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Abstract 

Background Bladder cancer (BC) is among the most common cancers diagnosed in men in the USA. The current 
gold standards for the diagnosis of BC are invasive or lack the sensitivity to correctly identify the disease.

Methods An aptamer-based screen analyzed the expression of 1317 proteins in BC compared to urology clinic 
controls. The top hits were subjected to systems biology analyses. Next, 30 urine proteins were ELISA-validated in an 
independent cohort of 68 subjects. Three of these proteins were next validated in an independent BC cohort of differ-
ing ethnicity.

Results Systems biology analysis implicated molecular functions related to the extracellular matrix, collagen, integrin, 
heparin, and transmembrane tyrosine kinase signaling in BC susceptibility, with HNF4A and NFKB1 emerging as key 
molecular regulators. STEM analysis of the dysregulated pathways implicated a functional role for the immune system, 
complement, and interleukins in BC disease progression. Of 21 urine proteins that discriminated BC from urology 
clinic controls (UC), urine d-dimer displayed the highest accuracy (0.96) and sensitivity of 97%. Furthermore, 8 urine 
proteins significantly discriminated MIBC from NMIBC (AUC = 0.75–0.99), with IL-8 and IgA being the best performers. 
Urine IgA and fibronectin exhibited the highest specificity of 80% at fixed sensitivity for identifying advanced BC.

Conclusions Given the high sensitivity (97%) of urine d-dimer for BC, it may have a role in the initial diagnosis or 
detection of cancer recurrence. On the other hand, urine IL-8 and IgA may have the potential in identifying disease 
progression during patient follow-up. The use of these biomarkers for initial triage could have a significant impact as 
the current cystoscopy-based diagnostic and surveillance approach is costly and invasive when compared to a simple 
urine test.
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Background
Bladder cancer (BC) is the fourth most common cancer 
diagnosed in men in the USA [1]. The incidence rate of 
the disease is four times higher in men than in women 
and approximately twice as high in White men compared 
to Black men [1]. It is estimated that 6% of all new cancer 
diagnoses in men in the year 2022 will be BC [1]. Over-
all, 81,180 people are expected to be newly diagnosed 
with BC in 2022, of which 61,700 being male and 19,480 
being female [1]. It is also estimated that 17,100 people 
will die from the disease in 2022 [1]. The risk of devel-
oping BC increases with age with the highest risk being 
in 80-year-old males and females [2]. The 5-year relative 
survival rate for those with BC is 77% [1]. If the tumor 
is non-invasive, the 5-year survival increases to 96% [1]. 
However, 51% of all cases are diagnosed after this occur-
rence [1].

The current gold standard for the diagnosis of BC is 
cystoscopy. However, cystoscopy is often associated with 
complications including pain, urinary tract infection, and 
hematuria. Urine cytology is also commonly used for 
the diagnosis and surveillance of BC. This non-invasive 
method involves the examination of cells collected from a 
urine specimen. Research has indicated a high specificity 
of 86%, but it is constrained by a low sensitivity of 48% 
[3]. There is also subjectiveness when grading urothelial 
carcinoma on urine samples thus resulting in poor inter-
observer variability [3].

The United States Food and Drug Administration 
(FDA) has approved 6 urinary assays to use in conjunc-
tion with cystoscopy for the surveillance and diagnosis of 
BC. These include BTA stat, BTA TRAK, NMP22 Blad-
derChek Test, NMP22 ELISA, UroVysion, and uCyt [4]. 
A meta-analysis of NMP-22 BladderChek shows a pooled 
specificity of 88% and a sensitivity of 56% for BC detec-
tion from 19 research studies [5]. The sensitivity of the 
test was found to steadily increase with higher stages and 
grades of the disease. An additional meta-analysis of BTA 
stat identified a pooled specificity of 67% and a sensitivity 
of 75% in 13 research studies [6]. Similar to NMP22, BTA 
stat’s sensitivity positively correlates with an increasing 
grade of BC. Due to false positives and lower specificity 
values, these tests cannot be used as the sole measure of 
diagnosis and surveillance. The American Urologic Asso-
ciation guidelines for the evaluation of hematuria and 
surveillance of bladder cancer do not currently recom-
mend the routine use of urine markers [7, 8].

Given these metrics, there is a need for better bio-
markers for BC. Urine biomarkers are promising as a 
non-invasive test for BC. Urine can be obtained non-
invasively, is a readily available biological fluid, and is 
close to the site of pathology. This allows for repeated 
tests as deemed necessary for both diagnosis and 

potential monitoring of disease progression. Urine is also 
advantageous for potential cost-effective point-of-care 
tests. Emerging urine point-of-care tests may empower 
individuals to monitor their health from the comfort of 
their own homes [9].

As opposed to previous studies in the field examin-
ing a handful of proteins selected based on their known 
properties, here, we report the first and largest use of a 
comprehensive aptamer-based proteomic screen of urine 
samples from 42 subjects. This platform has been suc-
cessfully applied in biomarker screens of several other 
diseases [10–21]. Additionally, in the present study, we 
have executed the largest ELISA validation study in BC, 
interrogating 30 protein biomarkers in an independ-
ent cohort consisting of 68 subjects (31 urology clinic 
controls (UC) and 37 BC (10 Ta, 10 Tis, 10 T1, and 7 
T2–T4)). The study has uncovered novel urine protein 
biomarkers that have not been reported in BC patients 
before and that out-perform current biomarkers used in 
clinical practice. The reported urine biomarkers may be 
useful for the initial diagnosis of BC and possibly for the 
surveillance of the disease.

Methods
Patient cohorts
Inclusion and exclusion criteria:  In all cohorts, the 
included bladder cancer patients were patients in whom 
the diagnosis was established by cystoscopy and pathol-
ogy. Subjects with other malignancies were excluded. 
Urine samples for the initial aptamer-based screen 
were obtained from the University of Texas Southwest-
ern Medical Center and Bioreclamation (Bioreclama-
tion, RRID:SCR_004728), Westbury, NY. The samples 
included 15 urology clinic controls (“UC”) and 27 blad-
der cancer subjects including 5 Ta (non-invasive papillary 
carcinoma), 4 Tis (flat carcinoma in  situ), 9 T1 (tumor 
spread to connective tissue), 4 T2 (muscle-invasive blad-
der cancer), 3 T3, and 2 T4 BC. Of these, 18 subjects 
(stage Ta, Tis, and T1) were classified as non-muscle 
invasive bladder cancer (NMIBC) while 9 subjects (stage 
T2–T4) were classified as muscle invasive bladder cancer 
(MIBC). It should be stressed out that UC does not refer 
to urothelial carcinoma but for urology clinic controls. 
Additionally, unless stated otherwise, all bladder can-
cer subjects included in this study had urothelial cancer. 
For replication of the findings from the initial proteomic 
screen, the independent validation cohort for ELISA con-
sisted of samples obtained from the University of Texas 
Southwestern Medical Center (“UTSW cohort”). These 
included 31 UC samples and 37 BC samples (10 Ta, 10 
Tis, 10 T1, and 7 T2–T4). Of these, 30 subjects (stage 
Ta, Tis, and T1) were classified as NMIBC while 7 sub-
jects (stage T2–T4) were classified as MIBC. UC samples 
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included patients investigated for hematuria but found 
not to have any urological cancers. Subject demographics, 
including age gender and ethnicity, and clinical informa-
tion pertaining to these samples are detailed in Table 1. 
Sex as a biological variable: both genders were included 
in the study. The secondary validation cohort consisted 
of samples of Chinese ethnicity. These samples were from 
the Third Xiangya Hospital of the Central South Univer-
sity in Changsha, China, and comprised 91 BC patients 
and 77 UC patients (Additional file 1: Table S1). Samples 
in all cohorts were obtained with informed consent. The 
study was approved by the institutional review boards at 
the University of Houston, Houston, TX; UTSW, Dallas, 
TX; and the Third Xiangya Hospital of the Central South 
University in Changsha, China. In all cases, urine samples 
were centrifuged, aliquoted, and stored at − 80  °C, and 
used for the assays without repeated freeze-thaws. Labo-
ratory researchers performing the assays were blinded to 
the subject groupings.

Aptamer‑based targeted proteomic screen of BC urine
The samples for the aptamer-based screen consisted of 
15 urology controls and 27 bladder cancer subjects (BC 
Ta = 5, BC Tis = 4, BC T1 = 9, BC T2 = 4, BC T3 = 3, 
BC T4 = 2). These urine samples were screened using 

an aptamer-based screening platform (“SOMAScan”) 
manufactured by Somalogic, as detailed previously [20, 
22]. In short, the samples were added to the aptamer-
coated beads. SOMAmer-protein binding then occurs. 
Following this, the unbound proteins are washed off. 
The remaining bound proteins are biotinylated. SOMA-
mer-protein complexes are next photocleaved from the 
beads with UV light. Incubation in a buffer with a poly-
anionic competitor disrupts non-specific interactions. 
The SOMAmer-proteins are then recaptured on a second 
streptavidin-coated bead. Next, the SOMAmer reagents 
are released from the beads in a denaturing buffer. The 
released SOMAmers are then hybridized onto a DNA 
microarray and quantified by the relative fluorescence 
unit for each protein.

Cross‑sectional ELISA validation of urine protein 
biomarkers
Altogether, 34 proteins were initially selected for ELISA 
validation based on the aptamer-based screening. Com-
mercially available ELISA kits were purchased, and pre-
liminary testing was conducted. The protein, ELISA 
manufacturer, optimal urine sample dilution, reason 
for selection, and outcome of ELISA testing are listed 
in Additional file 1: Table S2. After preliminary testing, 

Table 1 Demographic information pertaining to subjects used for the aptamer-based screen

Top: Demographic information pertaining to the 42 subjects included in the aptamer-based screen. NMIBC comprised Ta, Tis, and T1 subjects. MIBC comprised T2–T4 
BC. Subjects in the UC category comprised of BPH (n = 1), elevated PSA (n = 1), erectile dysfunction (n = 2), HLD (n = 2), allergic rhinitis (n = 2), hypothyroidism (n = 2), 
dementia (n = 1), insomnia (n = 1), impotence (n = 1), osteopenia (n = 1), thrombocytopenia (n = 1), hemangioma (n = 1), glaucoma (n = 1), and gout (n = 1)

Bottom: Demographic information pertaining to the 68 subjects used for the independent ELISA validation cohort UTSW Cohort. NMIBC comprised Ta, Tis, and T1 
subjects. MIBC comprised T2–T4 BC. UC subjects comprised patients with various urological conditions including bladder diverticulum (n = 1), bladder stones (n = 1), 
BPH (n = 7), cystocele (n = 1), elevated PSA (n = 2), erectile dysfunction (n = 3), hematuria (n = 3), UTI (n = 1), hydrocele (n = 1), incomplete bladder emptying (n = 1), 
impotence (n = 1), kidney stones (n = 3), nocturia (n = 2), prostate cancer (n = 1), and stress incontinence (n = 1)
a Age displayed as mean ± standard deviation

Variable Category UC
(N = 15)

Ta
(N = 5)

Tis
(N = 4)

T1
(N = 9)

T2–T4
(N = 9)

  Agea 66.2 ± 4.1 66.6 ± 12.1 68.5 ± 4.7 69.3 ± 10.1 71.9 ± 12.4

 Gender, n (%) Male 15 (100.0%) 5 (100.0%) 4 (100.0%) 9 (100%) 9 (100%)

 Ethnicity, n (%) Caucasian 6 (40.0%) 4 (80.0%) 4 (100.0%) 5 (55.6%) 5 (55.6%)

Others 1 (6.6%) N/A N/A N/A N/A

Unknown 8 (53.3%) 1 (20.0%) N/A 4 (44.4%) 4 (44.4%)

Demographic information pertaining to the ELISA validation cohort (UTSW cohort)
Variable Category UC

(N = 31)
Ta
(N = 10)

Tis
(N = 10)

T1
(N = 10)

T2–T4
(N = 7)

  Agea 66.2 ± 10.1 71.3 ± 11.9 71.5 ± 6.3 67.4 ± 9.9 74.3 ± 7.9

 Gender, n (%) Male 27 (87.1%) 8 (80%) 10 (100%) 8 (80%) 7 (100%)

Female 4 (12.9%) 2 (20%) N/A 2 (20%) N/A

 Ethnicity, n (%) Caucasian 23 (74.2%) 8 (80%) 9 (90%) 8 (80%) 6 (85.7%)

Black 4 (12.9%) N/A N/A 1 (10%) 1 (10%)

Asian 2 (6.5%) 1 (10%) N/A 1 (10%) N/A

Hispanic N/A 1 (10%) N/A N/A N/A

Others 1 (3.2%) N/A N/A N/A N/A

Unknown 1 (3.2%) N/A 1 (10%) N/A N/A
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30 protein biomarkers were assayed in an independent 
(UTSW) cohort which consisted of 31 UC samples and 
37 BC samples (10 Ta, 10 Tis, 10 T1, and 7 T2–T4). The 
absolute levels of urine proteins were creatinine normal-
ized. Secondary validation was completed for 3 protein 
biomarkers using an independent cohort comprising 91 
BC patients and 77 patients of Chinese ethnicity. The 
demographic information and clinical information per-
taining to the 168 subjects whose urine samples were 
used for the second ELISA validation are displayed in 
Additional file 1: Table S1. In this cohort, most patients 
classified as BC were diagnosed to have bladder cancer 
except for 7 patients with urothelial cancers (including 
ureteric cancer). After validation, the absolute levels 
of urine proteins were normalized by creatinine. The 
ELISA assay protocols are detailed as has been shown 
before [20].

d‑dimer assay used in the Chinese cohort
As opposed to the ELISA used to assay d-dimer in the 
other cohorts, an agglutination assay was used to assay 
d-dimer in the Chinese cohort. A d-dimer detection kit 
(latex immunity ratio turbidity method) from SEKISUI 
was used to quantitatively detect the concentration of 
d-dimer in the Chinese cohort. Briefly, the d-dimer in 
the sample reacts with the monoclonal antibody to the 
mouse anti-human d-dimer. This causes agglutination 
and increased turbidity. Following this, the concentration 
of d-dimer was determined by measuring the variation of 
turbidity with a spectrophotometer.

Data analysis of the aptamer‑based screening and ELISA 
results
Aptamer-based screening data was subjected to hybridi-
zation, median normalization, and creatinine normaliza-
tion as detailed previously [20]. Further data analysis was 
completed in R version 1.4.1103 with packages readxl, 
readr, qvalue, and stats. A non-parametric Mann–Whit-
ney U-test was used to identify the proteins that were 
significantly up- or downregulated among the subject 
groups. Statistical p-values were computed for each bio-
marker. To address multiple testing correction, q-values 
were calculated to adjust for the false discovery rate. Fold 
change values were also computed to determine the ratio 
of protein expression from diseased to control subjects 
(BC/UC) and MIBC to NMIBC subjects (T2–T4 vs Ta, 
Tis, T1). ROC analyses including AUC, cutoff, sensitiv-
ity, and specificity values were computed with easyROC 
version 1.3.1 [23]. The biomarker ELISA data was plotted 
and analyzed using GraphPad Prism 5 (GraphPad Prism, 
RRID:SCR_002798). Group comparisons were analyzed 
using either a non-parametric Mann–Whitney U-test or 

a Kruskal–Wallis test with Dunn’s multiple comparison. 
Statistical p-values from analyses were computed.

Gene Ontology and KEGG functional enrichment analysis
Gene Ontology (GO) and KEGG (KEGG, RRID:SCR_012773) 
functional enrichment analysis was completed using the Data-
base for Annotation, Visualization, and Integrated Discovery 
(DAVID) version 6.8 8 (DAVID, RRID: SCR_001881). The 
top 330 proteins with a Mann–Whitney p-value < 0.05 in the 
aptamer-based screen (BC versus UC) were used for analy-
sis. The top 10 biological processes, molecular functions, and 
KEGG pathways were plotted using R. The packages used 
include readxl and ggplot2 (ggplot2, RRID:SCR_014601). 
The size of the dots represents the count/hit number of genes 
belonging to the annotation term, and the color of the dots rep-
resent −  log10FDR value.

Protein–protein interaction networks and regulatory 
networks
Protein–protein interaction networks for the top 330 
proteins in the aptamer-based screen (BC vs UC, Mann–
Whitney p-value < 0.05) were created using Cytoscape 
version 3.9.0 (Cytoscape, RRID:SCR_003032) using the 
stringApp. MCODE clustering was preformed to dis-
cern highly interconnected nodes in the network. The 
top 3 clusters are plotted with their associated Reactome 
pathways. The top transcription factor and signaling mol-
ecule regulator were identified for the top 330 proteins in 
the aptamer-based screening (BC vs UC, Mann–Whit-
ney p-value < 0.05) using the iRegulon plugin available 
through Cytoscape. The color of each node corresponds 
to the fold change. Nodes with a fold change of less than 
1 range in color from blue to purple while those with a 
fold change greater than 1 range from pink to red, when 
comparing BC to UC.

Volcano plot, principal component analysis (PCA), 
and correlation plot
The volcano, PCA, and correlation plots were created 
in R using the readr, readxl, gplots, ggplot2, ggplot.
multistats, scatterplot3d, Hmisc, data.table, and 
corrplot packages. All 1317 proteins are represented in 
the volcano plot. The data was log-transformed, and a 
Mann–Whitney U-test (BC vs UC) was used to gener-
ate statistical p-values. A 2D PCA plot was generated 
for the top 119 proteins (BC vs UC, Mann–Whitney 
q-value < 0.05) where the two first principal components 
are plotted. Subject groups are differentiated by color 
and/or shape. A correlation plot for the top 50 proteins 
was also generated (Mann–Whitney p-value < 0.05, 
ordered by fold change, comparing BC to UC). Correla-
tion coefficients for all possible protein pairs were com-
puted using Pearson’s correlation coefficients.
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Heatmap analysis
Heatmaps were generated from the aptamer-based 
screening assay in order to cluster proteins with simi-
lar expression profiles together. Proteins significantly 
elevated in BC when compared to urology controls 
(p-value < 0.05 and a fold change > 2) were analyzed. 
Hierarchical clustering was performed in R. Each row 
corresponds to the creatinine-normalized protein 
level measured, and each column represents a sample 
(UC = 15, BC Ta = 5, BC Tis = 4, BC T1 = 9, BC T2 = 4, 
BC T3 = 3, BC T4 = 2). Proteins that are above the mean 
value for each biomarker are shaded yellow. Proteins 
comparable to the mean are shaded black. Those below 
the mean are shaded blue.

Random forest analysis
Random forest analysis, a supervised machine learning 
algorithm, was conducted for the purpose of identifying 
the relative importance of biomarker candidates in dis-
ease discrimination. The randomForest R package and 
the top 93 proteins identified from the aptamer-based 
screen (BC vs UC, Mann–Whitney p < 0.05 and FC > 2) 
were used for analysis. The importance of each biomarker 
was measured using the GINI coefficient. The resulting 
top 10 potential urine biomarkers identified by random 
forest classification are plotted.

Bayesian network analysis
Bayesian network analysis was executed with the Bayesi-
aLab software. This method uses probability distributions 
to represent the inter-dependencies between all variables 
in a model and how they relate to one another. The data-
set comprised 68 subjects including 31 UC and 37 BC 
(10 Ta, 10 Tis, 10 T1, 7 T2–T4) subjects. The urine levels 
of 21 protein biomarkers, features (age, gender, ethnic-
ity), and disease status (BC vs UC) were examined. The 
network was constructed in an unsupervised manner 
with the EQ algorithm. The size of each node was deter-
mined using node force and is proportional to its impact 
on the other nodes in the network. The arcs that inter-
connect the nodes were determined with Pearson’s cor-
relation coefficient. The interconnections between nodes 
represent the dependencies among the variables includ-
ing the correlation coefficient between nodes. The thick-
ness of the arcs is proportional to Pearson’s correlation 
coefficient.

STEM analysis
Short Time-series Expression Miner (STEM) version 
1.3.13 was utilized for clustering, comparing, and visu-
alizing protein expression data from the aptamer-based 
screen across bladder cancer (BC Ta-Tis = 9, BC T1 = 9, 

BC T2–T4 = 9) and urology controls (UC = 15). Pro-
tein expression among the top 330 proteins (BC vs UC, 
Mann–Whitney p-value < 0.05) were averaged across the 
subject groups analyzed. The number in the upper left-
hand corner of each box is representative of the number 
of genes in each cluster. The number in the lower left-
hand corner is the p-value significance of the number of 
proteins assigned to the cluster versus what was expected 
based on permutation testing. Protein expression profiles 
through UC and progressive BC stages, Ta-Tis, T1, and 
T2–T4 are plotted. Statistically significant profiles that 
are similar form a cluster and are shaded the same color. 
A total of 50 cluster patterns were generated by STEM 
analysis, of which only the statistically significant clusters 
that exhibited a progressive increase or decrease of urine 
biomarkers across BC stages are plotted. The associated 
Gene Ontology (GO) enrichment analysis for profiles of 
proteins with the same expression patterns was deter-
mined. The Reactome pathways associated with each 
significant cluster were identified through Cytoscape and 
the functional enrichment tool.

Multi‑biomarker panels after adjusting for age, gender, 
and ethnicity
The protein level of each protein assayed by ELISA and 
the age of patients were standardized to have a mean 
of zero and a standard deviation of one, after applying 
 log2 transformation. The proteins that best discriminate 
classes of subjects (BC vs UC and MIBC vs NMIBC) 
were identified using the predictive projection feature 
selection technique executed with the projpred package 
in R (version 4.0.3.) [24–26]. Model selection was per-
formed using a model with the best predictive power (a 
reference model) in order to find a model with a smaller 
number of proteins. The smaller model should maintain 
comparable prediction performance when compared to 
the reference model (predictive projection). The selec-
tion process consisted of two main components. During 
the first step, a Bayesian regularized logistic regression 
model with horseshoe prior [27, 28] was fitted as a ref-
erence model. During the second step, a projected 
submodel with at most 5 proteins that minimized the 
Kullback–Leibler divergence from the posterior distribu-
tion of the reference model to that of the projected model 
was searched for. The selected submodel was found to 
exhibit similar predictive performance determined by the 
mean log predictive density and the mean square error. 
Both of the performance metrics in addition to the area 
under the curve and prediction accuracy were assessed 
through leave-one-out cross-validation in an effort to 
bypass potential problems resulting from overfitting [29]. 
The selected proteins of one model and its performance 
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metrics were compared to those of the counterpart 
model with adjustments for age, ethnicity, and gender 
to account for potential confounding factors from these 
variables.

Results
Aptamer‑based targeted proteomic screen of BC urine
An overview of the study flow is depicted in Additional 
file 1: Fig. S1. A comprehensive aptamer-based screen of 
urine samples from 42 human subjects was executed to 
interrogate the levels of 1317 proteins, as detailed in the 
“Methods” section. This study group included 27 bladder 
cancer subjects and 15 UC (Table 1). A non-parametric 
Mann–Whitney U-test was used to identify proteins that 
were significantly up- or downregulated among BC vs 

UC, resulting in 330 proteins. After multiple testing cor-
rection, 119 of these 330 proteins had a q-value < 0.05. 
The 330 proteins found to be statistically significantly dif-
ferent (both up- and downregulated proteins) in BC were 
subjected to functional pathway enrichment.

Functional pathway enrichment was performed 
using Gene Ontology analysis. The top 10 Gene Ontol-
ogy biological processes identified from the differen-
tially expressed urine proteins in BC can be found in 
Fig.  1A. Extracellular matrix organization, cytokine 
signaling, inflammatory response, and angiogenesis 
were identified as some of the most significant bio-
logical processes associated with the dysregulated 
proteins in BC. The top Gene Ontology molecular 
functions that were enriched included binding to col-
lagen, integrin, heparin, and transmembrane tyrosine 

Fig. 1 Functional pathway enrichment analysis of proteins dysregulated in bladder cancer urine using Gene Ontology, KEGG pathway, and 
protein–protein interaction networks. All 330 proteins with a Mann–Whitney p-value < 0.05 (BC versus UC) in the aptamer-based screen were used 
for functional pathway enrichment. A–C The top 10 Gene Ontology biological process, molecular functions, and KEGG pathways obtained through 
GO are plotted respectively based on p-value significance in the order of fold enrichment. The size of the dots represents the count/hit number of 
genes belonging to the annotation term, and the color of the dots is representative of −  log10FDR value. D Protein–protein interaction networks 
for the top 330 proteins (BC vs UC, Mann–Whitney p-value < 0.05) were created using the Cytoscape stringApp. MCODE clustering was preformed 
to find highly interconnected nodes in the network. The top 3 clusters are plotted with their associated Reactome pathways. The color of each 
node corresponds to the fold change. Nodes with a fold change of less than 1 (reduced in BC) range in color from blue to purple while those with 
a fold change greater than 1 (increased in BC) range from pink to red. E The top transcription factor regulator regulating the differentially expressed 
proteins was identified using the iRegulon plugin available for Cytoscape. Nodes with a fold change of less than 1 range in color from blue to purple 
while those with a fold change greater than 1 range from pink to red
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kinase receptors (Fig. 1B). KEGG pathway analysis was 
next executed for these 330 proteins to identify impli-
cated pathways (Fig.  1C). Cytokine-cytokine receptor 
interaction and PI3K-AKT signaling pathways encom-
passed the largest number of proteins under these 
annotation terms.

Following this, protein–protein interaction networks 
were created with Cytoscape using the 330 differentially 
expressed proteins in BC to determine their interactions 
with one another. MCODE clustering was performed to 
identify highly interconnected clusters (Fig.  1D). Node 
color is representative of fold change, with downregu-
lated proteins in BC urine shaded blue and upregulated 
proteins in BC urine shaded red. Reactome pathways 
enriched among the first cluster include extracellular 
matrix and receptor tyrosine kinases. The second cluster 

encompasses ERBB2/RAF/MAPK signaling pathways, 
while the third cluster is enriched with the immune sys-
tem and interleukin signaling pathways. HNF4A was 
identified as the top-most transcription factor controlling 
the differentially expressed proteins in BC (Fig. 1E), while 
NFKB1 was singled out as the topmost signaling mol-
ecule regulating these proteins (Fig.  1F), as determined 
using the iRegulon plugin for Cytoscape.

Of the 1317 proteins assayed in the aptamer-based 
screen, 93 urine proteins were found to be elevated in BC 
vs UC (Mann–Whitney p-value < 0.05) at a fold change 
of > 2, as depicted by the volcano plot in Fig. 2A. Of these 
93 proteins, 7 were found to be significantly elevated 
with a Mann–Whitney p-value < 0.001 and a fold change 
of > 5 (represented as red dots in Fig.  2A). The top 119 
proteins (BC vs UC, q-value < 0.05) were used as input 

Fig. 2 Aptamer-based proteomic screening of bladder cancer urine uncovers several clusters of up- and downregulated proteins. A A volcano 
plot representation of the results of the aptamer-based screening of 1317 proteins analyzed in 42 urine samples (15 UC, BC (Ta-Tis) = 9, BC (T1) = 9, 
BC (T2–T4) = 9). Data was log-transformed and analyzed as detailed in the “Methods” section. Of the 330 proteins that were differentially expressed 
between the groups, 93 proteins were elevated at fold change > 2 in BC when compared to UC. Each dot represents one of the 1317 proteins. The 
x-axis plots the  log2 transform of the fold change. The y-axis displays the −  log10 transform of the p-value. B A 2D PCA plot of all subjects, using 
the 119 proteins that were differentially expressed after multiple testing corrections (BC vs UC, Mann–Whitney q-value < 0.05). Bladder cancer 
is represented by a red circle while urology control is represented by a green circle. The first three principal components are displayed on each 
axis of the plot. C A heatmap representation of the results of the aptamer-based screen displaying the top 93 proteins (BC vs UC, Mann–Whitney 
p-value < 0.05, fold change > 2) elevated in BC urine. Hierarchical clustering was performed. Each row corresponds to the creatinine-normalized 
protein level measured, and each column represents a patient sample (UC = 15, BC Ta = 5, BC Tis = 4, BC T1 = 9, BC T2 = 4, BC T3 = 3, BC T4 = 2). 
Proteins that are above the mean value for each biomarker and shaded yellow. Those below the mean are shaded blue. Proteins comparable to the 
mean are shaded black. D Correlation plot displaying the expression profiles of the upregulated proteins in BC across the entire cohort. Pearson’s 
and Spearman’s correlation coefficients were determined for each pair. The proteins were ordered based on hierarchical clustering. Each circle 
represents the correlation for a protein pair. Blue corresponds to a positive correlation while red corresponds to a negative correlation. E Random 
forest analysis using the top 93 proteins (BC vs UC, Mann–Whitney p-value < 0.05, fold change > 2) identified the 10 most discriminatory urine 
proteins with the greatest impact on distinguishing BC subjects from urology controls. These 10 proteins are ordered by their GINI coefficient 
(importance in discrimination)
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for principal component analysis (PCA), an unsuper-
vised machine learning algorithm, which successfully 
discriminated BC patients from the urology clinic con-
trols (Fig.  2B). The first two principal components are 
displayed, with BC and UC samples being represented 
by a red and green circle, respectively. Additional file 1: 
Fig. S2A. and S2B display additional PCA plots for all 
expressed proteins and all 330 differentially expressed 
proteins, respectively.

A heatmap clustering of the 93 proteins significantly 
elevated in BC is shown in Fig. 2C. Proteins with upreg-
ulated expression are colored yellow while those down-
regulated are colored blue. To help select proteins for 
further ELISA validation, the expression profiles of the 
top 50 upregulated proteins (based on fold change) were 
next clustered using a correlation matrix (Fig. 2D). A cor-
relation plot of the 93 significantly elevated proteins in 
BC was also generated (Additional file 1: Fig. S3). Several 
of these urine proteins were highly correlated with each 
other, as marked by distinct subclusters of urine pro-
teins that became evident. As an independent approach 
to identify the most discriminatory proteins, a machine 
learning approach was used. Specifically, random forest 
analysis (RFA) of the top 93 proteins (BC vs UC, Mann–
Whitney p-value < 0.05, fold change > 2) identified the 
10 most discriminatory urine proteins with the greatest 
impact on distinguishing BC from UC (Fig. 2E), ordered 
by their importance as represented by their mean 
decrease in Gini coefficient. Both the correlation clusters 
(Fig. 2D) and the RFA (Fig. 2E) were used to select pro-
teins for subsequent ELISA validation.

Urine biomarkers for distinguishing bladder cancer stages, 
based on the aptamer‑based screen
Next, we evaluated if the urine proteins identified in the 
aptamer screen were able to distinguish earlier BC stages 
from later stages. Urine protein levels in NMIBC were 
compared to the corresponding levels in MIBC, as sum-
marized by the volcano plot in Fig.  3A, which plots sta-
tistical significance (y-axis) versus biological significance 
(x-axis). With this comparison, 8 urine proteins were 
found to be elevated in MIBC stages compared to NMIBC 
(MIBC vs NMIBC, Mann–Whitney p-value < 0.05, fold 
change > 2), as represented by the blue dots. Principal com-
ponent analysis (PCA) demonstrated that the differentially 
expressed proteins in BC were successful in discriminating 
BC patients with more advanced disease (MIBC), from the 
urology clinic controls (Fig. 3B). Additional PCA plots dis-
play all three subject groups (UC, NMIBC, and MIBC) for 
all expressed proteins and all 330 differentially expressed 
proteins (Additional file 1: Fig. S2C and S2D).

A Venn diagram representation of the significantly 
elevated proteins identified through the aptamer-based 

screen is shown in Fig.  3C. More proteins were found 
to be significantly elevated in BC compared to UC (BC 
vs UC, Mann–Whitney p-value < 0.05) with 93 upregu-
lated at a fold change of 2, and 147 upregulated at a 
fold change of 1. In contrast, 8 proteins were identified 
as being significantly elevated with a fold change of 2 or 
greater, and 12 proteins obtained a fold change greater 
than 1 in MIBC compared to NMIBC (Mann–Whitney 
p-value < 0.05). Four urine proteins overlapped between 
these two comparisons with a fold change greater than 
1. These four overlapping proteins included urinary 
Elastase, S100A12, p53, and Kallikrein 6.

Next, to identify urine proteins and functional pathways 
that progressively increased or decreased with the worsen-
ing BC stage, Short Time-series Expression Miner (STEM) 
analysis was executed. This analysis identified 2 distinct 
clusters of proteins that progressively increased with BC 
stage (clusters 1 and 2; left 2 boxes in Fig. 3D) and 4 clusters 
of proteins that decreased with worsening BC stage (right-
most 4 boxes in Fig. 3D). The mean expression profiles of 
the proteins assigned to each plot are represented by the 
black line within each box. Functional pathway enrichment 
using Reactome indicated that the proteins in cluster 1 
(27 proteins) and those in cluster 2 (29 proteins) were sig-
nificantly enriched with pathways related to the immune 
system, complement cascade, and interleukin signal-
ing. Reactome or KEGG functional pathways identified 
by the proteins in clusters 3–6 included MAPK signaling, 
cytokine-cytokine receptor interaction, Rap 1 signaling, 
interleukin signaling, EPH-ephrin mediated repulsion of 
cells, and signaling by receptor tyrosine kinases.

Validation of urine protein biomarkers in BC urine using 
an additional assay platform, ELISA, using an independent 
patient cohort
Based on the correlation clustering (Fig.  2D) and ran-
dom forest analysis (Fig. 2E) of the urine proteins iden-
tified using the aptamer-based screen, 34 proteins were 
selected for ELISA validation, which represents a differ-
ent platform than the one used for the initial screen. The 
selected proteins, ELISA manufacturer, urine dilution, 
reason for protein selection, and outcome of the ELISA 
are listed in Additional file 1: Table S2. Of the 34 proteins 
selected, 30 proteins were advanced forward for valida-
tion in the first independent cohort based on preliminary 
ELISA results.

These 30 proteins were assayed by ELISA in a cohort 
of 68 urine samples, drawn from 31 UC, and 37 BC 
patients, comprising 10 Ta, 10 Tis, 10 T1, and 7 T2–T4 
patients, referred to in this manuscript as the UTSW 
cohort (Table 1). The BC vs UC comparison of the ELISA 
results is detailed in Fig. 4A which includes all of the data 
for the 30 proteins. This data was creatinine normalized. 
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A box plot view depicting the expression profile of each 
protein is displayed in Additional file 1: Fig. S4. The eight 
urine proteins with the highest area under the curve 
(AUC) for discriminating BC from UC include Apo A1, 
complement C2, Calgranulin B, d-dimer, IgA, MMP-1, 

MMP-9, and Properdin. Their AUC values ranged from 
0.84 to 0.96. Figure  4B displays the dot plot views for 
these eight urine proteins. Of all ELISA-tested proteins, 
urine d-dimer was best at discriminating BC from UC 
(AUC = 0.96, sensitivity = 95%; specificity = 90%), with 

Fig. 3 Urine proteins that discriminate BC stages, based on the aptamer-based proteomic screen. A A volcano plot representation of the results 
of the aptamer-based screening of 1317 proteins analyzed in 27 urine samples, comparing disease stages (NMIBC = 18, MIBC = 9). Data was 
log-transformed and analyzed as detailed in the “Methods” section. Eight proteins were found to be elevated (Mann–Whitney p-value < 0.05, fold 
change > 2) in MIBC when compared to NMIBC. Each dot represents one of the 1317 proteins. The x-axis shows the  log2 transform of the fold 
change. The y-axis displays the −  log10 transform of the p-value. B A 2D PCA analysis of all subjects using the top 119 urine proteins (BC vs UC, 
Mann–Whitney q-value < 0.05). NMIBC are represented by a red circle while MIBC is represented by a blue triangle. Urology control is represented by 
a green square. The first three principal components are displayed on each axis of the plot. C A Venn diagram comparison of the number of proteins 
significantly elevated in bladder cancer versus urology control compared to proteins significantly elevated in MIBC compared to NMIBC urine. 
The data for two different fold change cutoffs are included. D Short Time-series Expression Miner (STEM) analysis was completed for the top 330 
proteins (BC vs UC, Mann–Whitney p-value < 0.05). The number in the upper left-hand corner of each box is the number of proteins in each cluster. 
The number in the lower left-hand corner is the p-value significance of the number of proteins assigned to the cluster versus what was expected 
based on permutation testing. The protein expression through UC, and progressive BC stages, Ta-Tis, T1, and T2–T4, is plotted. Statistically significant 
profiles that are similar form a cluster of profiles and are shaded the same color. A total of 50 profiles or clusters (each representing a different 
pattern) were generated by STEM analysis, of which only the statistically significant clusters that exhibited a progressive increase (clusters 1 and 2) or 
decrease (clusters 3–6) of urine biomarkers across BC stages are plotted
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urine properdin and MMP-1 being close behind. As a 
sensitivity analysis, a bootstrap logistic regression model 
was used to derive optimism-corrected performance 
metrics and to ascertain the robustness of each urine 

protein for distinguishing BC from urology control. This 
method, which is more accurate for small sample sizes, 
yielded similar results, as listed in Additional file  1: 
Table S3.

Fig. 4 The ability of 30 ELISA-validated urine proteins to discriminate bladder cancer patients from urology clinic controls. A Thirty urinary proteins 
were assayed in bladder cancer and UC by ELISA, using the UTSW cohort, comprising 31 UC, 10 Ta, 10 Tis, 10 T1, and 7 T2-T4 BC patients. The ELISA 
results for BC vs UC are displayed. The urology clinic controls (UC) comprise urology clinic control patients without urological cancers, as detailed in 
the "Methods" section. Biomarker protein units (normalized to creatinine) are as follows: n = ng/mg, p = pg/mg. CI: confidence interval. A Delong 
CI for AUC and a Clopper-Pearson CI for sensitivity and specificity is displayed. Sensitivity.0.8 depicts the sensitivity at a fixed specificity value of 0.8. 
Indicated are the statistical significance p-values *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, comparing BC to UC. B The dot plots depict the 8 
proteins with the highest ROC AUC accuracy values for discriminating BC vs UC. Creatinine normalized urine protein levels are plotted in contrasting 
colors representing UC, BC Ta, Tis, and T1–T4 stages. Statistical analyses of plots were carried out using a Kruskal-Walls test with Dunn’s multiple 
comparison post hoc test. The asterisks indicate the level of significance between the groups: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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Besides comparing the different BC groups to UC, 
MIBC (T2–T4) was also compared to NMIBC (Ta, Tis, 
and T1). The results of the 30 ELISAs for the MIBC vs 
NMIBC stage comparisons are detailed in Fig.  5A and 
Additional file  1: Fig. S5. This data was creatinine-nor-
malized. Figure  5B displays the dot plot view for the 
eight urine proteins with the highest AUC values for 

discriminating MIBC from NMIBC. These included 
urine Apolipoprotein L1, complement C2, Endocan, 
Fibronectin, IgA, IL-8, MMP-12, and Proteinase 3. Their 
AUC values ranged from 0.75 to 0.99. Urine IL-8 was best 
at discriminating these two groups (AUC = 0.99, sensi-
tivity = 100%; specificity = 93%). Urine IgA also outper-
formed other markers, with an AUC of 89%, a sensitivity 

Fig. 5 The ability of 30 ELISA-validated urine proteins to discriminate bladder cancer patients by their disease stage. A Thirty urinary proteins 
were assayed by ELISA, using the UTSW cohort, comprised of 7 MIBC and 30 NMIBC subjects. The ELISA results for MIBC vs NMIBC are displayed. 
Biomarker protein units (normalized to creatinine) are as follows: n = ng/mg, p = pg/mg. Specificity.0.8 depicts the specificity at a fixed sensitivity of 
0.8. Indicated are the statistical significance p-values as determined by a Mann-Whitney U-test *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001. B The 
dot plots depict the 8 proteins with the highest AUC value for MIBC vs NMIBC comparison. Tested samples include 30 NMIBC (10 Ta, 10 Tis, 10 T1) 
and 7 MIBC (T2–T4). Creatine-normalized urine protein levels are shown in different colors representing UC, NMIBC, and MIBC. The asterisks indicate 
the level of significance between the groups: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001
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of 86%, and a specificity of 87%. Of particular note, urine 
IgA exhibited the highest specificity of 80% for MIBC, at 
80% sensitivity, outperforming IL-8. As a sensitivity anal-
ysis, a bootstrap logistic regression model was used to 

derive optimism-corrected performance metrics and to 
ascertain the robustness of each urine protein for distin-
guishing MIBC from NMIBC. This method yielded simi-
lar results, as listed in Additional file 1: Table S4.

Fig. 6 Analysis of BC biomarkers using multi-marker panels and Bayesian network analysis. A Panel 1 displays the top 5-biomarker panel that 
distinguishes BC from UC after adjusting for age, gender, and ethnicity. A positive prediction approach was implemented as detailed in the 
“Methods” section for panels 1 and 2. The combined statistics for the panel of markers are displayed. Panel 2 displays the top 5-biomarker panel that 
distinguishes MIBC from NMIBC after adjusting for age, gender, and ethnicity. B The 21 proteins that showed significant AUC values for BC vs UC and 
fold change > 1 were subjected to Bayesian network analysis using BayesiaLab. The network was constructed as detailed in the “Methods” section. 
The circular nodes represent the urine biomarkers (colored purple), features (colored gray), and disease (BC vs UC; colored brown). The size of each 
node was determined using “node force” and is proportional to its impact on the other nodes in the network, based on conditional probabilities. 
The arcs that interconnect the nodes were determined with Pearson’s correlation coefficient. The interconnections between nodes represent 
dependencies among the variables including the correlation coefficient between nodes. The thickness of the arcs is proportional to the correlation 
coefficient

Fig. 7 Independent ELISA validation of elevated urinary proteins in a second validation cohort of Chinese BC patients. Dot plots depict the 
three urine proteins that were ELISA tested in a second validation cohort of Chinese ethnicity, comprised of BC patients (N = 91) and UC (N = 77), 
including 19 with kidney cancer, 4 with kidney cyst, 1 with kidney harmatoma, 50 with kidney stones, 1 with fibrous epithelial polyp, and 2 with 
kidney angiomyolipoma, as detailed in the supplementary figures/methods. Creatinine-normalized protein values are shown for each group (black 
dot = UC, black square = BC). The asterisks indicate the level of significance between the groups: **p < 0.01, ****p < 0.0001
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Multi‑marker panels and Bayesian network analysis 
of urine protein biomarkers for BC
Two multi-marker biomarker panels were constructed, 
after adjusting for age, gender, and ethnicity, using the 
positive prediction approach (Fig. 6A). Panel 1 was con-
structed for the BC vs UC comparison. The most dis-
criminatory 5-marker panel consisted of urine d-dimer, 
MMP-1, Apolipoprotein A1, Proteinase 3, and Apolipo-
protein L1, with an AUC of 0.95, a sensitivity value of 
0.89, and a specificity value of 0.87. Not surprisingly, the 
top 3 proteins in panel 1 (d-dimer, MMP-1, Apolipopro-
tein A1) also ranked as the best single-marker perform-
ers, based on their individual AUC values (Fig. 4). Panel 
2 was constructed for the MIBC vs NMIBC compari-
son. The most discriminatory 5-marker panel consisted 
of urine IL-8, Ficolin-3, Apolipoprotein L1, Properdin, 
and Proteinase 3. The panel produced an AUC of 0.98, 
with a sensitivity of 0.79 and a specificity of 0.95. Not 
surprisingly, 3 proteins in this panel (IL-8, Proteinase 3, 
Apolipoprotein L1) also ranked among the best single-
marker performers, based on their individual AUC values 
(Fig. 5).

We next subjected all 21 proteins that showed signifi-
cant ROC AUC values in discriminating BC from UC and 
clinical diagnosis to an unsupervised Bayesian network 
analysis. This analysis uses probability distributions to 
represent the inter-dependencies between all variables 
in a model and how they relate to one another. Figure 6B 
displays the derived Bayesian network, where the size 
of each node is representative of its impact on the other 
nodes in the network. Pearson’s correlation coefficient is 
displayed between the nodes and the interconnects rep-
resent dependencies among the variables. This network 
illustrates significant interactions between biomarkers, 
demographics, and disease status. As indicated in the 
Bayesian network, urine Apolipoprotein A1, d-dimer, 
and IL-8 had the largest direct impact on BC versus UC 
discrimination, consistent with the findings from the 
additional analytic approaches described above. In addi-
tion, SPARC (ON) and α2-macroglobulin also exercised 
a large impact on other nodes in this network. Thus, this 
independent machine learning algorithm re-affirms the 
diagnostic potential of Apolipoprotein A1, d-dimer, and 
IL-8 in BC.

Secondary validation of urine protein biomarkers in BC 
urine by ELISA using a Chinese cohort
A secondary validation of upregulated urine proteins 
in BC vs UC was conducted in subjects of Chinese 
ethnicity. Three proteins were further assayed using 
ELISA in a cohort consisting of 77 UC and 91 BC 
patients (Additional file 1: Table S1). These urine pro-
teins included complement C2, d-dimer, and Elastase 

which were among the best-performing markers in the 
first independent validation. Their associated creati-
nine normalized protein values are displayed in Fig. 7. 
The selected urine proteins were once again able to 
distinguish between BC and UC subjects.

Discussion
Research over the past several years has uncovered 
potentially important urine biomarkers and tests for 
BC, including BTA and NMP22. BTA-stat, an FDA-
approved urine biomarker, is used clinically to detect 
bladder tumor-associated antigen (human complement 
factor H-related protein) in the urine. A meta-analysis 
of BTA stat reported a specificity of 67% and a sensitiv-
ity of 75% after reviewing 13 studies [8]. The sensitivity 
levels of BTA-stat have been shown to positively correlate 
with increasing grade of BC [8]. However, BTA-stat has 
several limitations. These include lower specificity values 
and issues relating to false-positive results in benign con-
ditions [6]. Hence, urine BTA-stat may have limitations 
in the diagnosis and monitoring of disease progression. 
Similarly, NNP22 is an FDA-approved urine biomarker 
designed to detect the NMP22 protein levels which are 
high due to cell turnover from tumor apoptosis. A meta-
analysis of 19 studies has identified this marker to have a 
pooled specificity of 88% and a sensitivity of 56% [7].

As opposed to studies looking at an isolated protein in 
the urine, a few screens have been reported where multi-
ple proteins were examined simultaneously. Summarized 
below are a couple of studies documenting biomarkers 
with both sensitivity and specificity values greater than 
or equal to 85%. Goodison et  al. performed a valida-
tion study for the urinary concentrations of 14 proteins 
(A1AT, APOE, ANG, CA9, CCL18, CD44, IL-8, MMP-9, 
MMP-10, OPN, PAI-1, PTX3, SDC1, and VEGF) using an 
ELISA [30]. An 8-biomarker panel (ANG, APOE, CA-9, 
IL-8, MMP-9, MMP-10, PAI-1, and VEGF) achieved the 
most accurate BC diagnosis with a sensitivity of 92% and 
a specificity of 97%. However, a panel of 3 biomarkers 
(APOE, IL-8, and VEGF) also performed well with a sen-
sitivity of 90% and a specificity of 97% for the detection of 
BC [30]. Kumar et al. identified a 5-biomarker panel con-
sisting of Apolipoprotein A4, Coronin-1A, DJ-1/PARK7, 
Gamma synuclein, and Semenogelin-2. ELISA and west-
ern blot data obtained an AUC of 0.92 and 0.98, respec-
tively, in diagnosing Ta/T1 BC (sensitivity 79.2% and 
93.9% for ELISA; specificity 100% and 96.7% for west-
ern blot) [31]. For the diagnosis of T2/T3 BC, the panel 
of markers achieved an AUC of 0.94 and 1, respectively, 
using the same methods (sensitivity 86.4% and 100%; 
specificity 100%) [31].

Low-grade BC has a high recurrence rate; therefore, 
identifying biomarkers for the surveillance of BC is 
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essential for the potential clinical management of the dis-
ease. Rosser et al. identified 10 biomarkers (ANG, APOE, 
CA9, IL-8, MMP-9, MMP-10, SDC1, SERPINA1, SER-
PINE1, and VEFGA) using ELISA for monitoring urine 
for recurrent BC. The complete panel achieved an AUC 
of 0.90, a sensitivity of 79%, and a specificity of 88% [32]. 
De Paoli et  al. identified a panel of 6 biomarkers (cad-
herin-1, EN2, ErbB2, IL-6, IL-8, and VEGF-A) and three 
clinical parameters including BCG therapies, stage at 
the time of diagnosis, and past recurrences. The panel 
achieved an AUC of 0.91 and was identified through 
microarray and ELISA analysis [33].

There are several reasons to discriminate patients with 
bladder cancer from benign conditions. In patients with 
hematuria, it would be helpful to identify who needs cys-
toscopic evaluation which is invasive. Given that urine 
proteins are easily measurable and are compatible with 
point-of-care monitoring, a quick urine test could dra-
matically impact triage and workflow in urology outpatient 
clinics. Likewise, in bladder cancer surveillance, a reliable 
urine biomarker can help determine if cancer (like CIS) 
was missed or to avoid cystoscopy in marker-negative 
patients. Similarly, urine biomarkers that can reliably dis-
tinguish MIBC from NMIBC can inform us as to who has 
the more aggressive disease. When used as a routine point-
of-care test (either at home or at outpatient visits), these 
urinary biomarkers may facilitate earlier identification of 
aggressive disease and design of tailored therapy.

The present work represents the first attempt to 
screen > 1000 urine proteins for urine biomarker can-
didates in BC, using a relatively novel aptamer-based 
screen. Systems biology analysis implicated molecular 
functions related to the extracellular matrix, collagen, 
integrin, heparin, and transmembrane tyrosine kinase 
signaling in BC susceptibility, with HNF4A and NFKB1 
being key regulators. STEM analysis of the dysregulated 
pathways implicated a functional role for the immune 
system, complement, and interleukins in BC disease pro-
gression (Fig.  3D). This study has also uncovered urine 
proteins that outperform current FDA-approved markers 
in many respects. Several urine proteins (d-dimer, Apoli-
poprotein A1, MMP-1, Properdin, Calgranulin B) signifi-
cantly discriminate BC from UC with AUC values from 
0.85 to 0.96 (p-value < 0.0001). As a single biomarker, 
urine d-dimer was able to discriminate BC from UC 
with 96% accuracy (sensitivity = 95%; specificity = 90%). 
Likewise, several urine proteins (IL-8, IgA, Fibronectin, 
C2, Proteinase 3) significantly discriminate MIBC from 
NMIBC with AUC 0.84–0.99 (p-value < 0.001). Interest-
ingly, several of the proteins described above have been 
documented to be elevated in bladder cancer tissue (at 
the RNA or protein level) and/or implicated in tumor 
biology at some level, as summarized in Additional file 1: 

Table  S5. Considering their biomarker potential and 
functional properties based on the literature (Additional 
file  1: Table  S5), these urine proteins warrant further 
investigation, including, d-dimer [34], Apolipoprotein 
A1 [35, 36], Apolipoprotein L1, Calgranulin B [37, 38], 
complement C2 [39], Fibronectin [40–43], Ficolin-3, 
IL-8 [44–49], IgA [50], MMP-1 [51, 52], Properdin, and 
Proteinase 3 [53]. A summary of previous research on 
these proteins can be found in Additional file 1: Table S6. 
Additional markers increased in tissues are described in 
Additional file 1: Table S7.d-dimer is a specific cleavage 
product of fibrin and a symbol of hyperfibrinolysis [34]. 
It is the primary diagnostic tool in various diseases, such 
as deep venous thrombosis, systemic illness, and cancers 
[54]. Previous studies have reported that molecules in the 
coagulation/fibrinolysis system, especially plasma fibrin-
ogen and d-dimer, are abnormal in cancer patients [34]. 
In the present study, urine d-dimer levels show a signifi-
cant ability to differentiate BC from UC (AUC = 0.96) 
(p < 0.0001). After correcting for patient demographics, 
urine d-dimer is still eligible for inclusion within the 
5-biomarker panel for best distinguishing BC from UC. 
Perhaps most impressive is the observation that urine 
d-dimer demonstrates a high sensitivity for the detection 
of BC (95%), and at a fixed specificity of 0.8, it can achieve 
a sensitivity of 0.97. Hence, as a single biomarker, urine 
d-dimer outperforms current FDA-approved biomarkers 
and competing biomarkers in the research literature as a 
sensitive biomarker for BC detection.

Apolipoproteins (Apolipoprotein A1 and Apolipopro-
tein L1) are proteins known to interact with the lipids of 
the lipoprotein core and also the aqueous environment 
of the plasma. Apolipoprotein A1 is the primary protein 
component of high-density lipoprotein while Apolipopro-
tein L1 is a minor component. Previous studies have vali-
dated Apolipoprotein A1 as a novel urinary biomarker for 
BC [35, 36]. In the current research, Apolipoprotein A1 
was the second-best performing protein in terms of the 
AUC value (0.91) in distinguishing BC from UC.

After adjusting for demographics, this protein ranked 
within a 5-marker panel for distinguishing BC from 
UC. Similarly, Apolipoprotein L1 also ranked within 
the 5-marker panel for distinguishing BC from UC and 
MIBC from NMIBC.

Calgranulin B (S100A9) is a zinc- and calcium-binding 
protein that plays a prominent role in regulating inflam-
matory and immune responses. Several S100 proteins, 
including S100A9, have received attention regarding 
their possible role in tumor development and progression 
and studies report an increased expression in a variety 
of tumors, including ovarian, colon, gastric, and pros-
tate cancer [37]. Increased expression of S100A9 protein 
in the serum has been previously associated with tumor 
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grade [37]. Current validation results of Calgranulin B are 
promising as it was among the top markers in discrimi-
nating BC from UC with an AUC of 0.85.

Complement proteins may promote tumor growth in the 
context of chronic inflammation [39]. Complement C2’s 
relation to BC at this time is unknown. However, the pre-
sent study identified this protein as the fourth best single 
protein for differentiating MIBC from the NMIBC stage. 
Properdin is also a member of the complement system, 
controlling the alternate pathway of complement activa-
tion. Research on properdin in BC is limited. However, in 
the current study, properdin demonstrated the third high-
est AUC value (AUC = 0.89, p < 0.0001) in discriminating 
BC from UC. These biomarker findings are consistent with 
the observation that changes in complement activation 
constitute one of the major pathways that predict BC dis-
ease progression, based on STEM analysis (Fig. 3D).

Fibronectin is a glycoprotein component of the extra-
cellular matrix. Tumor cells can attach to fibronectin via 
integrins or other cell surface receptors [55]. Its effec-
tiveness as a urine biomarker for BC has been explored 
in a variety of studies [40–43]. Here, fibronectin showed 
the third best discriminatory ability in identifying MIBC 
compared to NMIBC. The marker exhibited an AUC 
value of 0.87 (p < 0.0001).

IL-8 is a proinflammatory CXC chemokine. It has pre-
viously been associated with the promotion of neutrophil 
chemotaxis and degranulation [56]. Increased expres-
sion of IL-8 has been associated with endothelial cells, 
infiltrating neutrophils, tumor-associated macrophages, 
and cancer cells [56]. Therefore, IL-8 may be a significant 
regulatory factor within the tumor microenvironment. 
Previous studies have identified urinary IL-8 as a poten-
tial marker for BC [44–49]. In the present study, urine IL-8 
was the best-performing protein in the MIBC vs NMIBC 
comparison, with an AUC of 0.99 (p < 0.0001), although its 
specificity was modest at a fixed sensitivity of 80%. Taken 
together with a wealth of supporting literature, this marker 
has the potential to be a monitoring tool for BC disease 
progression and warrants further analysis in this context.

IgA is an immunoglobulin and is often the first line of 
defense in the resistance against infections, particularly in 
mucosal tissues. A correlation of intra-tumor IgA1 and poor 
overall survival in BC patients has been identified in a previ-
ous study [50]. However, research regarding IgA in BC urine 
is limited. The data presented in this study indicated that uri-
nary IgA may differentiate MIBC from NMIBC (AUC = 0.89, 
p < 0.0001). Overall, IgA performed 2nd best out of a total of 
30 urinary markers validated for this comparison. Of par-
ticular note, urine IgA exhibited the highest specificity of 
80% for MIBC, at 80% sensitivity, out-performing IL-8.

Matrix metalloproteinases (MMP) are a group 
of zinc-dependent proteolytic enzymes. Their role 

involves remodeling of the extracellular matrix. Many 
studies have evaluated the levels of MMPs in can-
cer patients and have reported the vital roles of some 
MMPs as potential diagnostic and prognostic bio-
markers in tumorigenesis [57]. The current study has 
uncovered MMP-1 as the fourth best-performing mol-
ecule for distinguishing BC from UC (AUC = 0.89, 
p < 0.0001). This protein was also included in a 
5-marker panel for distinguishing BC from UC. At 
the mechanistic level, one can envision tissue matrix 
remodeling as an important pre-requisite for cancer 
progression.

Conclusions
There is a need for these findings to be validated in addi-
tional cohorts. However, the urine proteins reported in 
this research exhibit great potential for use in a clinical 
setting. d-dimer, Apolipoprotein A1, MMP-1, Properdin, 
and Calgranulin B were identified as the most discrimina-
tory urine markers in distinguishing BC from UC. Given 
that urine d-dimer has 97% sensitivity (at 80% specificity) 
for detecting BC, it may have a role in the initial diagno-
sis of BC, or for the detection of BC recurrence during 
surveillance follow-up. Urine Apolipoprotein A1, Proper-
din, and MMP-1 are the next best-performing biomark-
ers in this respect. On the other hand, urine IL-8 and IgA 
may have the potential in identifying disease progression 
during BC patient follow-up.

Several aspects of this study could be improved. Our 
study is limited by the relatively small sample size and 
the imbalance between the number of patients with 
NMIBC and MIBC. Because of these limitations, the 
generalizability of the study’s findings warrants cau-
tion. This calls for future investigation in larger patient 
populations. Additionally, a larger sample size could 
uncover markers that are less discriminatory. Given 
that the current study only pursued the validation of 34 
urine protein biomarkers, a larger number of additional 
proteins found to be significant could be assessed for 
validation in future studies. Urine d-dimer, MMP-1, 
Apolipoprotein A1, Proteinase 3, and Apolipoprotein 
L1 need to be validated independently and in multi-
marker panels in additional cross-sectional and longitu-
dinal cohorts to confirm if they are superior to current 
FDA-approved markers for BC detection. Urine IL-8, 
Ficolin-3, Apolipoprotein L1, Properdin, and Protein-
ase 3 also need to be validated both independently and 
as a multi-marker panel in future cross-sectional and 
longitudinal cohorts to confirm if they are good indica-
tors for bladder cancer disease progression. These novel 
urine biomarkers for BC also warrant systemic testing 
to assess their utility in BC surveillance and in predict-
ing or monitoring response to treatment.
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