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Abstract 

Background  Compound epidermal growth factor receptor (EGFR) mutations are less responsive to tyrosine kinase 
inhibitors (TKIs) than single EGFR mutations in non-small cell lung cancer (NSCLC). However, the detailed clinical char-
acteristics and prognosis of various compound EGFR mutations remain to be elucidated.

Methods  We retrospectively studied the next-generation sequencing (NGS) data of treatment-naïve tumors from 
1025 NSCLC patients with compound EGFR mutations, which were sub-categorized into different combinations of 
common mutations (19-Del and EGFR exon 21 p.L858R), rare mutations, and variants of uncertain significance (VUSs). 
Prognosis and drug resistance to first-line TKIs were analyzed in 174 and 95 patients, respectively.

Results  Compound EGFR mutations were enriched with EGFR exon 21 p.L858R and rare mutations, but not 19-Del 
(P < 0.001). The common + rare and rare + rare subtypes had fewer concurrent mutations in the PI3K pathway 
(P = 0.032), while the rare + rare and common + VUSs subtypes showed increased association with smoking- and 
temozolomide-related mutational signatures, respectively (P < 0.001). The rare mutation-dominant subtypes 
(rare + VUSs and rare + rare) had the worst clinical outcomes to first-line TKIs (P < 0.001), which was further confirmed 
using an external cohort (P = 0.0066). VUSs in the rare + VUSs subtype selectively reside in the EGFR kinase domain 
(P < 0.001), implying these tumors might select additional mutations to disrupt the regulation/function of the kinase 
domain.

Conclusions  Different subtypes of compound EGFR mutations displayed distinct clinical features and genetic 
architectures, and rare mutation-dominant compound EGFR mutations were associated with enriched kinase domain-
resided VUSs and poor clinical outcomes. Our findings help better understand the oncogenesis of compound EGFR 
mutations and forecast prognostic outcomes of personalized treatments.
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Background
Lung cancer is the second most frequent cancer and 
the leading cause of cancer-related death worldwide [1]. 
Non-small cell lung cancer (NSCLC) is the major type of 
lung cancer, and around 14–38% of NSCLC patients har-
bor genetic alterations in epidermal growth factor recep-
tor (EGFR) [2], with the incidence of EGFR mutations 
higher in East Asian patients than in Caucasian patients 
[3, 4]. Short in-frame deletions in exon 19 (19-Del) and 
point mutations in EGFR exon 21 p.L858R are the most 
common activating mutations in EGFR, accounting for 
approximately 90% of all EGFR mutations in NSCLC [5, 
6]. EGFR tyrosine kinase inhibitors (TKIs) have shown 
profound clinical benefits and are thus used as the first-
line treatment in EGFR-mutated NSCLC patients [7–12]. 
Besides 19-Del and EGFR exon 21 p.L858R, extensive 
research has uncovered a wide array of rare EGFR acti-
vating or resistant mutations in NSCLC, including EGFR 
exon 18 p.G719X, EGFR exon 20 p.S768I, EGFR exon 21 
p.L861Q, EGFR exon 20 p.T790M, and EGFR exon 20 
insertions (20ins). Qin et al. found that EGFR 20ins had 
at least 80 different insertion patterns, and lung can-
cer patients with EGFR 20ins showed different clinical 
responses to various EGFR TKIs [13]. The EGFR exon 20 
p.T790M mutation confers drug resistance to first-gen-
eration EGFR TKIs, and it has been shown to occur in 
1–2% of treatment-naïve EGFR-mutated NSCLC patients 
[14, 15]. In addition to these well-studied common and 
rare EGFR mutations, EGFR variants of uncertain signifi-
cance (VUS) were observed in lung cancer patients, but 
the clinical relevance and TKI sensitivity of these VUSs 
are largely unknown [16, 17].

Although the majority of EGFR-positive NSCLC 
patients harbor a single EGFR mutation, recent advances 
in next-generation sequencing (NGS) technologies have 
revealed that around 10% of patients harbor compound 
EGFR mutations, defined by the presence of double or 
multiple distinct EGFR genetic alterations at baseline 
[18–20]. Several groups reported that patients with com-
pound EGFR mutations tended to be less responsive to 
TKI therapies than those with a single EGFR mutation 
[21–24]. Furthermore, researchers found that the differ-
ent types of EGFR compound mutations might be asso-
ciated with distinct treatment efficacies [18, 19]. Despite 
the potential clinical implications of EGFR compound 
mutations, most of the previous studies were based 
on limited patient cohorts, so it is imperative to per-
form large-scale analyses to gain a deeper insight into 
the complexity and diversity of compound EGFR muta-
tions in NSCLC. In the present study, we retrospectively 
studied the NGS data of treatment-naïve tumor samples 
from 8485 EGFR-mutated NSCLC patients, of whom 
1025 had compound EGFR mutations. We explored the 

clinical characteristics and genetic architecture of differ-
ent types of compound EGFR mutations, as well as their 
responses to EGFR TKIs and the associated drug-resist-
ant mechanisms.

Methods
Patients and sample collection
Qualified NGS data from a total of 1025 NSCLC patients 
harboring compound EGFR mutations at baseline 
from Fudan University Shanghai Cancer Center and 
Wuxi Branch of Ruijin Hospital were collected as part 
of the routine diagnosis and treatment. This study was 
approved by the Ethics Committee of the Fudan Univer-
sity Shanghai Cancer Center, Shanghai Cancer Center 
Institutional Review Board (SCCIRB), and in accord-
ance with the Declaration of Helsinki (ethics approval 
number: 2004216–19-2005). Targeted NGS tests were 
performed in a CLIA-certified and CAP-accredited clini-
cal testing laboratory (Nanjing Geneseeq Technology 
Inc., Nanjing, China) from April 2016 to October 2020. 
Of these, 305 were sequenced using a target panel cover-
ing 14 key lung cancer-related genes (TETRADECAN™, 
Geneseeq Technology Inc.) [25], 312 were sequenced 
by a 139 lung cancer gene panel (PULMOCAN™, Gen-
eseeq Technology Inc.) [26], and 408 were profiled by 
pan-cancer gene panel covering 425 cancer-relevant 
genes (GENESEEQPRIME™, Geneseeq Technology Inc.) 
[27]. Specifically, 5 to 10  mL of peripheral blood was 
collected from each patient in EDTA-coated tubes (BD 
Biosciences). Plasma was extracted within 2  h of blood 
collection and shipped to the central testing laboratory 
within 48  h. Tumor purity of formalin-fixed paraffin-
embedded (FFPE) tumor tissue blocks/sections or fresh 
tumor tissues was confirmed by the pathologists from the 
centralized clinical testing center. Written consent was 
collected from each patient.

DNA extraction, quantification, and library preparation
DNA extraction, quantification, and library preparation 
were performed as previously described [28]. In brief, 
FFPE samples were de-paraffinized with xylene, and 
DNA was extracted using the QIAamp DNA FFPE Tissue 
Kit (Qiagen) according to the manufacturer’s protocols. 
Genomic DNA from fresh tumor tissue was extracted 
using the DNeasy Blood & Tissue Kit (Qiagen) accord-
ing to the manufacturer’s protocols. Peripheral blood 
samples were centrifuged at 1800  g for 10  min. Then, 
the plasma was isolated for extraction of cfDNA and the 
genomic DNA of white blood cells in sediments served as 
normal controls. The circulating nucleic acid kit (Qiagen, 
Germany) was used to purify cfDNA from the plasma. 
The genomic DNA from white blood cells was extracted 
using the DNeasy Blood and Tissue Kit (Qiagen). 
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Genomic DNA was qualified using a Nanodrop2000 
(Thermo Fisher Scientific, Waltham, MA), and cfDNA 
fragment distribution was analyzed on a Bioanalyzer 
2100 using the High Sensitivity DNA Kit (Agilent Tech-
nologies, Santa Clara, CA). All DNA was quantified 
using the dsDNA HS assay kit on a Qubit 3.0 fluorometer 
(Life Technology, USA) according to the manufacturer’s 
recommendations. Sequencing libraries were prepared 
using the KAPA Hyper Prep kit (KAPA Biosystems) with 
an optimized manufacturer’s protocol and sequenced as 
previously described [28].

Data processing
The mean coverage depth was 1402 × for tissue sam-
ples, 5655 × for cfDNA samples, and 162 × for matched 
control samples. Sequencing data were processed as 
previously described [28]. In brief, mutation calling Trim-
momatic was used for FASTQ file quality control, and 
leading/trailing low-quality (quality reading below 20) 
or N bases were removed. Qualified reads were mapped 
to the reference human genome hg19 using Burrows-
Wheller Aligner with default parameters, and Genome 
Analysis Toolkit (GATK 3.4.0) was employed to apply the 
local realignment around indels and base quality score 
recalibration. Picard was used to remove PCR dupli-
cates, and samples with mean dedup depth < 30 × were 
removed. VarScan2 was employed for the detection of 
single-nucleotide variations (SNVs) and insertion/dele-
tion mutations. SNVs were filtered out if the mutant 
allele frequency (MAF) was less than 1% for tumor tis-
sue and 0.3% for plasma samples. Variants were further 
filtered with the following parameters: (i) minimum read 
depth = 20, (ii) minimum base quality = 15, (iii) minimum 
variant supporting reads = 5, (iv) variant supporting 
reads mapped to both strands, (v) strand bias no greater 
than 10%, (vi) if present in > 1% population in the 1000 
Genomes Project or the Exome Aggregation Consortium 
(ExAC) 65,000 exomes database, and (vii) filtered by an 
internally collected list of recurrent sequencing errors 
using a normal pool of 100 samples. Parallel sequencing 
of matched white blood cells from each patient was per-
formed to further remove sequencing artifacts, germline 
variants, and clonal hematopoiesis. The copy number 
alterations were analyzed as previously described [29, 
30]. The tumor purities were first estimated using ABSO-
LUTE [31]. Somatic copy number alteration events were 
assigned based on sample-ploidy values calculated in the 
FACETS algorithm [32]. Loss-of-heterozygosity (LOH) 
was also calculated using FACETS and determined using 
the minor copy number estimates of each segment for 
genes in the targeted panel. The minor copy number is by 
definition 0 in a LOH event [33, 34]. Structural variants 
were detected using FACTERA with default parameters 

[35]. The fusion reads were further manually reviewed 
and confirmed on Integrative Genomics Viewer (IGV).

Tumor mutational burden (TMB, mutation per 
Megabase) was determined based on the number of 
somatic base substitutions and indels in the targeted 
regions of the gene panel covering 0.85  Mb of coding 
genome, excluding known driver mutations as they are 
over-represented in the panel. Chromosome instability 
score (CIS) was defined as the proportion of the genome 
with aberrant (purity-adjusted segment-level copy num-
ber ≥ 3 or ≤ 1) segmented copy number [36].

Mutation signature analysis
The samples with the number of synonymous/non-
synonymous mutations of ≥ 5 were included for muta-
tion signature analysis [37], which was conducted using 
the “maftools” and “sigminer” R packages. Based on the 
description of the 30 mutational signatures listed on 
the COSMIC website (https://​cancer.​sanger.​ac.​uk/​signa​
tures/​signa​tures​v2/), we classified the signatures into 10 
groups, including age (COSMIC1), APOBEC (COSMIC2 
and COSMIC13), BRCA (COSMIC3), smoking (COS-
MIC4), dMMR (COSMIC6, COSMIC15, COSMIC20, 
and COSMIC26), ultraviolet (COSMIC7), immunoglob-
ulin (COSMIC9), POLE (COSMIC10), temozolomide 
(COSMIC11), and others (the rest of the signatures). The 
contribution of each signature was the proportion of the 
selected signature over all the detected signatures in that 
specific patient, which was calculated based on previous 
literature [38–40].

Statistical analysis
Kaplan–Meier survival curve was used to analyze the 
progression-free survival (PFS) of various patient groups, 
and the statistical difference was analyzed using the log‐
rank test. Fisher’s exact test was used to test the categori-
cal variables. The Kruskal–Wallis test was conducted 
to compare multiple groups. Statistical analyses were 
performed using the R (v4.1.0), and a two-sided P-value 
of < 0.05 was considered to be statistically significant 
(*P < 0.05, **P < 0.01, ***P < 0.001).

Results
Patient characteristics and study plan
A total of 1025 (12.1%, 1025/8485) patients harbored 
compound EGFR mutations at baseline, that is, two 
or more distinct EGFR mutations were concomitantly 
detected in a single tumor sample. We sub-categorized 
compound EGFR mutations into different combinations 
of common EGFR mutations (i.e., EGFR 19-Del and 
EGFR exon 21 p.L858R), rare EGFR mutations (i.e., EGFR 
exon 18 p.G719X, EGFR exon 20 p.S768I, EGFR exon 21 
p.L861Q, EGFR exon 20 p.T790M, and EGFR 20ins), and/

https://cancer.sanger.ac.uk/signatures/signaturesv2/
https://cancer.sanger.ac.uk/signatures/signaturesv2/
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or VUSs. Of the 1025 patients, 570 (55.6%) were older 
than 60 years, and more than half of the patients (57.8%) 
were females (Additional file 1: Table S1). The majority of 
the patients (83.1%) were diagnosed with lung adenocar-
cinoma (ADC), while other patients had lung squamous 
cell carcinoma (SCC), adenosquamous carcinoma of the 
lung (ASC), or unknown histologic subtypes (Additional 
file  1: Table  S1). Clinical features, such as programmed 
death-ligand 1 (PD-L1) expression, disease stage, and 
tumor mutation burden (TMB) were also available for 
20–40% of the patients (Additional file 1: Table S1). Based 
on the NGS and clinical data from the 1025 patients, we 
aimed to investigate compound EGFR mutations from 
various aspects, including the correlation between dif-
ferent types of compound EGFR mutations and the clini-
cal/molecular features, as well as delineating therapeutic 
response to different first-line EGFR TKIs and potential 
resistant mechanisms, using patients with available post-
TKI follow-up information (n = 174) and patients with 
paired baseline and progressive disease (PD) samples 
(n = 95), respectively (Fig. 1A).

Distinct association between compound EGFR mutation 
subtype and basic clinical features
Among the 1025 compound EGFR mutation-positive 
patients, only 27 (2.6%) harbored multiple (> 2) EGFR 
mutations while 97.4% of the patients had dual EGFR 
mutations (Table  1 and Additional file  1: Fig. S1A). As 
shown in Additional file 1: Table S2, the presence of mul-
tiple EGFR mutations was significantly associated with 
higher TMB (P = 0.034). For patients with double EGFR 
mutations, the most frequent combination was common 
EGFR mutation plus VUSs (common + VUSs; 48.2%), fol-
lowed by rare EGFR mutation plus VUSs (rare + VUSs; 
17.2%), common + rare (12.7%), and rare + rare (12.6%) 
(Table  1). In contrast, the common + common (i.e., 
19-Del + p.L858R) combination was extremely rare, 
accounting for only 2.3% of the patients (Table 1).

Several clinical features, including age, sex, and TMB, 
were differentially associated with the type of dual EGFR 
mutations (Additional file  1: Table  S3). Specifically, the 
rare + VUSs subtype was more likely to occur in younger 
patients (≤ 60  years old) whereas the co-occurrence of 
EGFR 19-Del and EGFR exon 21 p.L858R mutations 

was more frequent in older patients (> 60  years old); in 
addition, the common + VUSs subtype was more often 
observed in male patients, and the VUSs + VUSs sub-
type happened more in patients with higher mutational 
loads (Additional file  1: Table  S3). We also compared 
compound EGFR mutation-positive patients based on 
whether or not harboring a common EGFR mutation. 
Around two-thirds of these patients (64.7%) were posi-
tive for common EGFR mutations, and they were more 
likely to be female and PD-L1 negative (Additional file 1: 
Table  S4). Overall, the different subtypes of compound 
EGFR mutations demonstrated distinct preferences for 
certain clinical features in NSCLC patients.

Fewer EGFR 19‑Del and more EGFR exon 21 p.L858R 
and rare EGFR mutations in patients with compound EGFR 
mutations
In order to compare the difference in EGFR mutational 
frequency between patients with single EGFR mutation 
and those with compound EGFR mutations, we catego-
rized compound mutation-positive patients according 
to the priority from common mutations to rare muta-
tions to VUSs. Therefore, based on the highest prior-
ity EGFR mutation, patients with compound EGFR 
mutations can be divided into three groups, including 
common (i.e., common + common, common + rare, or 
common + VUSs), rare (i.e., rare + rare or rare + VUSs), 
and VUSs (i.e., VUSs + VUSs). Intriguingly, compared 
with patients with single EGFR mutations, compound 
EGFR mutation-positive patients had fewer common and 
more rare EGFR mutations (Fig. 1B). In compound muta-
tion-positive patients with only one common mutation, 
we performed comparisons between those with EGFR 
19-Del and EGFR exon 21 p.L858R. The lowered inci-
dence of common mutations in compound EGFR (64.7% 
vs 88.0%, P < 0.0001) was mainly due to a decrease in the 
frequency of EGFR 19-Del (11.5% vs 43.9%, P < 0.0001), 
whereas EGFR exon 21 p.L858R was more common com-
pared with patients with single EGFR mutations (52.2% 
vs 44.1%, P < 0.0001; Fig.  1C). In addition, EGFR 19-Del 
and EGFR exon 21 p.L858R also differed in their concom-
itant EGFR mutations. EGFR 19-Del was more frequently 
accompanied by baseline mutations such as EGFR exon 
21 p.T790M and EGFR 20ins (P = 0.045 and 0.0029, 

(See figure on next page.)
Fig. 1  Compound EGFR mutation-positive patients had fewer EGFR 19-Del mutations and more L858R and rare EGFR mutations. A The flowchart 
of the study. B Comparing the percentage of patients with single EGFR mutation (n = 7460) and compound EGFR mutations (n = 1025) according 
to their EGFR mutation type. Based on the dominant EGFR mutations, patients with compound EGFR mutations were divided into common (i.e., 
common + common, common + rare, or common + VUSs), rare (i.e., rare + rare or rare + VUSs), and VUSs (i.e., VUSs + VUSs) groups. C Comparing 
the percentage of patients with single EGFR mutation (n = 7460) and compound EGFR mutations (N = 998) according to their EGFR mutation 
type. Patients with concurrent L858R and 19-Del (n = 27) were not included in the analysis. D The difference of the accompanied EGFR mutations 
between 19-Del and L858R-containing compound EGFR mutations. Patients with concurrent L858R and 19-Del (n = 27) were not included in the 
analysis. NGS, next-generation sequencing; VUS, variants of uncertain significance; TM, transmembrane domain
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Fig. 1  (See legend on previous page.)
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respectively), while EGFR exon 21 p.L858R more often 
co-existed with EGFR exon 20 p.S768C/I (P = 0.056) 
(Fig. 1D).
EGFR VUSs were the commonest co-occurring muta-

tions for both EGFR exon 21 p.L858R and EGFR 19-Del 
(Fig.  1D). As the function of most VUSs was largely 
unknown, we evaluated VUSs based on their locations in 
different EGFR protein domains, including the extracel-
lular domain, transmembrane domain (TM), juxtamem-
brane domain (JM), kinase domain (KD), and C-terminal 
tail (Fig.  2A). Intriguingly, the rare + VUSs subtype was 
highly enriched for KD-located VUSs than other VUS-
containing compound EGFR mutation subtypes (Fish-
er’s exact test P < 0.001; Fig.  2A and Additional file  1: 
Table  S5), implying the potential importance of addi-
tional KD aberrations to reinforce the oncogenic activi-
ties of rare EGFR mutations.

Genomic characteristics of different types of compound 
EGFR mutations
A total of 720 patients had baseline tumor samples 
genetically profiled for 139 key lung cancer-related 
genes, including EGFR (see the “Methods” section for 
more details), which enabled the investigation of con-
current genetic alterations. TP53 (50.1%) was the most 
frequently mutated gene, followed by PIK3CA (10.6%), 
CTNNB1 (8.9%), and RB1 (7.9%), across the 720 patients 
(Additional file 1: Fig. S1B). The frequencies of PIK3CA 
mutations among different compound EGFR mutation 
subtypes were not uniformly distributed (Fig.  2B). Par-
ticularly, patients with common + rare and rare + rare 
subtypes had lower frequencies of PIK3CA mutations 
(Fig.  2B). Similarly, the PI3K pathway was under-rep-
resented in the common + rare and rare + rare groups 
(Fig.  2C and Additional file  1: Table  S6). In addition, 
the rare + rare group also had fewer mutations in genes 
in the RAS/RAF/MEK pathway (Fig.  2C). In contrast, 
patients with the VUSs + VUSs subtype tended to have 
the highest proportion of aberrations in almost all the 
tested oncogenic pathways (Fig. 2C).

Of the 720 patients, 408 underwent large panel targeted 
sequencing of 425 cancer-relevant genes, including the 
abovementioned 139 lung cancer-related genes and 286 
genes that are frequently mutated in cancers. We per-
formed mutational signature and chromosome instability 
analyses based on previous studies [41, 42]. An increased 
number of compound EGFR mutations showed little 
association with the mutational signature (Additional 
file 1: Fig. S2). On the other hand, the type of compound 
EGFR mutations demonstrated a significant relation-
ship with mutational signatures of age, smoking, immu-
noglobulin, and temozolomide (Fig.  3A). Particularly, 
the common + rare subtype displayed more age-related 
signature, the common + VUSs and rare + rare subtypes 
were more likely to be associated with the smoking sig-
nature, and the common + VUSs subtype also had higher 
immunoglobulin- and temozolomide-related signatures 
(Fig.  3A). In terms of chromosome instability, patients 
with double and multiple EGFR mutations had compa-
rable chromosomal instability scores (CISs) (Fig.  3B), 
whereas patients with the common + common subtype 

Table 1  The EGFR mutation types among the 1025 lung cancer 
patients with baseline compound EGFR mutations

Characteristics Number of 
patients, n 
(%)

Dual EGFR mutations 998 (97.4%)
  Common + common 24 (2.3%)

  Common + rare 130 (12.7%)

  Common + VUSs 495 (48.2%)

  Rare + VUSs 176 (17.2%)

  Rare + rare 129 (12.6%)

  VUSs + VUSs 44 (4.3%)

> 2 EGFR mutations 27 (2.6%)
  Common + common + rare 2 (0.2%)

  Common + common + VUSs 1 (0.1%)

  Common + rare + VUSs 2 (0.2%)

  Common + rare + rare 2 (0.2%)

  Common + VUSs + VUSs 7 (0.7%)

  Rare + VUSs + VUSs 9 (0.9%)

  Rare + rare + VUSs 1 (0.1%)

  Common + common + rare + VUSs 1 (0.1%)

  Rare + VUSs + VUSs + VUSs 1 (0.1%)

  VUSs + VUSs + VUSs + VUSs 1 (0.1%)

Fig. 2  The molecular and genetic characteristics of different types of compound EGFR mutations. A The lollipop plots of EGFR VUSs from various 
VUS-containing compound EGFR mutations, including L858R + VUSs (n = 416), 19-Del + VUSs (n = 86), and rare + VUSs (n = 185). B The percentage 
of patients with various mutated genes stratified by different compound EGFR mutation types. Patients’ samples that were characterized by 
targeted NGS of 139 key lung cancer-related genes were included in the analysis (n = 720). C The percentage of patients with various altered 
signaling pathways stratified by different compound EGFR mutation types. Patients’ samples that were characterized by targeted NGS of 139 key 
lung cancer-related genes were included in the analysis (n = 720). The Kruskal–Wallis test was conducted to compare multiple groups. P-value 
of < 0.05 was considered to be statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001). SP, signal peptide; TM, transmembrane domain

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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tended to have lower CIS than those with other com-
pound EGFR mutation subtypes (Fig. 3C).

Prognosis of compound EGFR mutation‑positive patients 
in response to first‑line EGFR TKIs
Next, we investigated the first-line TKI response in 
174 compound EGFR mutation-positive patients who 
had available follow-up data. Consistent with previous 
research, compound EGFR mutations were associated 
with worse progression-free survival (PFS) than single 
EGFR mutations, and to a higher extent when compared 
with single EGFR 19-Del mutation (Fig.  4A). As only 
three out of 174 patients had more than 2 EGFR muta-
tions, we mainly focused our analysis on those with dou-
ble EGFR mutations. As shown in Fig. 4B, the type of dual 
EGFR mutations had a significant impact on PFS, with 
common EGFR mutation-containing subtypes (com-
mon + X) associating with improved PFS than the rare 
EGFR mutation-dominant (rare + VUSs and rare + rare) 
subtypes (P < 0.001). The poor clinical outcome of rare 
EGFR mutation-dominant subtypes was further validated 
using an external cohort of 22 compound EGFR muta-
tion-positive NSCLC patients obtained from the Memo-
rial Sloan Kettering Cancer Center (MSKCC) database 
(Additional file 1: Fig. S3A). We also divided all patients 
by the type of first-line EGFR TKIs they received, and the 
second-generation TKI treatment showed a trend toward 
having the worst PFS (P = 0.23; Fig. 4C).

Subgroup survival analyses comparing different types 
of dual EGFR mutations were performed. Patients were 
subdivided into common EGFR mutation-containing 
subtypes (common + X), rare EGFR mutation-domi-
nant subtypes (rare + VUSs and rare + rare), and VUS-
containing subtypes (any subtypes that contain VUSs). 
Among patients with common EGFR mutation-contain-
ing subtypes, neither the type of common EGFR muta-
tions nor the kind of first-line TKIs had any significant 
effects on PFS (Additional file  1: Fig. S3B-D). Notably, 
patients with the 19-Del + X and the L858R + X subtype 
showed differential survival outcomes to first-line sec-
ond-generation TKIs, with the 19-Del + X group having 
a better response and L858R + X displaying unfavorable 
outcomes. However, the results did not reach statisti-
cal significance due to the limited sample size of the 

subgroups (Additional file  1: Fig. S3E,F). For patients 
with rare EGFR mutation-dominant subtypes, their PFS 
could not be further stratified by either mutation sub-
types or the specific TKI treatments (Additional file  1: 
Fig. S4A,B). Lastly, we studied patients with VUS-con-
taining subtypes based on the sites of VUSs on EGFR 
protein, that is, within KD (KD +) versus outside KD 
(KD −), and we found that the location of VUSs itself 
could not effectively separate responders from non-
responders (Additional file  1: Fig. S5A). However, upon 
co-analysis with the other EGFR mutation, patients with 
the rare + VUSs (KD +) subtype had significantly shorter 
PFS than those with the common + VUSs (KD +) subtype 
(P < 0.001) or those with the common + VUSs (KD −) 
subtype (P < 0.001) (Fig.  4D). Only one patient had the 
rare + VUSs (KD −) subtype and was not included in 
the Kaplan–Meier analysis in Fig.  4D; nevertheless, this 
patient had a PFS of 14 months, which was also signifi-
cantly better than the median PFS (mPFS) of 6.8 months 
for patients with the rare + VUSs (KD +) subtype. In 
addition, we studied the impact of specific types of TKIs 
in patients with VUS-containing subtypes. The third-
generation TKIs tended to be associated with better 
and worse PFS in VUS (KD +) patients and VUS (KD −) 
patients, respectively, although neither result reached 
statistical significance due to the limited patient number 
(Additional file 1: Fig. S5B,C).

Resistant mechanisms in patients with paired baseline 
and PD samples
In order to understand the EGFR TKI-resistant mecha-
nisms, we studied 95 compound EGFR mutation-pos-
itive patients who had paired baseline and PD NGS 
data. EGFR exon 20 p.T790M was the most prevalent 
EGFR-resistant mutation to first-line TKIs, ranging from 
9.5% in the baseline samples to 40% in the PD samples 
(Fig. 5A), and the majority of the acquired EGFR exon 20 
p.T790M mutation (22/29; 75.9%) occurred in patients 
with the common + VUSs subtype (P < 0.001, Additional 
file  1: Table  S7). Additional gained EGFR mutations in 
PD samples were also observed, including EGFR exon 
18 p.L718V, EGFR 20ins, and EGFR exon 20 p.C797S 
(Fig. 5A). We further investigated the potential off-target 
resistance mechanisms (Additional file  1: Fig. S6) and 

(See figure on next page.)
Fig. 3  Mutational signature and chromosomal instability of different types of compound EGFR mutations. A The mutational signature analysis 
for patients with different types of compound EGFR mutations. Patients whose baseline tumor tissue samples were characterized by large panel 
targeted sequencing of 425 cancer-relevant genes were included in the analysis (n = 408). The contribution of each signature was the proportion 
of the selected signature over all the detected signatures in that specific patient. The Kruskal–Wallis test was conducted to compare multiple 
groups. The chromosomal instability score in patients with double vs multiple EGFR mutations (B) or in patients with different types of compound 
EGFR mutations (C). Patients whose baseline tumor tissue samples were characterized by large panel targeted sequencing of 425 cancer-relevant 
genes were included in the analysis (n = 408). P-value of < 0.05 was considered to be statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001). CIS, 
chromosomal instability score
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found no genetic alterations or signaling pathways that 
were significantly different between the baseline and 
the PD samples (Fig.  5B, C). Notably, when comparing 
patients based on the baseline compound EGFR mutation 
type, the common + VUSs subtype acquired more muta-
tions in the RAS/RAF/MEK pathway than other subtypes 
(11.4% vs 0%, P = 0.266, Fig.  5D). Overall, the different 
compound EGFR mutation types might rely on differen-
tial TKI-resistant mechanisms, with the common + VUSs 

subtype specifically enriched for EGFR exon 20 p.T790M 
and/or other RAS/RAF/MEK pathway-related mutations.

Discussion
We performed a large-scale retrospective study of 1025 
NSCLC patients who harbored baseline compound 
EGFR mutations. Intriguingly, compound EGFR muta-
tions had a significantly higher frequency of EGFR exon 
21 p.L858R and rare EGFR mutations and a dramatically 

Fig. 4  The correlation between the type of compound EGFR mutations and patients’ prognosis to first-line EGFR TKIs. A Kaplan–Meier curve of 
progression-free survival in NSCLC patients in strata of the number of EGFR mutations. B Kaplan–Meier curve of progression-free survival in dual 
EGFR mutation-positive patients in the strata of the various combination of EGFR mutations. One patient with the common + common subtype was 
not included in the analysis. C Kaplan–Meier curve of progression-free survival in compound EGFR mutation-positive patients in the strata of various 
generations of EGFR TKIs. D Kaplan–Meier curve of progression-free survival in compound EGFR mutation-positive patients who harbored EGFR 
VUSs, and these patients were in the strata of different types of compound EGFR mutations, as well as the location of the VUSs, which can be inside 
the EGFR kinase domain (KD +) or outside the EGFR kinase domain (KD −). One patient with the rare + VUSs (KD −) subtype was not included in the 
analysis. Log‐rank test with P-value < 0.05 was considered to be statistically significant (*P < 0.05, **P < 0.01, ***P < 0.001)
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Fig. 5  Drug-resistant mechanism analysis using patients with paired baseline and PD samples (n = 95). A The comparison of EGFR mutation status 
between paired baseline and PD samples. Each column represented a sample derived from a patient, and the two oncoprint plots (i.e., baseline vs 
PD to first-line TKIs) used the same order to arrange the paired patient samples. The frequency of mutated genes (B) or altered signaling pathways 
(C) between the baseline samples and PD samples. D The status of aberrant signaling pathways between the baseline and the paired PD samples, 
stratified by different compound EGFR mutation subtypes. BL, baseline; PD, progressive disease
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lower rate of EGFR 19-Del mutation than single EGFR 
mutation. Different types of compound EGFR muta-
tions demonstrated distinct subtypes of mutated genes, 
aberrant signaling pathways, mutational signatures, and 
chromosomal instability. Notably, the rare EGFR muta-
tion-dominant subtypes were associated with signifi-
cantly shorter FPS. In addition, VUSs in the rare + VUSs 
subtype were more likely to locate at the EGFR kinase 
domain, and patients with rare + VUSs (KD +) had worse 
PFS than those with other VUS-containing subtypes. In 
terms of TKI-resistant mechanism, the common + VUSs 
subtype was highly enriched for EGFR exon 20 p.T790M 
and/or other RAS/RAF/MEK pathway-related mutations. 
Therefore, different compound EGFR mutation subtypes 
had distinct clinical/genetic characteristics and therapeu-
tic responses.

The first-generation EGFR TKIs (e.g., gefitinib and erlo-
tinib) are ATP‑competitive small molecules that revers-
ibly target the EGFR tyrosine kinase domain. Despite its 
significant clinical benefits when compared with chemo-
therapies in NSCLC patients, drug resistance inevitably 
developed [43]. To overcome the resistance to first-gen-
eration TKIs, the second-generation TKIs (e.g., afatinib 
and dacomitinib), which are irreversible inhibitors, were 
designed. Although second-generation TKIs generally 
showed improved EGFR inhibition, they also exhibited 
high potency against wild-type EGFR, leading to lower 
maximum dose tolerance, more adverse events, and lim-
ited clinical utilities [44, 45]. One of the most common 
resistance mechanisms against both the first- and sec-
ond-generation TKIs is EGFR exon 20 p.T790M muta-
tion [46–48]. The gatekeeper hypothesis suggests that the 
steric hindrance between the methionine residue on the 
gatekeeper side chain of EGFR exon 20 p.T790M and the 
aniline moiety of first-generation TKIs is the underlying 
mechanism of the drug resistance, although other puta-
tive mechanisms have been proposed, including elevated 
ATP-binding affinity for EGFR exon 20 p.T790M, changes 
in the catalytic domain, and variations in the conforma-
tional dynamics [49, 50]. In our study, we found that a 
significant proportion of patients with common + VUSs 
subtype (44%) acquired EGFR exon 20 p.T790M muta-
tion after EGFR TKI treatments, but not for other EGFR 
subtypes. Because the percentage of acquiring EGFR 
exon 20 p.T790M is similar between the common + VUSs 
subtype in our study and other studies using patients 
with a single EGFR common mutation [51], we specu-
late that the common + VUSs subtype might resemble 
the function of a single EGFR common mutation. In par-
ticular, the EGFR VUSs in the common + VUSs subtype 
might be passenger mutations and did not contribute 
to the oncogenic activation of EGFR. In contrast, some 
EGFR compound mutation subtypes (e.g., rare + rare 

and rare + VUSs) are less likely to acquire EGFR exon 
20 p.T790M, implying that these subtypes might rewire 
the signaling network to make them prone to utilize 
other resistance mechanisms to bypass first- and second-
generation TKIs. The third-generation TKIs, especially 
osimertinib, demonstrated satisfactory efficacy against 
EGFR exon 20 p.T790M. Osimertinib formed irreversible 
covalent bonds with the cysteine 797 residue in the ATP-
binding site, and it exhibited selective potency against the 
mutant EGFR rather than wild-type EGFR, resulting in 
its accelerated approval by US Food and Drug Adminis-
tration to treat EGFR-mutated NSCLC [52]. One patient 
in our cohort gained EGFR exon 20 p.C797S mutation 
after first-line TKIs and became resistant to osimertinib. 
This patient might be treated with TKI combinations or 
next-generation TKIs to overcome this resistance muta-
tion [53].

Around 12.1% of EGFR-positive NSCLC patients 
in our cohort harbored compound EGFR mutations, 
which is consistent with previous studies [18–20]. Only 
around 2% of all compound EGFR mutation-positive 
patients had more than 2 baseline EGFR mutations, and 
these patients generally had high tumor mutation loads. 
Kauffmann-Guerrero et  al. reported that compound 
EGFR mutations were more often observed in patients 
with a smoking history [22]. Although our patient cohort 
did not have complete records of the patient’s smok-
ing status, the mutational signature results suggested 
that not all subtypes of compound EGFR mutations had 
the same level of smoking-related signatures, with com-
mon + VUSs and rare + rare subtypes being more likely 
to occur in smokers than other subtypes. Additionally, 
Kim et  al. found that compound EGFR mutations were 
frequently co-mutated with some actionable genes, such 
as ALK rearrangement, KRAS mutation, and PIK3CA 
mutations [23]. We also detected multiple co-mutated 
genes, which exhibited distinct subtypes according to the 
specific type of compound EGFR mutations. Particularly, 
unlike other compound EGFR mutations, the rare + rare 
subtype had a significantly low frequency of mutations in 
the PI3K and RAS/RAF/MEK signaling pathways, imply-
ing that tumors harboring double rare EGFR mutations 
might less rely on these oncogenic pathways. On the 
other hand, the VUSs + VUSs subtype had the highest 
mutational frequency in almost all the tested oncogenic 
pathways. This indicates that many of the detected EGFR 
VUSs might have little or very mild oncogenic activities, 
and tumors harboring the VUSs + VUSs subtype had to 
heavily depend on other oncogenic mutations for tumori-
genesis and maintenance.

Another interesting observation of our study is that 
compound EGFR mutations had a much lower frequency 
of EGFR 19-Del and a significantly higher frequency of 
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EGFR exon 21 p.L858R than the single EGFR mutation. 
The two types of common EGFR mutations also had dif-
ferent preferences in the co-existed EGFR mutations. 
Furthermore, the EGFR 19-Del + X subtype and EGFR 
exon 21 p.L858R + X subtype had opposite trends in the 
therapeutic response to second-generation TKIs. Mul-
tiple previous studies on single EGFR mutation have 
found that EGFR 19-Del and EGFR exon 21 p.L858R 
demonstrated different clinical features and treatment 
outcomes. Hong’s group reported that patients with a 
single EGFR 19‑Del mutation had significantly improved 
clinical outcomes than patients with a single EGFR exon 
21 p.L858R mutation following first‑line TKI, but not 
first‑line chemotherapy or second‑line TKI [54]. NSCLC 
patients with EGFR 19-Del also had a higher risk of 
lymph node metastasis than those with EGFR exon 21 
p.L858R [55]. Despite the clinical difference between 
EGFR exon 21 p.L858R and EGFR 19-Del, the underlying 
mechanism is still elusive. Sordella et al. discovered that 
EGFR exon 21 p.L858R and EGFR 19-Del had differen-
tial levels of EGFR autophosphorylation on some specific 
sites, which may affect their drug sensitivity to TKIs [56]. 
Nevertheless, future studies are needed to elucidate the 
distinguishing preference of EGFR exon 21 p.L858R and 
EGFR 19-Del in compound EGFR mutations.

We found that patients with compound EGFR muta-
tions tended to be less responsive to EGFR TKIs than 
those with single EGFR mutation, especially the patients 
with single EGFR 19-Del, which is consistent with pre-
vious studies [21–24]. Additionally, we discovered that 
different subtypes of compound EGFR mutations were 
also significantly associated with patient’s prognosis to 
first-line TKIs. Specifically, the presence of a common 
mutation in compound EGFR mutations can sufficiently 
predict prognosis, regardless of the type and location 
of the other EGFR mutation. However, for rare EGFR 
mutation-containing patients, their prognosis is likely 
to highly rely on the type of mutation combinations. In 
particular, rare + common was associated with good PFS, 
rare + VUSs (KD −) might be related to good to interme-
diate PFS, while rare + rare and rare + VUSs (KD +) are 
likely to associate with short PFS. Therefore, both the 
type of EGFR mutations (common vs rare vs VUSs) and 
the specific combination of compound mutations might 
contribute to the overall prognosis of NSCLC patients.

The common + common subtype was extremely rare, 
accounting for only 2.3% of patients in our cohort. Given 
that common EGFR mutations could efficiently activate 
EGFR kinase activity and promote tumorigenesis, it is 
highly unlikely that a single tumor would acquire two 
EGFR common mutations simultaneously. As a result, 
we suspect that the two different EGFR common muta-
tions might mainly reside in different tumor cells. In 

other words, we think those patients might have two 
subclones of cancer cells, one is driven by EGFR exon 
21 p.L858R and the other is driven by EGFR 19-Del, and 
both of them are likely to be sensitive to EGFR TKIs. For 
the common + rare and common + VUSs subtypes, the 
two EGFR mutations could be either in the same or in 
different tumor cells. However, if some common and rare 
EGFR mutations are in the same cancer cells, they might 
interfere with the response to certain EGFR TKIs. For 
example, Yu et al. found that if lung cancer patients had 
co-occurred baseline common EGFR mutation and base-
line EGFR exon 20 p.T790M, they had poor responses to 
first-generation TKIs [57]. Indeed, several previous stud-
ies reported that common EGFR mutations and EGFR 
exon 20 p.T790M were almost always in cis configura-
tions in order to confer resistance to first-generation 
EGFR TKIs [58]. Additionally, we found that rare EGFR 
mutations were specifically enriched for EGFR VUS 
(KD +) mutations. We speculate that EGFR VUSs (KD +) 
and rare EGFR mutations are within the same cancer cell 
or even on the same allele, and the additional KD aberra-
tions from the VUSs might help reinforce the oncogenic 
activities of rare EGFR mutations. Strikingly, we found 
that patients with the rare + VUSs (KD +) subtype are 
generally associated with a poorer prognosis than those 
with other subtypes, which further implies that they 
might reside in the same cancer cells to drive tumorigen-
esis and/or tumor progression. Nevertheless, our NGS 
results were not ideal to elucidate whether the compound 
EGFR mutations were from the same cancer cell/DNA 
allele or not. Among the 1025 patients in our cohort, 
the compound EGFR mutations of 282 patients were on 
the same exon. We then analyzed whether the mutations 
were on the same sequencing read (i.e., the same allele) 
or not. Strikingly, in 98.9% (279/282) of cases, the com-
pound EGFR mutations were located on the same allele, 
which also infers that they were in the same cancer cell 
(Additional file  1: Table  S8). Future studies using more 
appropriate approaches (e.g., NGS on multi-site sam-
pling tissues, single-cell sequencing, sequencing com-
plementary DNAs, long-read sequencing, or fluorescent 
in situ hybridization) are necessary to further check the 
cis/trans configuration and cellular distribution of com-
pound mutations.

There were several limitations of our study. Firstly, a 
large proportion of patients had missing clinical infor-
mation, including the PD-L1 expression and disease 
stages, which can potentially impede thorough analy-
ses of the correlation between the clinical characteris-
tics and compound EGFR mutation subtypes. Secondly, 
because the tumor samples were collected by different 
hospitals spanning the past 4.5  years, the samples were 
generically profiled by 3 different targeted sequencing 
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panels. Fortunately, all 3 targeted sequencing panels were 
designed and performed by the same sequencing insti-
tute. Specifically, all the assay validations were performed 
using a method-based validation approach to detect a 
specific type of mutation at a specific sequencing depth 
under the entire NGS system, and all three sequenc-
ing panels showed a similar capacity to detect muta-
tions (cross-panel accuracy > 97%). Therefore, the result 
of overlapping genes from the three sequencing panels 
is comparable. Lastly, only 95 patients who had paired 
baseline and PD samples were available for drug resist-
ance analyses, and future studies with larger patient sizes 
are necessary to fully elucidate the differential resistant 
mechanisms for various compound EGFR mutations.

Conclusions
In conclusion, by performing a large-scale analysis 
in 1025 compound EGFR mutation-positive NSCLC 
patients, we found that different subtypes of compound 
EGFR mutations were associated with distinct demo-
graphic features, co-mutated genes, mutational sig-
natures, and chromosomal instability levels, as well as 
distinguishing prognosis to first-line EGFR TKIs. Our 
study helps better understand the clinical characteris-
tics of compound EGFR mutations and emphasizes the 
importance of determining the specific types of EGFR 
mutations, which can potentially direct prognosis pre-
diction and provide personalized treatments to NSCLC 
patients.
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