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Abstract 

Background  In the United States, the tuberculosis (TB) disease burden and associated factors vary substantially 
across states. While public health agencies must choose how to deploy resources to combat TB and latent tuberculo-
sis infection (LTBI), state-level modeling analyses to inform policy decisions have not been widely available.

Methods  We developed a mathematical model of TB epidemiology linked to a web-based user interface — Tabby2. 
The model is calibrated to epidemiological and demographic data for the United States, each U.S. state, and the Dis-
trict of Columbia. Users can simulate pre-defined scenarios describing approaches to TB prevention and treatment 
or create their own intervention scenarios. Location-specific results for epidemiological outcomes, service utiliza-
tion, costs, and cost-effectiveness are reported as downloadable tables and customizable visualizations. To demon-
strate the tool’s functionality, we projected trends in TB outcomes without additional intervention for all 50 states 
and the District of Columbia. We further undertook a case study of expanded treatment of LTBI among non-U.S.–born 
individuals in Massachusetts, covering 10% of the target population annually over 2025-2029.

Results  Between 2022 and 2050, TB incidence rates were projected to decline in all states and the District of Colum-
bia. Incidence projections for the year 2050 ranged from 0.03 to 3.8 cases (median 0.95) per 100,000 persons. By 2050, 
we project that majority (> 50%) of TB will be diagnosed among non-U.S.–born persons in 46 states and the District 
of Columbia; per state percentages range from 17.4% to 96.7% (median 83.0%). In Massachusetts, expanded test-
ing and treatment for LTBI in this population was projected to reduce cumulative TB cases between 2025 and 2050 
by 6.3% and TB-related deaths by 8.4%, relative to base case projections. This intervention had an incremental cost-
effectiveness ratio of $180,951 (2020 USD) per quality-adjusted life year gained from the societal perspective.

Conclusions  Tabby2 allows users to estimate the costs, impact, and cost-effectiveness of different TB prevention 
approaches for multiple geographic areas in the United States. Expanded testing and treatment for LTBI could acceler-
ate declines in TB incidence in the United States, as demonstrated in the Massachusetts case study.

Keywords  Tuberculosis, Infectious disease, Mathematical modeling, Web application, Epidemiology

†Nicole A. Swartwood and Christian Testa are co-first authors.

*Correspondence:
Nicole A. Swartwood
nswartwood@hsph.harvard.edu
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-023-02785-y&domain=pdf
http://orcid.org/0000-0003-4116-9243


Page 2 of 13Swartwood et al. BMC Medicine          (2023) 21:331 

Background
Approximately 9000 persons were diagnosed with 
tuberculosis (TB) disease yearly in the United States 
over 2017–2019. In these years, 12–13% of reported TB 
cases were attributed to recent transmission [1], with 
the remainder likely resulting from progression of latent 
tuberculosis infections (LTBI) acquired >2 years previ-
ously. Recent estimates suggest that between 3.1% and 
5.0% of the U.S. population have LTBI [2, 3] which may 
progress to TB disease in the future. TB infection and 
disease are not equally distributed across U.S. popula-
tions; LTBI prevalence is higher among non-U.S.–born 
persons, likely exposed to TB prior to U.S. arrival, and 
U.S.–born persons exposed in congregate settings [4]. 
A small number of U.S. states—particularly those with 
large non-U.S.–born populations—report substantial 
numbers of TB cases: California, Florida, Texas, and New 
York collectively reported 50.6% of U.S. TB cases in 2017-
2019 [1]. Annual reported TB cases dropped by 20% at 
the beginning of the COVID-19 pandemic in 2020 [5], 
with reduced immigration, reduced transmission, and 
interruptions in healthcare access each potentially play-
ing a role. Prior to 2020, most states had reported mod-
est annual declines in TB incidence, although several 
states (Alabama, Louisiana, Missouri, Minnesota, New 
Jersey, and South Carolina) reported greater numbers 
of TB cases in the period 2017–2019 compared to the 
preceding 3-year period [6]. Preliminary 2021 reported 
TB cases showed an increase compared to 2020, suggest-
ing a return toward these pre-pandemic trends [7].

A major strategy for accelerating TB elimination in the 
United States is targeted testing and treatment (TTT) of 
populations at elevated risk of developing TB disease due 
to progression of LTBI. These populations include those 
with higher LTBI prevalence (non-U.S.–born individu-
als, persons experiencing homelessness, incarceration, 
or residing in other congregate settings) and individuals 
with elevated LTBI progression risks (individuals with 
immunosuppression, such as HIV, end-stage renal dis-
ease, or those taking an immunosuppressive therapy) 
[8]. In order for TB prevention programs to allocate 
resources effectively, it is critical for these programs to 
identify local populations at high risk for TB disease and 
design interventions which maximize the health impact 
of available funding for their jurisdiction. To support 
these goals, mathematical modeling can be used to syn-
thesize epidemiological data and project future TB inci-
dence and LTBI prevalence trends under a wide range of 
hypothetical future scenarios, while taking into account 
of local factors that will affect the costs and impact of 
proposed policies. Combined with cost-effectiveness 
analyses, modeling can identify intervention approaches 
that maximize the prevention impact for a given budget.

Here, we introduce Tabby2, a web application that 
allows users to conduct interactive epidemiological and 
economic analyses using a mathematical model of TB 
epidemiology in the United States. This model is cali-
brated to TB and demographic data for each U.S. state, 
the District of Columbia, and for the entire United States. 
Tabby2 allows users to select a geographic area, explore 
projections of TB outcomes under base case assump-
tions, specify intervention scenarios to be compared, 
and simulate a range of outcomes (future epidemiologi-
cal trends, changes in health service utilization, costs, 
and cost-effectiveness) associated with each scenario. As 
an open-access web application, Tabby2 provides a user-
friendly interface for use by researchers, health officials, 
and TB program staff to understand the implications of 
TB policy options, describe the TB prevention impact 
and cost-effectiveness of public health investments, and 
devise locally tailored TB policy portfolios.

We describe the development and functionality of this 
tool, and report projected TB outcomes for all U.S. states 
under a base case scenario. Using Massachusetts as a case 
study, we show how the tool can be used to simulate the 
costs, prevention impact, and cost-effectiveness of alter-
native prevention and treatment approaches.

Methods
Tabby2 is a web application built using the Shiny web 
framework [9] in the R programming language [10], 
which provides an online open-access user interface 
to the Modelling Interventions for Tuberculosis in the 
United States (MITUS), a transmission-dynamic model 
of TB epidemiology and health services. The model is 
available on GitHub (https://​github.​com/​PPML/​MITUS/​
tree/​tabby2) as a package for the R programming lan-
guage (MITUS). The Tabby2 web application can be 
accessed online at https://​ppmlt​ools.​org/​tabby2/.

Software architecture
The Tabby2 web application makes use of modern soft-
ware engineering practices including modular design and 
R package-based automated testing and documentation. 
Tabby2 uses R packages including Shiny, Rcpp, ggplot2, 
dplyr, and others to run model simulations, plot out-
comes, and format data for display [9–13]. The result is 
an online open-access web application that allows users 
to describe, visualize, and export modeled TB control 
strategy scenarios and their associated costs.

Mathematical model
The epidemiological estimates provided by Tabby2 are 
generated by the MITUS package, which extends a pub-
lished mathematical model of TB [14] to include risk 

https://github.com/PPML/MITUS/tree/tabby2
https://github.com/PPML/MITUS/tree/tabby2
https://ppmltools.org/tabby2/
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strata that can be matched to the features of a target pop-
ulation by state.

In the MITUS model, a core TB dimension captures 
TB transmission, natural history, and treatment (Fig. 1). 
Additional dimensions represent (1) TB progression risk, 
(2) mortality risk, (3) socio-economic disadvantage, (4) 

LTBI treatment history, (5) nativity (U.S.–born or non-
U.S.–born), and (6) age-based differences in disease 
mechanisms and risk factor prevalence. The full list of 
compartments represented in the model is the result of 
all possible combinations of these seven dimensions. The 
population is represented as a distribution across these 

Fig. 1  Schematic of the structure of the transmission-dynamic TB model, showing model compartments and transitions

Legend: *The TB progression risk dimension represents differences in LTBI reactivation rates within the modeled population. **The mortality risk 
dimension represents differences in non-TB mortality rates within the modeled population. ***The socio-economic disadvantage dimension 
represents poor and marginalized individuals operationalized as elevated TB contact rates, elevated mortality rates, higher LTBI screening rates, 
and higher TB treatment default rates. We modeled TB transmission assuming assortative mixing within U.S.–born and non-U.S.–born groups, 
and within levels of the socio-economic disadvantage dimension (additional details described in [14])
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dimensions, which changes over time according to entry 
and exit rates from each of the compartments. The model 
simulates historical (1950–2020) as well as current and 
projected (2021-2050) demography and TB epidemiology 
for each of the 50 U.S. states, the  District of Columbia, 
and the United States as a whole. Previous versions of this 
model have been used to forecast long-term trends in TB 
outcomes in the United States [14] and in California [15], 
investigate the impact of international TB control on TB 
in the U.S. [16], and describe historical patterns of LTBI 
epidemiology [17].

Data sources
The MITUS model incorporates a range of state-spe-
cific epidemiological and demographic data, including 
National Tuberculosis Surveillance System data on the 
distribution and trends in TB disease incidence [18], 
American Community Survey population estimates 
[19], National Center for Health Statistics data and esti-
mates of historical and future mortality rates [20], and 
2011 National Health and Nutrition Examination Survey 
estimates of LTBI test positivity [21]. Trends in future 
immigration volume are based on U.S. Census Bureau 
projections [22], and TB infection prevalence among 
future migrants is assumed to fall at 2.0% per year (details 
in [14]). Assumptions about the outcomes of LTBI and 
TB treatment are drawn from state and national report-
ing data on the management of contacts to TB cases [23], 
as well as previously published evidence [14]. Figure  2 
shows key input and calibration data for the 50 modeled 
states and the District of Columbia.

Model calibration
The model was fitted using a Bayesian calibration 
approach [24, 25]. We specified probability distribu-
tions to represent uncertainty in model parameters 
(priors), and likelihood functions to represent independ-
ent evidence about modeled outcomes. We then use an 
optimization approach combining Nelder-Mead and 
Broyden–Fletcher–Goldfarb–Shannon (BFGS) algo-
rithms [26, 27] to identify the mode of the posterior dis-
tribution, calculated as the product of prior distribution 
and likelihood. Point estimates reported in Tabby2 repre-
sent the posterior mode of the calibrated model param-
eters. Additional file  1: Figure S1 shows an example of 
the calibration results for Massachusetts, which are also 
available in the online tool for each modeled geography.

To calibrate state-level models, we first constrained 
parameters not expected to vary between U.S. states 
(i.e., general features of TB natural history) to the values 
obtained in the national-level calibration, then calibrated 
the remaining parameters to state-specific epidemio-
logical data (Additional file  1: Table  S1). This two-step 

approach accounts for state-level variation in observed 
TB outcomes and risk factor distributions, while main-
taining a consistent representation of TB natural history 
and the effect of individual risk factors.

We adjusted these calibrated models to allow for 
changes in TB epidemiology, mortality, and case detec-
tion during the COVID-19 pandemic. We assumed that 
the observed changes in TB reported cases and deaths 
could be attributed to four mechanisms: reduced immi-
gration, reduced rates of diagnosis and treatment initia-
tion for individuals with TB disease, reduced respiratory 
contact rates, and increased mortality among those with 
TB disease. Using a Bayesian optimization routine, we 
identified the combination of changes in these mecha-
nisms that best reproduced 2020 TB disease case totals 
(overall, among recent migrants, attributed to recent 
transmission) and TB deaths at a national level, while 
maintaining consistency with reported changes in immi-
gration and respiratory contact rates during the period 
[28, 29]. We applied the fitted parameter values to all 
states. Changes were assumed to begin in March 2020, 
held constant until January 2022, and returned linearly to 
pre-2020 values over 2022–2023.

User interface
Tabby2 users first select a geographic area of interest 
on the Introduction page. They are then directed by the 
application to the Scenarios section, where they specify 
scenarios to compare on the Predefined scenarios and a 
Build custom scenarios pages. Next, users are guided 
to the Modeled outcomes section, where model results 
are available in the Estimates, Time trends, Age groups, 
Counts of services, and Comparison to recent data pages. 
Finally, users can use the Economic Analysis section to 
estimate the costs, health benefits, and cost-effectiveness 
of defined interventions in the Input costs, Costs and 
outcomes, and Cost-effectiveness comparison pages. The 
tool’s sidebar serves as the primary navigational aid for 
the user. Table  1 provides a detailed description of the 
functionality of each section of the webtool.

Model scenarios
In the application, a base case scenario is used to esti-
mate future outcomes under the assumption that a simi-
lar quality and utilization level of TB services during 
calibration period will continue for the duration of the 
projection period. The application also allows users to 
specify alternative scenarios to compare to this base case 
scenario.

Predefined scenarios
Five scenarios are pre-specified in Tabby2 (“Predefined 
scenarios”): (1) provision of LTBI testing and treatment 
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Fig. 2  2019 Reported TB data for each U.S. state and the District of Columbia. Legend: These data were used for calibrating the underlying TB 
model. TB case data from National Tuberculosis Surveillance System for 2019 [6]. Deaths with TB from CDC Multiple Cause of Death for 2019 [20]. NA 
represents death counts under 10 which are suppressed. Population fractions from the 2019 American Community Survey [19]. Percent completing 
TLTBI are the 2017 values reported in the 2019 City and State Indicators Report [23]
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of LTBI for all new migrants entering the United States 
(“TLTBI for new immigrants”); (2) increased uptake of 
LTBI testing and treatment among high-risk popula-
tions, doubling treatment uptake within each risk group 
compared with current levels, and increasing the fraction 
cured among individuals initiating LTBI treatment, via a 
3-month isoniazid-rifapentine drug regimen (“Improved 
TLTBI in United States”); (3) improved TB disease detec-
tion, such that the duration of untreated active disease 
(i.e., time from TB incidence to treatment initiation) is 
reduced by 50% (“Better case-detection”); (4) improved 
TB treatment quality, such that treatment default, failure 
rates, and the fraction of individuals receiving an incor-
rect drug regimen are reduced by 50% from current levels 
(“Better TB treatment”); and (5) the combination of each 
of these individual changes (“All improvements”). Details 
on the parameterization of these scenarios can be found 
in Additional file 1: Table S2.

Custom scenarios
In addition to the predefined scenarios, users can specify 
customized scenarios by modifying assumptions about 
the LTBI and TB care cascades, and by adding additional 
LTBI testing and treatment interventions for specified 

populations (“Custom scenarios”). Custom Scenarios 
allow users to select different options for Targeted Test-
ing and Treatment of LTBI (“Targeted testing and treat-
ment interventions”) or for TB or LTBI treatment (“Care 
cascade changes”). Figure  3 shows the interface of the 
“Targeted testing and treatment interventions” page. 
Users can also create scenarios that are a combination of 
changes, specified on the “Combination scenarios” page.

Health outcomes and health service utilization
For each scenario, Tabby2 reports a set of outcomes 
describing different features of TB epidemiology, includ-
ing incident Mycobacterium tuberculosis infection, LTBI 
prevalence, TB incidence, and TB-related deaths, for 
the period 2022–2050. Results are presented in three 
interactive pages (Estimates, Time trends, Age groups) 
with results summarized as customizable visualizations 
and downloadable data tables. Results can be filtered by 
nativity and/or age group and presented as absolute val-
ues, percentages of the base case in the same year, or per-
centages of the base case in 2022. The Counts of services 
page provides time trends of the number of health ser-
vices, such as LTBI tests, LTBI treatment initiations and 
completions, and TB disease treatment initiations and 

Table 1  Organization and function of each section of the Tabby2 user interface

Introduction The Introduction page describes the purpose and abilities of Tabby2 and includes citations for previous work that used 
the model Tabby2 is based on as well details about the funding for Tabby2.

Scenarios

  Pre-defined scenarios The Predefined scenarios page provides a description of the five predefined scenarios in Tabby2.

  Build custom scenarios The Build custom scenarios page enables Tabby2 users to create custom targeted testing and treatment, care cascade 
changes, or combination scenarios for simulation with Tabby2.

Modeled outcomes

  Estimates On each of the Estimates, Time trends, and Age groups pages, model outcomes are visualized and available as down-
loads in formats including as an image in a PNG, PDF, or PPTX file, or as a data table formatted as a CSV or XLSX file.  Time trends

  Age groups

  Counts of services Model informed estimates of health services are visualized as time trends and available as downloads in formats includ-
ing as an image in a PNG, PDF, or PPTX file, or as a data table formatted as a CSV or XLSX file.

  Comparison to recent data The Comparison to recent data page allows Tabby2 users to compare Tabby2 model estimates to historically observed 
data.

Economic analyses

  Cost introduction The Cost introduction page provides information on the economic analysis of the health interventions, default cost 
values, and the concepts of cost-effectiveness analysis.

  Input costs The Input costs page is a table of estimated average unit costs in 2020 USD. Each of these values is editable prior to sub-
mitting a costing calculation.

  Cost and outcomes On each of the Cost and outcomes and Cost-effectiveness pages, summarized cost and health benefits in tabular format 
for a specified time range.  Cost-effectiveness

Further description The Further description page of Tabby2 gives a more comprehensive description of the features of Tabby2, definitions 
and abbreviations used, and frequently asked questions. This page is designed to serve as a guide for new users to learn 
how to engage with the tool.

Changelog The Changelog page provides the history of how Tabby2 has been updated and improved since its original release.

Feedback The Feedback page provides users the opportunity to directly submit questions and comments to the developers 
of Tabby2.
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completions. An additional page of Tabby2, Comparison 
to recent data, compares modeled outcomes to recent 
empirical evidence for the modeled setting, to allow users 
to confirm the model fit.

Economic analyses
The tool reports several outcomes related to costs and 
cost-effectiveness. The Cost introduction page provides 
introductory text explaining the economic analyses, 
and the Input costs page allows users to input cost data, 
select the analysis period, and choose whether to apply 
a discount rate to future costs and outcomes, which is 
recommended for incremental cost-effectiveness ratio 
calculations. Default cost inputs are based on national-
level allowable Medicare reimbursements for tests and 
services reported by the Centers for Medicare and Med-
icaid [30, 31], and cost analyses conducted by the CDC 
[32]. Users may replace default values with state-spe-
cific inputs when these are available. All cost inputs are 
assumed to be in 2020 dollars. Based on these inputs, the 
Costs and outcomes page reports health outcomes and 
costs for each modeled scenario. The Cost-effectiveness 
comparison page provides cost-effectiveness ratios for 
TB cases and deaths averted, life years saved, and qual-
ity-adjusted life years (QALYs) saved for each scenario 
selected by the user. See Additional file  2 for a detailed 

list of cost inputs and economic analysis methods used 
on these pages of Tabby2 [30–45].

Massachusetts case study
We used Massachusetts as a case study to demonstrate 
Tabby2’s functionality to investigate an intervention sce-
nario to accelerate TB prevention through greater testing 
and treatment of LTBI compared to the base case sce-
nario. Using the Custom Scenario Builder, we specified 
a scenario representing LTBI testing and treatment for 
10% of the state’s total non-U.S.–born population annu-
ally between 2025 and 2029 (approximately 50% cumula-
tive); all other parameters were held at base case levels. 
Intervention costs were calculated using national aver-
age health service and productivity costs (see Additional 
file 2 for values).

Results
Future state‑level TB trends
Figure  4 reports state-level trends in TB incidence, 
TB-related mortality, and LTBI prevalence between 
2022 and 2050 under the base case scenario. Over this 
period, base case TB incidence rates were projected to 
decline in all states. The reduction in TB incidence rates 
(compared to 2022 values) ranged from 20.56% in Iowa 
to 86.70% in Montana (48.50% median reduction across 

Fig. 3  The targeted testing and treatment intervention scenario builder. Legend: Using this interface, users can design and simulate custom 
interventions that modify the levels of targeted testing and treatment for specific populations
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all 50 states and the District of Columbia). By 2050, TB 
incidence rates were projected to range from 3.77 per 
100,000 people in Hawaii to 0.03 per 100,000 people in 
Montana (median = 0.95 per 100,000 people). In gen-
eral, the rate of decline in TB incidence was projected to 
be higher in states with relatively low annual immigra-
tion as a fraction of total population. Across all states, 
base case incident TB infections, LTBI prevalence, and 
TB-related deaths were projected to decline to a median 
value of 2.20 per 100,000 people (range of 0.06–25.80 
per 100,000 people across all states), 1.21% (0.59%–
2.88%), and 0.14 per 100,000 people (0.005–0.67 per 
100,000 people) by 2050, respectively. Numeric outputs 
for each outcome and state can be found in Additional 
file 1: Table S3.

The projections also showed systematic changes in the 
distribution of TB disease in the population. In 2022, the 
model-estimated percentage of total individuals with TB 
disease among non-U.S.–born persons ranged from 5.12% 
in Montana to 87.17% in Rhode Island (median = 68.93%). 
By 2050, these fractions rose to a median 83.01% (17.42–
96.73%), and 46 of the 50 U.S. states and the District of 
Columbia had the majority (>50%) of their TB incidence 
among the non-U.S.–born population. The model-esti-
mated percentage of cases among individuals age 65 or over 

ranged from 13.43% in North Dakota to 46.96% in West 
Virginia (median = 28.39%) in 2022, which was projected 
to increase to between 19.19% (the  District of Columbia) 
and 60.34% (Idaho) (median = 34.18%) by 2050.

Massachusetts case study
For Massachusetts, the fraction of TB disease among 
non-U.S.–born individuals under the base case scenario 
was estimated to rise from 85.76% in 2022 to 91.49% 
in 2050. In this scenario, TB incidence is projected to 
decline from 2.57 per 100,000 people in 2025 to 1.80 per 
100,000 people in 2050 (Fig.  5a). Under the improved 
LTBI testing and treatment intervention scenario, TB 
incidence falls to 1.72 per 100,000 people in 2050, a 4.65% 
decline.

In 2025, TB deaths in Massachusetts are estimated at 
0.213 per 100,000 people and decline to 0.169 per 100,000 
people under the base case, and 0.158 per 100,000 peo-
ple under the intervention scenario by 2050. The results 
in the cost-effectiveness panel of Tabby2 are shown in 
Fig. 5b. Compared to the base case, the intervention sce-
nario is estimated to avert 290 TB cases (4581 to 4290) 
and 34 TB-associated deaths (407 to 373) between 2022 
and 2050 at an undiscounted incremental cost of 51.864 
million USD. In the same timeframe, QALYs lost due to 

Fig. 4  Projected trends in TB outcomes for each modeled geography, 2022 to 2050. Legend: Trends are shown on the log scale. Highlighted results 
represent the U.S. overall, and the four states representing over 50% of reported TB in 2019 (California, Texas, Florida, and New York)
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Fig. 5  Tabby2 results pages for TB incidence trends and cost-effectiveness estimates. Legend: A The “Time trends” panel from Tabby2, displaying 
the results of the base case and expanded LTBI testing and treatment scenarios in Massachusetts. B The “Cost-effectiveness comparison” panel 
from Tabby2 displaying cost-effectiveness results for the expanded LTBI testing and treatment scenario, as compared to the base case scenario
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TB decreased from 8838 to 8208. From a societal per-
spective with 3% discounting, the incremental cost-
effectiveness ratios in 2020 dollars were $286,143 per 
additional TB case prevented, $2,480,546 per additional 
death prevented, and $180,951 per additional QALY 
gained.

Discussion
TB incidence rates in the United States have declined in 
26 out of the last 29 years [1]. This declining trend pla-
teaued in recent years, except for a sharp drop in 2020 
associated with the COVID-19 pandemic and the subse-
quent increase thereafter in 2021 [5, 7]. State-level pro-
jections of TB incidence under base case assumptions 
created using the Tabby2 tool show ongoing declines in 
TB incidence rates across 50 states and the District of 
Columbia, consistent with other analyses [14, 46]. How-
ever, these state-level projections show considerable vari-
ation. Between 2022 and 2050, reductions in state-level 
incidence rates ranged from 20.56% in Iowa to 86.70% in 
Montana. This variation reflects inter-state differences in 
the drivers of TB epidemiology, including the burden of 
historical LTBI, access to TB prevention and treatment 
services, and immigration rates. TB incidence projections 
provide information on the progress individual states can 
expect with current TB control approaches based on his-
torical parameters and provide a base case against which 
future progress can be compared.

The modeled base case projections also provide infor-
mation about how TB disease may impact various popu-
lation groups in the future. For most U.S. states and the 
District of Columbia, the majority of future TB disease 
incidence was projected to occur among the non-U.S.–
born population. Over the 2022–2050 period, the pro-
jected fraction of TB cases among the non-U.S.–born 
population ranged from 4.9% to 86.8% across states 
and was generally increasing over time. This increase is 
a consequence of declines in TB in U.S.–born popula-
tions, immigration forecasts above historical norms, 
and slow reductions in TB burden among immigration 
cohorts [47].

The case study of expanded TB prevention services 
using targeted testing of 10% of non-U.S.–born indi-
viduals each year from 2025 to 2029 in Massachusetts 
provides an example of how alternative scenarios can be 
investigated via Tabby2. In this case study, expansion of 
LTBI testing and treatment was estimated to produce a 
6% reduction in cumulative TB cases between 2025 and 
2050, and an 8% reduction in TB deaths, as compared 
to the base case projection. Cost-effectiveness analyses 
for this intervention scenario produced an incremen-
tal cost-effectiveness ratio of $180,951 per QALY gained 
when assessed from a societal perspective compared with 

the base case of no additional intervention. This result 
is similar to results with a previous modeling study of 
TTT focused on the top four states by TB (California, 
Texas, Florida, New York), which estimated incremental 
cost-effectiveness ratios (ICERs) ranging from $74,000 
to $174,000 (2018 USD) [48]. Other studies have shown 
lower costs per QALY gained from testing and treating 
the NUSB population [49, 50].

This case study demonstrates the potential utility of 
location-specific TB intervention modeling. Demand for 
mathematical modeling to support public health deci-
sion-making has grown in recent years. Within TB, this 
increase has led to the development of norms and stand-
ards for how modeling is used to support policymaking 
[51, 52], and the development of flexible modeling plat-
forms that are adaptable to new settings [53, 54]. User-
friendly web applications can be used to disseminate and 
share the results of complicated policy models, which 
may increase their accessibility and usefulness for poli-
cymakers. Tabby2 represents a decision-support tool 
that does not require significant expertise or invest-
ment in mathematical modeling and programming, is 
pre-calibrated to historical data from each US state and 
the District of Columbia and provides projections of both 
intervention impact and cost-effectiveness.

Several limitations accompany the requirements of an 
online tool. First, the tool will inherit the limitations of its 
underlying model, which makes simplifying assumptions 
about epidemiological and health service processes simi-
lar to other applied health policy models [55]. Second, the 
epidemiological context of modeled settings will change 
over time, so if not revised the model will become out-
dated. However, as the model is hosted online we are able 
to update it on a regular basis as new evidence becomes 
available on U.S. TB trends, migration flows, TB infec-
tion prevalence among new migrants, and intervention 
characteristics. Additionally, there are several states with 
low TB burden, which results in a fewer data to which the 
model can be fit, which may increase the uncertainty of 
the estimates for these locations. Thirdly, while the tool 
allows a range of different strategies to be modeled, its 
flexibility is limited compared with the underlying model; 
this design is due to the desire for a user-friendly inter-
face. However, intervention scenarios can be added or 
updated according to user demand. Fourthly, as the tool 
expands access to new users, this audience may be less 
familiar with the limitations of modeled results. As such, 
it is critical to include clear documentation and user sup-
port to enable appropriate inputs and interpretation of 
results. Finally, due to the need to minimize the delay 
between user data entry and results being returned, the 
model runs one simulation based on a single best-fitting 
set of parameter values. In contrast, it is conventional 
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for model-based policy analyses to run multiple simula-
tions using a large number of plausible parameter sets in 
order to represent the uncertainty in modeled outcomes 
[56]. By basing results on a single simulation, the tool 
does not provide estimates of uncertainty, which may be 
particularly relevant for states with a small number of 
reported TB cases. Past analyses [14, 16], have also dem-
onstrated the sensitivity of future TB trends to changes 
in migration volume and TB infection prevalence among 
migrants, which the user cannot vary in the current tool. 
To address the production limitations of Tabby2, the 
code for the underlying model (MITUS) is available for 
modifications and extensions beyond what is provided in 
the tool.

Despite these limitations, Tabby2 provides an acces-
sible webtool for exploring TB epidemiology and inter-
ventions in the United States. Previous epidemiological 
software has required downloads which carry depend-
encies and compatibility requirements [53, 57]; Tabby2’s 
online presence only requires a modern browser, increas-
ing access to potential users. Tabby2’s predecessor, Tabby, 
relied on look-up tables that limited the number of sce-
narios that could be viewed, and only provided estimates 
for the United States at a national level [58]. Tabby2’s 
expanded geographic focus also allows for exploration 
of subnational geographies based on local data, which 
increases the relevance of its estimates. As the model is 
hosted on a server and accessed through a web interface 
allows the model to be revised as new epidemiological 
and demographic data becomes available.

Conclusions
While TB continues to decline in the United States, these 
reductions may be accelerated through effective inter-
vention planning. Tabby2 provides an open-access online 
tool for estimating and visualizing future TB outcomes 
and their associated costs for each U.S. state and the Dis-
trict of Columbia. This tool allows users to define and 
simulate multiple scenarios representing improvements 
in targeted testing and treatment and care cascades for 
TB disease and LTBI treatment, using location-specific 
data. Tools like Tabby2 can facilitate the interactive 
investigation of policy options and provide decision-
makers with a deeper understanding of the relative ben-
efits of different approaches in their locality.
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