Results 
were unchanged when excluding BiB from these analy-
ses (Additional File 2: Fig. S1B). The BMI GRS is asso-
ciated with smoking, education, and diabetes across all 
three cohorts (Additional File 2: Table S3). Results were 
unchanged in MVMR models including GRSs for educa-
tion and smoking (Figs. S1C and D). 47,970 participants 
with 376 CHD cases had data on foetal as well as mater-
nal genotype. When the main maternal GRS association 
was undertaken in this subgroup, the result attenuated 
(OR: 0.84 (0.61, 1.15)). With additional adjustment for 
foetal genotype, the result was materially unchanged 
in the same subpopulation (OR: 0.83 (0.62, 1.11)). In 
subgroup analyses for those with foetal genotype data 
excluding BiB, the pooled results were more consistent 
and closer to the null (Figs. S1E–H).

The maternal GRS for maternal lifetime smoking index 
had a pooled OR close to the null, but with wide confi-
dence intervals (OR (95%CI) per 1SD higher GRS: 1.01 
(0.93, 1.09), with no statistical evidence of between study 
heterogeneity (Fig.  2B). The smoking GRS associated 
with BMI and education across the cohorts (Additional 
File 2: Table  S4). Results were consistent and materi-
ally unchanged in additional analyses when removing 

Table 2  Relevance and strength of the genetic risk scores with exposures in pregnancy

Abbreviations: SNP Single nucleotide polymorphism, GRS Genetic risk score, CI Confidence interval, AUC​ Area under the curve, ALSPAC Avon Longitudinal Study of 
Parents and Children, BiB Born in Bradford, MoBa Norwegian Mother, Father and Child Cohort
a Effect estimates (coefficient) are difference in mean (BMI) or odds ratio (smoking or drinking yes/no during pregnancy) per SD increase in genetic risk score
b For the binary outcomes (smoking and alcohol) pseudo-R2 are presented
c For BMI F-statistic is presented; for binary outcomes (smoking and alcohol) AUC is presented
d In MoBa 32% consumed any alcohol during pregnancy. However, 63% of those consumed alcohol “less than once per month” based on the questionnaire data. In 
the sensitivity analysis shown above, we re-coded the variable so that those that consumed alcohol less than once per month were classed as non-drinkers (N.B. due 
to the small numbers in each individual category, we were not able to analyse these separately). This was performed as an additional check to ensure the GRS was 
associated with pregnancy alcohol consumption in MoBa

Study N participants N SNPs in GRS Coefficient (95% CI)a P-value R2/pseudo R2 b F statistic c AUC​

Association of GRS for BMI with pre-/early-pregnancy BMI
  ALSPAC 6253 941 0.24 (0.21, 0.26) 1 × 10−80 5.6% 372 -

  BiB 6196 939 0.20 (0.18, 0.23) 5 × 10−59 4.1% 268 -

  MoBa 45,033 868 0.25 (0.24, 0.26)  < 1 × 10−100 6.3% 3,023 -

Association of GRS for a lifetime smoking index with any smoking during pregnancy
  ALSPAC 6428 126 1.27 (1.20, 1.35) 1 × 10−16 1.6% - 0.56

  BiB 6482 126 1.36 (1.27, 1.45) 2 × 10−20 2.2% - 0.59

  MoBa 41,292 119 1.27 (1.23, 1.31) 5 × 10−47 1.0% - 0.57

Association of GRS for drinks per week with any alcohol consumption in pregnancy
  ALSPAC 6087 98 1.14 (1.07, 1.21) 3 × 10−5 0.4% - 0.53

  BiB 2110 99 1.08 (0.99, 1.18) 0.09 0.2% - 0.52

  MoBa 38,645 73 1.02 (0.99, 1.04) 0.17 0.007% - 0.50

  MoBa sensitivity d 38,645 73 1.05 (1.02, 1.08) 0.003 0.04% - 0.51
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Fig. 2  Forest plots showing the Mendelian randomisation results for genetically predicted maternal body mass index (A), any smoking (GRS 
generated using a GWAS of a lifetime smoking index: B), and any alcohol consumption (GRS generated using a GWAS of drinks per week: C) with 
offspring congenital heart disease. Odds ratios (ORs) of CHD for a 1SD difference in maternal GRS in each study and pooled across studies using 
random effects meta-analysis. Adjusted for top 10 genetic principal components in all cohorts with additional adjustment for genetic chip, genetic 
batch, and imputation batch in MoBa. Abbreviations: ALSPAC, Avon Longitudinal Study of Parents and Children; BiB, Born in Bradford; MoBa, 
Norwegian Mother, Father and Child Cohort Study; BMI, body mass index; CI, confidence interval; CHD, congenital heart disease; SD, standard 
deviation; GRS, genetic risk score
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BiB (Additional File 2: Fig. S2B) and in MVMR analyses 
adjusting for education or BMI (Figs. S2C and D). In the 
subgroup analyses with and without adjustment for foe-
tal genotype, the point estimates increased slightly (Figs. 
S2E–H).

The maternal GRS proxying drinks per week also had 
a pooled OR close to the null, but with CIs ranging from 
2% reduced odds to 15% increased odds (pooled OR: 1.06 
(0.98, 1.15)) (Fig. 2C), with consistent associations found 
in BiB and MoBa. In analyses excluding BiB, the pooled 
estimated was consistent with main analyses (OR: 1.07 
(0.97, 1.16)), although primarily being driven by MoBa. 
The alcohol GRS showed a consistent association with 
smoking across the cohorts (Additional File 2: Table S5). 
The results remained unchanged in MVMR analyses 
adjusting for a GRS of smoking (Additional File 2: Fig. 
S3C), but were attenuated closer to the null (with less 
precision) in analyses adjusting for offspring genotype 
(Figs. S3D–G).

Discussion
Using MR across three birth cohorts, we found no strong 
evidence for an effect of genetically predicted mater-
nal BMI, smoking or alcohol on risk of offspring CHD. 
However, for all three exposures, confidence inter-
vals were wide and the pseudo R2 and AUC suggested 
potential weak instrument bias for alcohol and smok-
ing. Weak instruments in this study would be expected 
to bias results toward the confounded association. Weak 
instruments and imprecise associations also limit clear 
interpretation of our sensitivity analyses to explore bias 
due to GRS influencing CHDs via other paths indepen-
dently of the exposure of interest. We tried to identify all 
cohorts with maternal genetic data and offspring, CHD 
measures and to the best of our knowledge, this is the 
first MR study of these maternal exposures on offspring 
CHD risk. Despite the relatively large sample, our incon-
clusive findings highlight the importance of existing and 
new cohorts, many of which have genomic data, linking 
to health care records to obtain information on CHDs 
and other rare outcomes, for example through electronic 
health records.

This MR study complements our previous negative 
paternal control study [11]. Our MR analyses of BMI are 
consistent with our previous negative control study, in 
suggesting that higher maternal BMI may not causally 
influence offspring CHD and that previous multivariable 
regression analyses [6, 8] were likely confounded. We 
have not clearly replicated our previous result for smok-
ing, which suggested an increased risk of offspring CHD 
in women who smoked in pregnancy. However, as noted 
above our imprecise MR results do not rule out an effect, 
and future larger MR studies are important. Due to the 

lack of information on alcohol consumption around the 
time of their partners pregnancy, previous analyses using 
a negative control design were inconclusive [11]. Recent 
meta‐analyses found consistently modest increases in 
risk of offspring CHD in mothers reporting alcohol con-
sumption in pregnancy, however, many of the included 
studies did not adjust for confounders [10, 56], meaning 
that it is difficult to determine whether the association is 
a result of alcohol or other characteristics that are related 
to alcohol and offspring CHDs. In the present study, the 
results for alcohol were inconclusive, although notably 
confidence intervals of the pooled effect (pooled OR: 
1.06 (0.98, 1.15)) did not rule out an association further 
emphasising the need for future larger studies.

There are several strengths of the current study. We 
attempted to identify all studies with relevant data know-
ing that MR is statistically inefficient, and CHD is a rare 
outcome. We explored potential bias due to other paths 
from the GRS to CHDs by examining associations of each 
GRS with the other two exposures and with other risk 
factors that might influence CHD and undertook mul-
tivariable MR where such associations were found. We 
also adjusted for offspring genotype in a subsample of 
the pooled data cohort, which is important in attempt-
ing to separate the influence of a path from GRS to CHDs 
via foetal genotype rather than solely from the mothers’ 
exposure [16].

The key limitation of this study is that despite a rela-
tively large sample size (N = 65,510, N = 562 CHD cases) 
the effect estimates were imprecise due to CHD being a 
rare condition. In knowing this, we explored a collabora-
tive base of birth cohorts and searched the literature for 
any additional cohorts that might contribute but found 
none that were eligible for inclusion. Furthermore, the 
GRS for smoking and alcohol may have been biased by 
the weak instruments. These limitations importantly con-
tribute to our main and sensitivity analysis results. We 
were not able to clearly differentiate between horizontal 
(i.e., where smoking is the main exposure of interest, and 
an association of the smoking GRS with BMI reflects an 
independent path) and vertical pleiotropy (i.e. where the 
relation of the smoking GRS with BMI is downstream 
of the GRS effect on smoking). We want to adjust for 
horizontal pleiotropy but not vertical pleiotropy, as the 
latter would be adjusting away part of the mechanism 
by which, for example smoking might influence CHD. 
Adjustment for offspring genotypes was only possi-
ble in a subsample of the main analysis, making results 
more imprecise and prone to selection bias. However, 
it is encouraging that our results do not notably differ 
in these analyses. MR results may be biased by popula-
tion stratification confounding. We tried to mitigate 
against that by adjusting for ancestry PCs and exploring 
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the consistency of the main results with results removing 
BiB. Largely these were consistent but even more impre-
cise. Whilst we included all participants, including those 
from non-European ancestries, both MoBa (the largest 
contributing study) and ALSPAC participants are mostly 
of White European origin, and the GWAS data used to 
construct the GRSs were restricted to European partici-
pants. Therefore, our results may not generalise to other 
populations. By examining gene associations, without 
estimating causal effects, as we have done here (i.e. not 
adopting a formal IV framework), the three IV assump-
tions that we discuss need to be considered. However, 
with this approach, the fourth assumption, which is often 
ignored even in MR studies that do attempt to estimate 
causal effects, is not required. The fourth assumption 
which often receives less attention states that the effect 
of the exposure on the outcome may differ for different 
people [57, 58].

We were only able to explore associations of GRS with 
any CHD (analyses of subtypes would have been very 
imprecise) and therefore could have missed the poten-
tial effects of these exposures on specific CHD subtypes. 
Nevertheless, we believe there is value for prospective 
parents, clinicians and policy makers in knowing the 
effects of any CHD. MoBa cohort only had cases diag-
nosed antenatally or around the time of birth (first year 
of life) obtained from a single source (The Medical Birth 
Registry of Norway) which would increase the chances of 
outcome misclassification by assigning CHD cases which 
were diagnosed later in life as non-CHD cases. This mis-
classification is likely to be random with respect to the 
GRS (i.e., later age at offspring diagnosis could not influ-
ence mothers genotype) and would be expected to bias 
results towards the null, meaning we may have missed 
some associations. A previous study using MoBa data 
found a larger proportion of CHD cases than the pre-
sent study (1.39% vs 0.83%) via ascertainment of linked 
health records [59]. We were unable to access these data 
for the present study. Potential reasons for the difference 
in birth prevalence could be firstly that they had access to 
more detailed ICD-coded data, and secondly because the 
MoBa genotype project datasets that we used in the pre-
sent study had different inclusion criteria and therefore 
the two study populations are not directly comparable.

Identifying modifiable causal risk factors for the devel-
opment of CHD is important for developing preventive 
interventions to reduce the risk of CHDs. Improvements 
in surgery over the last two decades mean that most 
patients with CHD now live into adulthood. Nonetheless, 
prevention remains important. Many patients require 
repeat procedures through childhood and adolescence to 
accommodate their growth, which produces a burden on 
them, their family and society. Despite trying to identify 

all relevant studies our results are inconclusive. They 
highlight the need for more data with maternal genetic 
and offspring CHD data. We think this is possible over 
the coming years as running GWAS is relatively cheap, 
and most cohort studies increasingly have these data. The 
following could considerably increase the sample size for 
MR in this field and result in key advances in preventing 
CHDs: (i) Add data on CHDs through electronic record 
linkage to existing cohorts; this was done recently in 
ALSPAC nearly 30  years after the original pregnancies 
[37]. Many of the cohorts that we considered for inclu-
sion had genetic data but no information on CHD (or 
other congenital anomalies). (ii) Linkage to electronic 
records should be regularly updated at least until early 
adulthood so that cases that are diagnosed later in life 
are also captured [37, 38]. (iii) Ensure new cohorts, par-
ticularly large birth/pregnancy cohorts or those with the 
potential to prospectively collect data during pregnancy 
(such as the planned UK Our Future Health) gain con-
sent to collect health data on CHDs (and other congeni-
tal anomalies). (iv) Continue to update the cohorts used 
in this study and update our results. For example, there 
are plans to continue running GWAS assays on moth-
ers, fathers and offspring in MoBa who are currently not 
genotyped which will more than double the sample avail-
able in that study. (v) To the best of our knowledge, there 
are currently no publicly available GWAS summary sta-
tistics for CHD. To date, the largest GWAS for CHD in a 
European population included ~ 4000 cases [60]. As these 
GWAS continue to grow, significant data sharing and col-
laboration will be required, which could then pave way 
for large-scale two-sample MR studies to explore mater-
nal risk factors for CHDs.

Conclusions
The analysis steps taken in this paper aimed to explore 
the presence of a causal effect of maternal BMI, smoking 
and alcohol on offspring CHDs. In summary, we found 
no robust evidence of an effect for maternal genetically 
determined BMI or smoking on offspring CHD. We did 
observe a weak relationship between genetically pre-
dicted maternal alcohol intake on offspring CHDs, but 
this may be explained by weak instrument bias. Despite 
a large sample size, our results produced imprecise esti-
mates. We have highlighted the need for future larger 
studies that employ a range of causal methods to further 
interrogate maternal gestational risk factors for offspring 
CHDs.
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