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Abstract 

Background Emerging data suggests the neuroprotective and anti-neuroinflammatory effects of glucosamine. We 
aimed to examine the association between regular glucosamine use and risk of incident dementia, including demen-
tia subtypes.

Methods We conducted large-scale observational and two-sample Mendelian randomization (MR) analyses. Partici-
pants in UK Biobank having accessible data for dementia incidence and who did not have dementia at baseline were 
included in the prospective cohort. Through the Cox proportional hazard model, we examined the risks of incident 
all-cause dementia, Alzheimer’s disease (AD), and vascular dementia among glucosamine users and non-users. To 
further test the causal association between glucosamine use and dementia, we conducted a 2-sample MR utilizing 
summary statistics from genome-wide association studies (GWAS). The GWAS data were obtained from observational 
cohort participants of mostly European ancestry.

Results During a median follow-up of 8.9 years, there were 2458 cases of all-cause dementia, 924 cases of AD, and 
491 cases of vascular dementia. In multivariable analysis, the hazard ratios (HR) of glucosamine users for all-cause 
dementia, AD, and vascular dementia were 0.84 (95% CI 0.75–0.93), 0.83 (95% CI 0.71–0.98), and 0.74 (95% CI 0.58–
0.95), respectively. The inverse associations between glucosamine use and AD appeared to be stronger among partici-
pants aged below 60 years than those aged above 60 years (p = 0.04 for interaction). The APOE genotype did not 
modify this association (p > 0.05 for interaction). Single-variable MR suggested a causal relationship between glucosa-
mine use and lower dementia risk. Multivariable MR showed that taking glucosamine continued to protect against 
dementia after controlling for vitamin, chondroitin supplement use and osteoarthritis (all-cause dementia HR 0.88, 
95% CI 0.81–0.95; AD HR 0.78, 95% CI 0.72–0.85; vascular dementia HR 0.73, 95% CI 0.57–0.94). Single and multivariable 
inverse variance weighted (MV-IVW) and MR-Egger sensitivity analyses produced similar results for these estimations.

Conclusions The findings of this large-scale cohort and MR analysis provide evidence for potential causal associa-
tions between the glucosamine use and lower risk for dementia. These findings require further validation through 
randomized controlled trials.

*Correspondence:
Shaojun Tang
shaojuntang@ust.hk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-023-02816-8&domain=pdf


Page 2 of 13Zheng et al. BMC Medicine          (2023) 21:114 

Keywords Glucosamine, Dementia, Alzheimer’s disease, APOE

Background
Dementia is characterized by an inexorably progressive 
impairment of cognition and the capacity to carry out 
activities of daily life. It is a heterogeneous syndrome 
posing a substantial burden on patients, their prox-
ies, and national health-care systems [1]. In the UK, 
over 850,000 individuals suffer with dementia [2]. Glob-
ally, roughly 50 million individuals have dementia, with 
this figure expected to rise to 152 million by 2050 [1]. In 
the absence of effective pharmacological treatments for 
dementia, the identification and detailed investigation of 
potentially modifiable protective factors have gained con-
siderable attention in recent years.

Glucosamine is a widely used non-vitamin, non-min-
eral supplement for relieving both osteoarthritis and 
joint discomfort [3]. It is an approved osteoarthritis pre-
scription medication in most European nations and is 
widely used as a nutritional supplement in countries like 
the USA and Australia, where roughly 20% of adults use 
it daily [4, 5]. Despite the controversy regarding the effi-
cacy of glucosamine supplements on osteoarthritis and 
joint discomfort [6, 7], glucosamine has been proved to 
have anti-inflammatory properties [8] and may prevent 
a wide range of diseases [9, 10]. In this instance, a vari-
ety of epidemiological studies have revealed that glu-
cosamine consumption may protect against colorectal 
cancer [11, 12], lung cancer, [13], cardiovascular disease 
[14, 15], diabetes [16], and all-cause death [17]. Impor-
tantly, a cross-sectional research recorded the association 
between glucosamine consumption and better cognitive 
function [18]. However, research regarding the associa-
tion between glucosamine use and dementia risk remains 
scant.

The importance of glucosamine in brain function has 
been highly supported by previous studies [19, 20]. Glu-
cosamine mimicked the effects of a low-carbohydrate 
diet in a prior animal research, resulting in increased 
lifespan [21], and studies consistently showed that a low-
carbohydrate diet protects against dementia [22, 23]. An 
animal study suggested that glucosamine may promote 
cognitive function by impacting energy metabolism [20]; 
other animal models have indicated the neuroprotective 
and anti-neuroinflammatory effects of glucosamine [24]. 
In addition, glucosamine participates in the O-linked 
N-acetylglucosaminylation of various proteins, which 
was verified to be related to many neurological or neuro-
degenerative diseases [25, 26]. Therefore, we hypothesize 
that regular use of glucosamine may have a causal influ-
ence on incident dementia.

Based on the UK Biobank study of nearly 500,000 Brit-
ish people, we investigated the relationship between 
regular use of glucosamine and the risk of all-cause 
dementia, Alzheimer’s disease (AD) and vascular demen-
tia. We also explored potential modifying effects by 
several established risk factors (including APOE ε4 geno-
types) for dementia.

Traditional observational studies include drawbacks 
such as residual confounding and/or reverse causation, 
inadequate adjustment (e.g., healthy lifestyle or other fac-
tors), and a focus on correlation rather than causation. By 
employing genetic variants as proxy for glucosamine use, 
Mendelian randomization (MR) avoids some of these 
limitations and provides genetic support for causal asso-
ciations [27]. Thus, in addition to observational analy-
sis, we performed MR to give additional insights for the 
assessment of potential causal relationships.

Methods
Study design
This study analyzed data from UK Biobank (applica-
tion 55,794), a large prospective cohort study enrolling 
over 500,000 participants between the ages of 40 and 70 
from 22 research centers in the UK (England, Wales, and 
Scotland) between 2006 and 2010 [28]. Through detailed 
electronic questionnaires, face-to-face interviews, and 
physical assessments, participants provided personal data 
on health-related variables. Participants who dropped 
out of the study (n = 1298), had dementia (n = 224), or 
lacked data on glucosamine use (n = 6171) were excluded 
from the analysis. We also excluded 15,339 participants 
from further analysis owing to a lack of quality-controlled 
genotyping data (Fig. 1).

Exposure assessment
At one of 22 assessment sites across the UK, the partici-
pants filled out a touch-screen questionnaire. In answer 
to the question “Do you usually take any of the follow-
ing?”, a list of supplements, which included glucosamine, 
was given to the participants to choose from. Based on 
these data, we established a binary classification for 
regular glucosamine use: 1 = yes, 0 = no. This evaluation 
method was used in previous studies [16, 29, 30].

Ascertainment of incident dementia
We used participants’ baseline survey information, hos-
pital admission diagnosis records, and death registration 
records to define outcomes, which included all-cause 
dementia, AD, and vascular dementia. Diagnoses were 
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recorded using the International Classification of Dis-
eases (ICD) coding system (Additional file  1: Table  S1) 
[31]. The incident disease in this study was determined 
by the primary or secondary diagnoses from hospital 
admission data or primary or secondary causes of induc-
ing death after baseline data collection. A subsample 
of the population was also retrieved from primary care 
data using Read Codes (version 2 or 3) in the sensitivity 
analysis [32]. Participants were followed up from the time 
of the baseline to the first diagnosis, death, or February 
25, 2018, in Wales and England and February 28, 2017, 
in Scotland, whichever came first. Detailed information 
on the APOE genotyping is presented in the Additional 
file 1: Supplemental Methods [33–35].

Covariates
Various potential confounders were assessed using a 
baseline touch-screen questionnaire. Age, gender, eth-
nicity, the Townsend Deprivation Index (TDI), level of 
education, and annual household income were included 
as the sociodemographic factors. Lifestyle behavior 
included smoking status, alcohol intake, being physi-
cally active, body mass index (BMI), vegetable intake and 
fruit intake. Health-related variables included hyperten-
sion, cardiovascular disease, cancer, digestive disease, 
depression, diabetes, emphysema or chronic bronchitis, 
high cholesterol, chronic kidney disease, chronic liver 
disease, and Elixhauser Comorbidity Index. Medication 

utilization included antihypertensive drugs, insulin treat-
ment, statin, opioids, aspirin, and other non-steroidal 
anti-inflammatory drugs (NSAIDs). We also included 
chondroitin, dietary supplements for minerals, vitamins, 
and other nutrients (fish oil, calcium, iron, zinc, and sele-
nium), memory, and reaction time in the analysis. The 
details on calculating the Elixhauser Comorbidity Index 
are shown in the Additional file  1: Supplemental Meth-
ods [36, 37]. We calculated participants’ BMI by dividing 
their weight by the square of their height in meters. The 
TDI is a comprehensive poverty index, which is calcu-
lated by the following factors: ownership of a home, own-
ership of a car, being unemployed or not, and whether 
there are too many people living together [38]. It shows 
the socioeconomic status of a participant. According to 
WHO guidelines on physical activity for health [39], we 
classified individuals as < 150 or ≥ 150  min/week based 
on total minutes of moderate physical activity per week 
(collected by touchscreen question, one vigorous physi-
cal activity minute equals two moderate physical activ-
ity minutes). This assessment method was widely used 
in prior studies [40, 41]. Patients with any of the fol-
lowing situations are classified as having hypertension: 
using hypertensive drugs, systolic blood pressure higher 
than 140  mmHg, diastolic blood pressure higher than 
90  mmHg, or self-reported hypertension. Health sta-
tus was determined through self-reporting combined 
with ICD-10 codes from hospital records. Memory and 

Fig. 1 Flow diagram of the participant selection process
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reaction time assessments were conducted through 
touch screen [42–44]. A pair matching test was used to 
measure memory, in which participants had to recall six 
pairs of shapes and their positions in 5  s. The number 
of mistakes made during matching was used to evaluate 
performance. The test method of reaction time is shown 
below: a series of figures will be displayed on the screen; 
the participant was asked to press the button as rapidly 
as possible when two identical figures appear. The mean 
response time (ms) across eight rounds for properly 
selected matching groups was used to measure perfor-
mance. The UK Biobank website has further information 
on these variables (www. ukbio bank. ac. uk).

Statistical analysis
Observational analysis
For continuous variables, the mean (SD) is used, and for 
categorical variables, the number (%) is used. We per-
formed multiple imputation with chained equations to 
cope with missing variables to reduce the possibility of 
inferential bias [45, 46]. There were five datasets imputed. 
The imputation model contained all variables used in the 
analysis. Additional file 1: Table S2 provides detailed data 
on missing variables.

Cox proportional hazard models were used to calculate 
the hazard ratios (HR) and 95% confidence intervals (CIs) 
for the relationships between regular glucosamine use 
and all-cause dementia, AD, and vascular dementia. We 
tested the proportional hazards assumption by Schoen-
feld residual tests [47], and no violations of this assump-
tion were identified. Two models were used. We only 
included sex and age in Model 1. Additional factors, such 
as ethnicity, education, TDI, annual household income, 
BMI, fruit intake, vegetable intake, smoking status, alco-
hol intake, being physically active, medical conditions, 
drug use, other supplement use, memory, and reaction 
time were adjusted in Model 2.

In order to evaluate potential effect modifiers, sub-
group analyses based on sex (female or male), age (< 60 
or ≥ 60 years), obesity (BMI ≥ 30 kg/m2, no or yes), cur-
rent smoking status (no or yes), diabetes (no or yes), 
hypertension (no or yes), aspirin use (no or yes), use of 
non-aspirin NSAIDs (no or yes), use of vitamin supple-
mentation (no or yes), use of other non-vitamin supple-
mentation (no or yes) and APOE ε4 carrier (no or yes) 
were performed. To investigate the differential effects of 
glucosamine on the likelihood of dementia in subgroups, 
we calculated the p-value for interaction by including the 
cross-product term of the stratifying variables with glu-
cosamine use in the fully adjusted model.

We evaluated the robustness of our findings by a 
sequence of sensitivity analyses (Additional file  1: 
Table S3). Firstly, we conducted an analysis of competing 

risks which considered all-cause mortality as a compet-
ing event for dementia. Secondly, since individuals who 
took glucosamine were more likely to take chondroitin 
than those who did not, we conducted sensitivity analy-
ses by removing chondroitin users. Thirdly, to minimize 
the possibility of reverse causality, we excluded people 
who died within the first 2  years after baseline assess-
ment. Fourthly, we excluded individuals who had missing 
covariate values. Fifthly, we calculated a propensity score 
for each participant and further adjusted for the score in 
the fully adjusted model. The multivariate logistic regres-
sion model was applied to estimate propensity scores 
taking all covariates into account. Sixthly, we added a 
subsample of the population retrieved from primary care 
data using Read Codes (version 2 or 3) in the analysis. We 
performed all analyses using R version 4.0.3, and p less 
than 0.05 (two-sided) was deemed significant.

Mendelian randomization
We performed a two-sample MR design using summary-
level data. Single-nucleotide polymorphisms (SNPs) 
served as risk factor instruments. The analysis relied on 
public summary-level data. All original studies received 
ethical approval. A detailed description of the data 
sources, the selection of genetic instrumental variables, 
and the test on instrument strength and statistical power 
are shown in the Additional file  1: Supplemental Meth-
ods [48–56]. Data sources and instruments are listed 
in Additional file  1: Table  S4-12. The GWAS from Ben 
Neale Lab round 2 used a linear regression model in Hail 
for large-scale phenotypes in the UK Biobank, even for 
binary variables. As a workaround, we used BOLT-LMM, 
a software package widely used to deal UK Biobank 
data, to calibrate the effect. The detailed information on 
BOLT-LMM is shown in the Additional file  1: Supple-
mental Methods [57].

The “MendelianRandomization” and “TwoSampleMR” 
R packages were used for all statistical analyses. Inverse 
variance-weighted (IVW) MR was the major analysis we 
applied for single-variable MR analysis. In order to deal 
with the issue of the robustness of the IVW result, we 
used the MR-Egger and weighted median-based regres-
sion, both of which assume distinct instrumental vari-
ables assumptions [54, 58]. When all genetic variants are 
invalid instrumental variables, the MR-Egger regression 
produces consistent results; the weighted median needs 
valid IVs to contribute 50% of the weight. The accuracy 
of weighted median estimates and IVW estimates are 
almost the same, which are much higher than that of 
MR-Egger estimates because the accuracy of MR-Egger 
estimates is particularly imprecise when all the IVs are 
about the same strength [59]. To assess potential IV vio-
lations, we carried out the MR-Egger intercept test [60], 

http://www.ukbiobank.ac.uk


Page 5 of 13Zheng et al. BMC Medicine          (2023) 21:114  

MR pleiotropy residual sum and outlier (MR-PRESSO) 
test [61], and Cochran Q heterogeneity test [62]. To iden-
tify high-influence points, we used a leave-one-out vali-
dation [63]. The MR Steiger test was also performed to 
assess the potential reverse causal effect of glucosamine 
on dementia (Additional file 1: Table S13) [64].

The likelihood of using additional supplements is 
higher among glucosamine users than in non-glucosa-
mine users. Taking these associations into account, we 
conducted multivariable MR to assess the direct effect of 
regular use of glucosamine on dementia under the con-
dition of controlling vitamin, chondroitin supplements 
intake, and osteoarthritis. We aggregated the genetic 
instruments used in the related GWASs—glucosamine, 
vitamin, chondroitin supplements, and osteoarthritis. 
SNPs were clumped by linkage disequilibrium within a 
window of 10,000  kb (R2 < 0.001) to confirm their inde-
pendence. Then we derived SNP effects and standard 
errors from the GWAS summary statistics and harmo-
nized them with GWAS data on dementia. Measured and 
unmeasured pleiotropy were taken into account by using 
multivariable MR extension of the IVW MR approach 
[65] and the MR-Egger method [66].

Results
The mean age of the 494,814 participants was 56.5 years 
(SD 8.1) and the proportion of female was 54.4%. At 
baseline, 94,259 (19.0%) of participants reported using 
glucosamine. There was a higher percentage of older, 
female, non-smoking, and physically active glucosamine 
users than nonusers. In addition, glucosamine users had 
a lower TDI, higher prevalence of comorbidities such as 
cancer, hypertension, arthritis, and depression, but less 
cardiovascular disease, emphysema or chronic bronchi-
tis, diabetes, high cholesterol, chronic kidney disease, 
and chronic liver disease. The percentage of using sta-
tin, opioids, non-aspirin NSAIDs, chondroitin, vitamins, 
minerals, and other dietary supplements was higher in 
glucosamine users than non-users (Table 1).

Associations of glucosamine use with incident dementia
During the 8.9-year (IQR 8.3–9.7  years) median follow-
up, we recorded 2458 cases of all-cause dementia, 924 
cases of AD, and 491 cases of vascular dementia. Table 2 
shows the associations of regular use of glucosamine with 
the outcomes. A statistically significant inverse relation-
ship was found between glucosamine use and risk for 
all-cause dementia (HR 0.81; 95% CI 0.73–0.90), AD (HR 
0.78; 95% CI 0.65–0.92), and vascular dementia (HR 0.68; 
95% CI 0.54–0.87). The hazard ratios of glucosamine 
users in multivariable-adjusted models were 0.84 (95% CI 
0.75 to 0.93) for all-cause dementia; 0.83 (95% CI 0.71 to 

0.98) for AD; and 0.74 (95% CI 0.58 to 0.95) for vascular 
dementia (Table 2).

Subgroup and sensitivity analyses
To investigate potential subgroup effects, we conducted 
several specified subgroup analyses (Fig.  2). We found 
that the protective effect of glucosamine on AD was 
stronger among participants aged below 60  years, com-
pared with those above 60 years (p = 0.04 for interaction). 
Other stratifying variables have not modified the asso-
ciation of glucosamine use with incident dementia (p for 
interaction > 0.05).

When we excluded participants who had outcomes 
within 2 years of follow-up, participants who used chon-
droitin, and participants with missing values for vari-
ables, the relationships of glucosamine use with all-cause 
dementia, AD, and vascular dementia persisted. After 
adding cases that were retrieved from the primary care 
data using Read Codes, the results did not alter. During 
the follow-up in participants without dementia, 19,082, 
19,654, and 19,763 deaths were documented as com-
peting events for all-cause dementia, AD, and vascular 
dementia, respectively. The competing risks analysis pro-
duced results which were consistent with the Cox pro-
portional hazards model (Additional file 1: Table S2).

Mendelian randomization
According to Univariable MR analysis, genetically deter-
mined regular glucosamine use was associated with a 
decreased risk for all-cause dementia (IVW odds ratio, 
0.85; 95% CI 0.76 to 0.95), AD (IVW odds ratio, 0.85; 95% 
CI 0.78 to 0.93) and vascular dementia (IVW odds ratio, 
0.64; 95% CI 0.42 to 0.96) (Table  3). Weighted median 
and the MR-Egger provided similar estimates to those 
of IVW. The accuracy of the MR-Egger estimations was 
much lower. We use forest plots to display the MR results 
for the impacts of SNPs related to glucosamine use on 
dementia risk (Additional file  1: Fig. S1). No pleiotropy 
across instruments has been found by the Cochran’s Q 
statistic. We did not find directional pleiotropy by MR-
Egger intercept analysis. No potential outliers were found 
by MR-PRESSO. No high leverage, high impact points 
were found using conventional IVW leave-one-out anal-
ysis (Additional file 1: Fig. S2). Absence of weak instru-
ment bias is shown by F statistics for genetic instruments 
(Additional file  1: Table  S5). Using the MR Steiger test, 
we detected no evidence of reverse causality (Additional 
file 1: Table S13).

In MVMR, the genetic liabilities for regular glucosa-
mine, vitamin, chondroitin use, and osteoarthritis were 
evaluated. Use of glucosamine continued to have a sig-
nificant effect on all-cause dementia (IVW odds ratio, 
0.88; 95% CI, 0.81–0.95; P < 0.001), AD (IVW odds ratio, 
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0.78; 95% CI, 0.72–0.85; P < 0.001) and vascular demen-
tia (IVW odds ratio, 0.73; 95% CI, 0.57–0.94; P < 0.001). 
These results align with those derived from the MVMR-
Egger sensitivity analyses. Again, no horizontal plei-
otropy was found in the MR-Egger intercept analysis. 
Details on the instruments used in MVMR can be found 
in Additional file 1: Table S14-15.

Discussion
We observed that regular glucosamine use was related to 
a 15% decreased risk of all-cause dementia, 17% for AD, 
and 26% for vascular dementia in this large population-
based study including 494,814 participants. These asso-
ciations remained after adjusting for variables including 
sociodemographic factors, lifestyle behavior, comorbid 
conditions, medication, and other dietary conditions. 
Moreover, the beneficial effect of glucosamine use on AD 
seemed to be larger in participants aged below 60 years 
than in those aged above 60 years. The APOE genotype 

Table 1 Baseline characteristics of study participants by 
glucosamine use

All participants
(n = 494,814)

Use of glucosamine

Yes 
(n = 94,259)

No (n = 400,555)

Age, mean (SD), 
years

56.54 (8.09) 59.08 (7.07) 55.95 (8.20)

Female 269,380 (54.4) 58,996 (62.6) 210,384 (52.5)

White ethnicity 466,252 (94.2) 90,306 (95.8) 375,946 (93.9)

With college or 
university degree

160,409 (32.4) 31,119 (33.0) 129,290 (32.3)

TDI, mean (SD) -1.31 (3.09) -1.79 (2.79) -1.20 (3.14)

Household 
income (£)

 18,000 116,776 (23.6) 21,044 (22.3) 95,732 (23.9)

 ≥ 18,000 378,038 (76.4) 73,215 (77.7) 304,823 (76.1)

BMI, mean (SD), 
kg/m2

27.43 (4.80) 27.36 (4.65) 27.45 (4.83)

Physical activity 
(min/week)

 150 228,109 (46.1) 38,269 (40.6) 189,840 (47.4)

 ≥ 150 266,705 (53.9) 55,990 (59.4) 210,715 (52.6)

Fruit intake  
(servings/day)

 4 337,958 (68.3) 56,085 (59.5) 281,873 (70.4)

 ≥ 4 156,856 (31.7) 38,174 (40.5) 118,682 (29.6)

Vegetable 
intake(servings/
day)

 4 320,640 (34.8) 57,027 (60.5) 263,613 (65.8)

 ≥ 4 174,174 (35.2) 37,232 (39.5) 136,942 (34.2)

Alcohol consump-
tion frequency

 3 times a week 280,147 (56.6) 49,736 (52.8) 230,411 (57.5)

 ≥ 3 times a week 214,667 (43.4) 44,523 (47.2) 170,144 (42.5)

Smoking status

 Never smoker 271,869 (54.9) 52,132 (55.3) 219,737 (54.9)

 Ex-smoker 170,903 (34.5) 36,013 (38.2) 134,890 (33.7)

 Current smoker 52,042 (10.5) 6114 (6.5) 45,928 (11.5)

Personal medical 
condition

 Hypertension 279,569 (56.5) 54,670 (58.0) 224,899 (56.1)

 CVD 28,699 (5.8) 4147 (4.4) 24,552 (6.1)

 Cancer 39,090 (7.9) 7823 (8.3) 31,267 (7.8)

 Arthritis 23,256 (4.7) 7729 (8.2) 15,527 (3.9)

 Emphysema or 
chronic bronchitis

8262 (1.7) 1325 (1.4) 6937 (1.7)

 Diabetes 25,945 (5.2) 3450 (3.7) 22,495 (5.6)

 High cholesterol 86,314 (17.4) 15,972 (16.9) 70,342 (17.6)

 Digestive disease 1484 (0.3) 188 (0.2) 1296 (0.3)

 Chronic kidney 
disease

10,391 (2.1) 1885 (2.0) 8506 (2.1)

 Chronic liver 
disease

7422 (1.5) 1225 (1.3) 6197 (1.5)

 Depression 75,706 (15.3) 14,704 (15.6) 61,002 (15.2)

Values are numbers (%) unless stated otherwise. TDI, Townsend Deprivation 
Index; BMI, body mass index; CVD, cardiovascular disease; NSAID, non-steroidal 
anti-inflammatory drug; APOE, apolipoprotein E. All variables globally 
significantly different between groups at P < 0.001, except for BMI, digestive 
disease and use of aspirin (P > 0.05). P-values are derived using either Student’s 
t-test, Wilcoxon rank sum test, or chi-square test

Table 1 (continued)

All participants
(n = 494,814)

Use of glucosamine

Yes 
(n = 94,259)

No (n = 400,555)

 Elixhauser 
Comorbidity Index, 
mean (SD)

2.1 (1.7) 2.3 (1.8) 2.0 (1.7)

Medication or 
supplementation

 Antihypertensive 
drugs

88,208 (17.8) 16,897 (17.9) 71,311 (17.8)

 Insulin treatment 4839 (1.0) 594 (0.6) 4245 (1.1)

 Use of statin 55,913 (11.3) 10,839 (11.5) 45,074 (11.3)

 Use of opioids 26,719 (5.4) 5372 (5.7) 21,347 (5.3)

 Use of aspirin 69,216 (14.0) 13,299 (14.1) 55,917 (14.0)

 Use of non-
aspirin NSAIDs

72,939 (14.7) 17,713 (18.8) 55,226 (13.8)

 Use of chon-
droitin

6432 (1.3) 5844 (6.2) 588 (0.1)

 Use of vitamin 
supplementation

157,109 (31.8) 52,388 (55.6) 104,721 (26.1)

 Use of minerals 
and other dietary 
supplementation

184,233 (37.2) 65,352 (69.3) 118,881 (29.7)

Memory, mean 
(SD), no. of errors

4.25 (3.32) 4.28 (3.45) 4.23 (3.34)

Reaction time, 
mean (SD), ms

558 (118) 562 (125) 557 (120)

APOE*E4 carrier 135,883 (28.3) 25,609 (28.0) 110,274 (28.4)
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did not modify this association. In the MR analysis, we 
again observed protective causal effects of regular glu-
cosamine use on dementia risk. Our findings were mostly 
consistent among various MR methods that made vari-
ous assumptions regarding horizontal pleiotropy, demon-
strating that horizontal pleiotropy is not probable to be a 
sufficient explanation for our findings.

We found that 19.0% of participants used glucosamine; 
this number is close to the 22.0% of the Australians over 
45 who also take glucosamine [5]. Our findings are in line 
with a prior cross-sectional investigation that found glu-
cosamine intake to be related to better cognitive function 

[18]. Glucosamine users had a higher reasoning score and 
faster reaction speed than non-users [18]. Furthermore, 
in a mouse model, glucosamine exerted a cognition-
enhancing function [20], which implicated the beneficial 
impact of glucosamine use on dementia prevention.

Because glucosamine and chondroitin supplements are 
typically used simultaneously once daily [6], our observed 
relationships might be attributed to either of these sup-
plements. To address this concern, a sensitivity analysis 
was conducted to test whether glucosamine alone (with-
out chondroitin) could prevent dementia. No substan-
tial change occurred in the sensitivity analyses. Thus, we 

Table 2 Associations of regular glucosamine use with incident dementia

Values are numbers (%) unless stated otherwise
a Model 1: adjusted for age and sex
b Model 2: additionally adjusted for ethnicity, education, Townsend Deprivation Index, household income, body mass index, fruit consumption, vegetable 
consumption, smoking status, alcohol consumption, physical activity, health condition, antihypertensive drugs, insulin treatment, statin use, opioids use, chondroitin 
use, aspirin use, non-aspirin NSAID use, vitamin supplementation, mineral and other dietary supplementation, memory, and reaction time

Outcomes Glucosamine 
non-user
(n = 400,555)

Glucosamine user
(n = 94,259)

Model  1a Model  2b Propensity score 
adjusted

HR (95%CI) P value HR (95%CI) P value HR (95%CI) P value

All-cause dementia 1971 (0.5) 487 (0.5) 0.81 (0.73–0.90)  < 0.001 0.84 (0.75–0.93) 0.002 0.82 (0.73–0.92)  < 0.001

Alzheimer’s disease 732 (0.2) 192 (0.2) 0.78 (0.65–0.92) 0.018 0.83 (0.71–0.98) 0.029 0.80 (0.68–0.95)  < 0.001

Vascular dementia 408 (0.1) 83 (0.09) 0.68 (0.54–0.87) 0.002 0.74 (0.58–0.95) 0.018 0.72 (0.56–0.93) 0.009

Fig. 2 Relationship between glucosamine use and risk of dementia stratified by potential risk factors. Findings were adjusted for age, sex, ethnicity, 
education, Townsend Deprivation Index, household income, body mass index, fruit consumption, vegetable consumption, smoking status, alcohol 
consumption, physical activity, health condition, antihypertensive drugs, insulin treatment, statin use, opioids use, chondroitin use, aspirin use, 
non-aspirin NSAID use, vitamin supplementation, mineral and other dietary supplementation, memory, and reaction time
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speculate that glucosamine use might have a preventive 
role in the development of dementia, independent of 
chondroitin co-administration.

In our study, a stronger effect was found between glu-
cosamine use and AD among participants aged below 
60 years compared with those above 60 years. The weaker 
effect of glucosamine use in older participants may be 
related to the gradual atrophy of the hippocampus and 
the reduction of cortical density as the age increases, 
resulting in the reduction of brain cell membrane recep-
tors and the decreased sensitivity to drugs [67]. This 
result underscores the age-modified connection between 
glucosamine use and dementia and emphasizes the 
importance of early prevention of dementia.

The protective association between glucosamine use 
and dementia may be explained by a few different pro-
cesses. As a popular supplement that can pass through 
the blood–brain barrier, glucosamine may get to the hip-
pocampus, striatum, and cortex [68, 69]. Meanwhile, sev-
eral glucosamine transporters were identified in the brain 
[70]. For instance, glucose transporter 2 (GLUT2) was 
found in neurons and exhibited the greatest affinity for 
glucosamine [71, 72]. Intriguing evidence indicates that 
specific neuronal populations rely on GLUT2 to regu-
late glucose levels, thereby affecting their vulnerability to 
pathogenic mechanisms underlying AD [73, 74]. These 
studies highly support the important role of glucosa-
mine on dementia. C-reactive protein, an indicator of 
systemic inflammation, was significantly lower in those 
who regularly took glucosamine, according to data from 
the National Health and Nutrition Examination Survey 
(NHANES) [8]. Animal studies also showed that glucosa-
mine might suppress neuroinflammation [75], which is 
proved to increase the risk of dementia [76]. Furthermore, 
a prior research discovered that glucosamine might simu-
late a low-carbohydrate diet in mice through lowering 
glycolysis and enhancing amino acid catabolism [77]: con-
sequently, glucosamine has been considered a mimicking 
agent for energy restriction [21]. Recent works demon-
strated that a low-carbohydrate diet protects against the 
development of dementia [78, 79]. In addition, glucosa-
mine could reverse the imbalanced gut microbiota [80]. 
Through the gut–brain axis, the gut microbiota modulates 
the brain functioning of the host and plays a significant 
role in dementia pathogenesis [81, 82]. Thus, glucosamine 
might have a beneficial effect on dementia pathology by 
regulating the gut microbiota. Other pathways may possi-
bly be relevant and warrants further studies to explore the 
functional roles of glucosamine in dementia.

Our research had a number of advantages, such as 
a large number of participants and abundant data on 
dietary, health-related behaviors, and various fac-
tors that enabled us to examine the robustness of the 

findings and explore the effects of exposure in sev-
eral subgroups. Furthermore, the MR analysis offered 
a superior method of obtaining somewhat less con-
founded estimates of causal associations that were not 
impacted by reverse causation or confounding. We 
admit that our research has limitations. Firstly, the 
“regular glucosamine use” was defined as self-reported 
at the baseline only, which might have changed in the 
follow-up period. Details on glucosamine use, such as 
dose and use duration, were not collected in the UK 
Biobank, which may weaken the study findings. Hence, 
further research that incorporates the glucosamine 
intake pattern and cross-validates the data on glu-
cosamine for accuracy is required to delve into these 
connections. Secondly, UK Biobank did not record the 
adverse side effects participants suffered after using 
glucosamine. Nonetheless, glucosamine has been 
proved to be a safe supplementation for individuals 
with osteoarthritis due to its low risk of side effects 
including rare allergic reactions and gastrointestinal 
reactions [3]. Although people at high risk of diabetes 
showed reduced glucose tolerance after taking glu-
cosamine [83, 84], studies have proved that in healthy 
people and diabetic patients, any oral dose of glucosa-
mine will not affect the glucose metabolism and lipid 
status [85, 86]. Thirdly, in general, 20–100 imputed 
datasets are recommended, while in this study 5 data-
sets were imputed. Due to rather low proportions of 
missing data, we consider five imputed datasets to 
operate well. Fourthly, despite the SNPs we used were 
significantly correlated with the exposure, the genetic 
variants reflected only a modest portion of the over-
all variance in glucosamine intake, limiting them from 
being precise proxies of exposure. Given that we do 
not yet know how the genetic instruments work bio-
logically, we cannot totally eliminate out breaches of 
the independence and exclusion restriction assump-
tions, especially with regard to pleiotropy [63]. Nev-
ertheless, to infer reliable causal estimates, we used a 
variety of techniques, including Cochran’s Q statistic, 
MR-PRESSO, weighted median, and MR-Egger. Fifthly, 
the interpretation of genetic liability of supplement 
use should be cautious as genetic predictors of glu-
cosamine may capture participants with worse joint 
health [87]. We further adjusted osteoarthritis in the 
multivariable MR analysis to reduce bias. Sixthly, MR 
is a useful option for validating results; nevertheless, 
genetic variants reflect lifetime exposures rather than 
brief treatment modalities, which may create a bigger 
impact than a time-limited intervention [88]. There-
fore, our findings should be taken cautiously, since 
they are hypothesis generating and warrant more clini-
cal data to further investigate the connection between 
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glucosamine intake and dementia. Seventhly, although 
the current definition for dementia was widely used in 
previous studies and the true positive rate for all-cause 
dementia collected in the UK Biobank was as high as 
82.5% [89]; the true positive rates of Alzheimer’s dis-
ease and vascular dementia were lower than 75%. 
Thus, the results on the subtypes of dementia should 
be taken cautiously.

Conclusions
Regular glucosamine use was associated with a lower 
risk of all-cause dementia, AD, and vascular dementia, 
based on data from the UK Biobank cohort and a men-
delian randomization study. The potential implications 
of our findings for dementia prevention need additional 
confirmation in well-powered randomized controlled 
trials. We also recommend additional basic scientific 
research to investigate the underlying mechanisms.
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