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Abstract 

Background  Metabolomic changes during pregnancy have been suggested to underlie the etiology of gestational 
diabetes mellitus (GDM). However, research on metabolites during preconception is lacking. Therefore, this study 
aimed to investigate distinctive metabolites during the preconception phase between GDM and non-GDM controls 
in a nested case–control study in Singapore.

Methods  Within a Singapore preconception cohort, we included 33 Chinese pregnant women diagnosed with GDM 
according to the IADPSG criteria between 24 and 28 weeks of gestation. We then matched them with 33 non-GDM 
Chinese women by age and pre-pregnancy body mass index (ppBMI) within the same cohort. We performed a non-
targeted metabolomics approach using fasting serum samples collected within 12 months prior to conception. We 
used generalized linear mixed model to identify metabolites associated with GDM at preconception after adjusting 
for maternal age and ppBMI. After annotation and multiple testing, we explored the additional predictive value of 
novel signatures of preconception metabolites in terms of GDM diagnosis.

Results  A total of 57 metabolites were significantly associated with GDM, and eight phosphatidylethanolamines 
were annotated using HMDB. After multiple testing corrections and sensitivity analysis, phosphatidylethanolamines 
36:4 (mean difference β: 0.07; 95% CI: 0.02, 0.11) and 38:6 (β: 0.06; 0.004, 0.11) remained significantly higher in GDM 
subjects, compared with non-GDM controls. With all preconception signals of phosphatidylethanolamines in addition 
to traditional risk factors (e.g., maternal age and ppBMI), the predictive value measured by area under the curve (AUC) 
increased from 0.620 to 0.843.

Conclusions  Our data identified distinctive signatures of GDM-associated preconception phosphatidylethanola‑
mines, which is of potential value to understand the etiology of GDM as early as in the preconception phase. Future 
studies with larger sample sizes among alternative populations are warranted to validate the associations of these 
signatures of metabolites and their predictive value in GDM.
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Background
Metabolic alterations in a healthy pregnancy include a 
30% increment in basal endogenous glucose production 
by late pregnancy, primarily by hepatic function [1]. In 
order to maintain euglycemia, circulating fasting glu-
cose concentrations decrease during pregnancy mainly 
due to an increase in plasma volume in early pregnancy 
and an increase in glucose utilization in later gestation 
by the fetoplacental unit [2, 3]. Women with disruption 
during such metabolic adaptation during any time of 
pregnancy, such as reduced peripheral insulin sensitiv-
ity (e.g., reduced glucose uptake in skeletal muscle and 
adipose tissue, adverse amino acid, and lipid metabo-
lism) [1] and diminished pancreatic β-cell reserve [4], 
could develop hyperglycemia also known as gestational 
diabetes mellitus (GDM).

GDM affects from 1% to > 30% of pregnancies world-
wide and is exceptionally prevalent in Asian popula-
tions such as Saudi Arabia, India, and Singapore [5]. 
GDM is also important for public health awareness for 
two reasons. To begin with, GDM increases the risk 
of pregnancy complications for both mothers and off-
spring [3]. Subsequently, a GDM diagnosis identifies 
populations at risk (i.e., women and their offspring) of 
obesity, diabetes, and premature cardiovascular disease 
in the long run [3, 6, 7]. The etiology of GDM remains 
unclear, even though its involvement with maternal 
obesity, inflammation, and oxidative stress-mediated 
insulin resistance has been widely suggested [3, 8].

Metabolomics approach, defined as the study of 
global metabolite profiles in bio-samples under a 
given set of conditions, has been beneficial for assess-
ing cardiometabolic conditions [9]. Emerging evidence 
rooted in epidemiological studies has also investigated 
plasma, serum, and even urine metabolite profiles 
during pregnancy that significantly differed between 
women with and without GDM [8, 10–15]. However, 
the findings in metabolite panels were inconsistent, 
and later assessment in pregnancy was subjective to 
reverse causality [9, 16]. In addition, metabolic disrup-
tion as early as the preconception phase could help in 
understanding the etiology of GDM, which has been 
lacking in current literature. Therefore, we aimed to 
investigate distinctive metabolites during the precon-
ception phase between GDM and non-GDM controls 
using a non-targeted approach, in a nested case–con-
trol study among homogenous Chinese pregnant sub-
jects in Singapore.

Methods
Study population and study design
Within the Singapore PREconception Study of long-Term 
maternal and child Outcomes (SPRESTO), a preconcep-
tion and pregnancy cohort conducted from February 
2015 to October 2017, we recruited Chinese, Malay, and 
Indian women without type 1 or type 2 diabetes, aged 
18–45 years, and planning to conceive within 12 months. 
We published the cohort profile earlier and described the 
study objective and protocol in detail [17]. The study was 
conducted according to the guidelines under the Declara-
tion of Helsinki and approved by the SingHealth Central-
ized Institute Review Board (2014/629/D).

GDM diagnosis
Among 376 singleton live births, we ascertained 33 Chi-
nese pregnant women with GDM according to the Inter-
national Association of Diabetes and Pregnancy Study 
(IADPSG) criteria between 24 and 28 weeks of gestation 
[18]. We then matched them at a 1:1 ratio with 33 non-
GDM Chinese women by age (± 2 years) and categories 
of pre-pregnancy body mass index (ppBMI) (under-
weight [< 18.5 kg/m2], normal weight [18.5–22.9 kg/m2], 
overweight [23.0–27.4 kg/m2], and obese [≥ 27.5 kg/m2]) 
[17]. We performed blood collection among all partici-
pants during the preconception phase (within 12 months 
prior to conception).

Non‑targeted metabolomics approach
Non-targeted metabolomics analysis was performed 
using liquid chromatography-mass spectrometry 
(LC–MS), as described in accordance with standard 
procedures [19, 20]. Upon enrolment during the pre-
conception phase, we collected fasting serum sam-
ples from all participants and stored biospecimens at 
–  80  °C until thawing them immediately before assay. 
Briefly, fasting serum samples were processed with 
methanol or butanol/methanol precipitation for polar 
or non-polar metabolite analysis and were run in the 
same batch. Quality control samples were prepared by 
mixing equal amounts from all the samples and ana-
lyzed after every ten samples to monitor the stability 
of the system. We then reported the intra-coefficient 
of variation (CV) accordingly. LC–MS analysis was 
conducted using Agilent 1290 ultrahigh pressure liq-
uid chromatography system equipped with a 6550 
quadrupole time-of-flight mass detector managed by 
a MassHunter workstation. Mass data were collected 
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between m/z 100 and 1000  Da at a rate of two scans 
per second. The electrospray ionization mass spectra 
were acquired in both positive and negative ion mode. 
Two reference masses were continuously infused to 
the system to allow constant mass correction dur-
ing the run: m/z 121.0509 (C5H4N4) and m/z 922.0098 
(C18H18O6N3P3F24). Raw spectrometric data were ana-
lyzed by the Agilent MassHunter Qualitative Analy-
sis software. The molecular features characterized by 
retention time, chromatographic peak intensity and 
accurate mass were obtained using Agilent MassHunter 
Mass Profiler Professional software. A total of 5263 
features extracted from both positive and negative ion 
modes were used for subsequent statistical analyses. 
All these features have an intensity ≥ 20,000 counts 
(approximately three times the detection limit of our 
LC–MS instrument) and were found in at least 80% of 
the samples in either GDM or non-GDM groups.

Covariates
During recruitment, trained research coordinators con-
ducted in-person interviews and measured the partici-
pants’ weight, height, and blood pressure at the study 
clinic. Covariates collected via questionnaires at study 
entry included socio-demographic factors, health his-
tory, menstrual characteristics, and lifestyle behaviors. 
In detail, they were maternal age, parity (nulliparous vs. 
parous), pre-pregnancy BMI, family history of diabetes, 
smoking (never vs. past or current), alcohol intake (never 
vs. past or current), micronutrient supplements intake 
in the past 3 months (yes vs. no). In addition, a 2-h 75 g 
two-time point oral glucose tolerance test (OGTT) was 
performed at the clinic during the first preconception 
visit. Preconception prediabetes was diagnosed based 
on fasting glucose concentration at ≥ 6.1 mmol/L and/or 
2-h glucose concentration at ≥ 7.8 mmol/L, according to 
World Health Organization (WHO) guidelines [21].

Statistical analyses
We performed the following steps for our statistical 
analyses. Step 1, we compared baseline characteris-
tics between GDM and non-GDM controls using either 
generalized linear mixed model (GLMM) or general-
ized estimation equation (GEE) to account for 1:1 ratio 
matching effect. Step 2, we applied Student’s t-test to 
identify a pool of metabolite candidates, from which we 
further used GLMM to identify signatures of metabo-
lites with adjustment of maternal age and ppBMI and 
accounting for the case–control matching effect. Step 3, 
upon GLMM identification, we performed annotation 
via Human Metabolite Database (HMDB) and pathway 
analysis via the KEGG database and assessed the cor-
relation among all signatures of metabolites using the 

spearman rank correlation. Step 4, we compared the 
means and standard errors of all annotated metabolites 
after log-transformation their peak area between GDM 
and non-GDM controls using GLMM model and indi-
cated regression estimate in mean difference between 
GDM and non-GDM subjects for each signature of 
metabolite identified. Due to the exploratory nature of 
our study, we corrected multiple testing using the false 
discovery rate (FDR) approach [22] and conducted sensi-
tivity analysis by additionally adjusting for preconception 
diabetes according to WHO 2015 criteria [21], family his-
tory of diabetes, and parity. Step 5, all annotated metabo-
lites from the preconception phase were presented in box 
plots, including median and inter-quartile range (IQR). 
Step 6, we performed the receiver operating character-
istic (ROC) curve to calculate the area under the curve 
(AUC) value for GDM using annotated metabolites and 
traditional risks (e.g., maternal age, ppBMI) at the pre-
conception phase.

In the descriptive table, we expressed all maternal char-
acteristics data as median with IQR or mean with stand-
ard deviation (SD) when appropriate. We conducted all 
statistical analyses using the SIMCA 13.2 (Umetrics, 
Umea, Sweden), MetaboAnalyst (Version 4.0), and R Soft-
ware (Version 3.5.0). We reported regression estimates in 
mean difference with 95% confidence interval (CI) after 
log-transformation of all signatures of metabolites and 
deemed significance at p-value (2-sided) less than 0.05.

Results
No significant difference in baseline maternal character-
istics were identified between GDM cases and matched 
controls (Table  1). A total of 57 metabolites were sig-
nificantly associated with GDM. Nine were further suc-
cessfully annotated. Since two were duplicated, a total of 
eight phosphatidylethanolamines were identified using 
HMDB, including 34:1, 34:2, 36:2, 36:4, 38:4, 38:5, 38:6, 
and 40:6. All of them were normalized after log-trans-
formation in peak area and highly correlated with each 
other using the spearman rank correlation (Additional 
file 1: Tab. S1).

These eight phosphatidylethanolamines expressed 
significantly higher signals in the GDM than the non-
GDM controls (β range of mean difference: 0.04–0.07, all 
p < 0.05). The intra-CV in these eight phosphatidyletha-
nolamines ranged between 2.86 and 4.14% (Additional 
file  2: Tab. S2). After FDR correction and sensitivity 
analysis, phosphatidylethanolamines 36:4 (mean differ-
ence β: 0.07; 95% CI: 0.02, 0.11, FDR-corrected p-value: 
0.0084) and 38:6 (mean difference β: 0.06; 95% CI: 
0.004, 0.11; FDR-corrected p-value: 0.0032) remained 
significantly different between GDM and non-GDM 
controls (Table  2) during preconception phase. We 
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applied scatterplot overlaying box plots to showcase 
the distribution and signal mean differences between 
GDM and non-GDM controls according to eight 

phosphatidylethanolamines (Additional file  3: Fig. S1) 
and highlighted 36:4 and 38:6 in Fig. 1. Sensitivity analy-
sis by additionally adjusting for family history of diabe-
tes, parity, prediabetes during the preconception phase, 
and prior GDM history did not significantly attenuate 
our findings on 36:4 and 38:6 (Additional file 4: Tab.S3).

Furthermore, no pathway was identified among eight 
annotated metabolites, whereas 12 pathways were identi-
fied among unannotated metabolites via KEGG pathway 
analysis (Additional file 5: Tab. S4).

Since there were eight metabolites identified while 
two remained significant after FDR correction, we per-
formed the ROC curve for all candidate models based on 
different sets of metabolites. With 36:4 and 38:6 signals 
in addition to traditional risk factors such as maternal 
age, ppBMI, family history of diabetes, prior history of 
GDM, preconception prediabetes, and parity, the AUC 
increased from 0.620 to 0.773 and R2 increased from 
0.048 to 0.236 (Table 3 and Fig. 2). With all eight metabo-
lites’ signals in addition to the same set of traditional risk 
factors mentioned above, the AUC increased from 0.620 
to 0.843 and R2 increased from 0.048 to 0.377 (Table  3 
and Fig.  2). Due to the multiple adjustments within a 

Table 1  Preconception maternal characteristics between GDM and non-GDM matching controls by maternal age, ethnicity, and pre-
pregnancy body mass index category

Abbreviations: GDM Gestational diabetes mellitus, IQR Inter-quartile range, BMI Body mass index, HbA1c Glycated hemoglobin, OGTT​ Oral glucose tolerance test, DM 
Diabetes
* Accounted for matching with generalized linear mixed model or generalized estimating equation, if applicable

Maternal characteristics before pregnancy GDM subjects (N = 33) Non-GDM subjects (N = 33) p*
Mean (SD) or N (%) Mean (SD) or N (%)

Age, years 30.09 (2.52) 30.59 (2.39) 0.50

Parity 0.55

  0 23 (67.65) 22 (68.75)

  1 9 (26.47) 10 (31.25)

  2 2 (5.88) 0 (0)

BMI, kg/m2 23.5* (4.13) 23.77* (4.24) 0.44

BMI category, 0.86

  Underweight, < 18.5 kg/m2 1 (3.0) 3 (9.1)

  Normal weight, 18.5–22.9 kg/m2 17 (51.5) 17 (51.5)

  Overweight, 23.0–27.4 kg/m2 7 (21.2) 6 (18.2)

  Obese, >  = 27.5 kg/m2 8 (24.2) 7 (21.2)

Waist to hip ratio 0.85 (0.06) 0.86 (0.04) 0.60

HbA1c, mmol 33.2 (2.96) 32.5 (3.09) 0.33

Prior GDM, yes 0 (0) 0 (0) –

OGTT​

  Fasting glucose, mmol/L 4.91 (0.5) 4.8 (0.26) 0.16

  2-h glucose, mmol/L 6.1 (1.61) 5.48 (1.37) 0.13

  Prediabetes, yes 1 (3.23) 2 (6.25) 0.10

Family history of DM, yes 12 (36.36) 7 (21.88) 0.27

Time-to-pregnancy, months 2.45 (7.74) 3.84 (5.22) 0.86

Table 2  Comparison of eight annotated metabolites between 
GDM and non-GDM subjects using GLMM during preconception 
phase within 12 months prior to conception

GLMM was adjusted for maternal age and pre-pregnancy body mass index 
(pp-BMI) at the preconception phase

Abbreviations: GDM Gestational diabetes mellitus, GLMM Generalized linear 
mixed model, FDR False discovery rate

Phosphatidylethanolamines GDM vs. non-GDM (reference)

Mean difference
β (95% CI)

p value FDR

34:1 0.04 (− 0.01, 0.09) 0.04 0.0498

34:2 0.06 (− 0.01, 0.12) 0.03 0.0498

36:2 0.05 (− 0.004, 0.11) 0.049 0.0498

36:4 0.07 (0.02, 0.11) 0.001 0.0084
38:4 0.05 (0.01, 0.09) 0.03 0.0498

38:5 0.04 (− 0.003, 0.09) 0.04 0.0498

38:6 0.06 (0.004, 0.11) 0.01 0.0332
40:6 0.06 (0.0002, 0.11) 0.049 0.0498
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relatively small sample size, all comparisons did not reach 
statistical significance.

Discussion
In our longitudinal study of 33 pairs of Chinese GDM 
and non-GDM controls on non-targeted metabolomics 
signature at the preconception phase within 12  months 
prior to conception, fifty-seven metabolites were signifi-
cantly related to GDM. Among them, eight phosphati-
dylethanolamines were successfully annotated with a 
range of fatty acid chain lengths. After FDR correction 
in multiple testing, only phosphatidylethanolamines 36:4 
and 38:6 remained significant in association with GDM. 

Compared with non-GDM controls, these two glycer-
ophospholipids were related to adverse cardiometabolic 
profiles and exhibited significantly higher signals during 
the preconception phase in GDM subjects.

Emerging evidence has shown that serum, plasma, and 
even urine metabolites (e.g., lipids, fatty acids, amino 
acids, acylcarnitines, dopamine) were associated with 
incident GDM in either early or mid-pregnancy [8–11, 
23, 24]. However, we are unaware of studies on metabo-
lomics measurements before pregnancy. Women at risk 
of GDM already exert differences in fat deposition and 
glycose tolerance even before their pregnancy [25]. The 
signatures of metabolites in preconception are of poten-
tial value to understand the pathophysiology of GDM.

Our study is the first to investigate the missing link of 
changes in metabolites as early as in the preconception 
phase. Among the eight metabolites identified to differ-
entiate GDM from non-GDM controls, all were phos-
phatidylethanolamines—a class of glycerophospholipids 
that is made in the endoplasmic reticulum (ER) via the 
cytidine diphosphate-diacylglycerol-ethanolamine path-
way [26]. Since phosphatidylethanolamine is one of the 
most abundant glycerophospholipids in mammalian 
cells and is easy to obtain from human blood and small 
biopsy tissues, clinical studies in the past decade have 
widely investigated its association with insulin sensitiv-
ity. Emerging evidence has demonstrated the key role of 
phosphatidylethanolamine in the insulin signaling path-
way, and it was suggested that increased phosphatidyl-
choline/phosphatidylethanolamines ratio was associated 
with reduced insulin sensitivity [27] and elevated among 
patients with type 2 diabetes [28]. In mice models, accu-
mulation of phosphatidylethanolamine production in 
mitochondria is suggested to modulate glucose [29] and 
increase diacylglycerol [30], the latter of which is known 
for causing insulin resistance in cells [31].

Fig. 1  Scatter plots and box plots of phosphatidylethanolamines 36:4 
and 38:6 at preconception (within 12 months prior to conception) 
phase between GDM and non-GDM controls in the nested case–
control study embedded in SPRESTO study

Table 3  Predictive value for GDM using traditional and novel biomarkers identified in our cohort

Abbreviations: GDM Gestational diabetes mellitus, ppBMI pre-pregnancy body mass index, AUC​ Area under the curve

Models R2 AUC​ P value

Ref (model 1) Ref (model 2) Ref (model 3)

Metabolites prediction model

  Model 1, adjusting for 36:4, 38:6 0.127 0.694 N/A N/A N/A

  Model 2, adjusting for eight metabolites (34:1, 34:2, 36:2, 36:4, 38:4, 38:5, 38:6, and 
40:6)

0.194 0.754 0.554 N/A N/A

Traditional risks prediction model

  Model 3, adjusting for maternal age, ppBMI, family history of GDM, prior history of 
GDM, preconception prediabetes, parity

0.048 0.620 0.382 0.612 N/A

Metabolites and traditional risks combined prediction model

  Model 4, model 1 + model 3 0.236 0.773 0.360 0.738 0.480

  Model 5, model 2 + model 3 0.377 0.843 0.433 0.257 0.300
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Our study showed a significantly higher signal of phos-
phatidylethanolamines 36:4 and 38:6 in GDM cases than 
in non-GDM controls. Emerging evidence also showed 
elevated levels of phosphatidylethanolamines (e.g., 18:1, 
22:2, 36:1, 36:4, and 38:6) in both mid- and late pregnancy 
[11, 32], among women with different racial backgrounds. 
Even though their biological functions underlying the 
pathogenesis of GDM are largely unknown, we postu-
lated that phosphatidylethanolamines could adversely 
impact cellular activity and glucose and fatty acid metab-
olism [27], since lipid metabolism disorders often accom-
pany glucose metabolism disorders in diabetes, and the 
complex relationship between metabolism and numerous 
lipid metabolites needs further elucidation. A recent lon-
gitudinal study also reported that glycerophospholipids 
could predict the transition from GDM to type 2 diabe-
tes in the early postpartum period, which was a supe-
rior indicator to clinical parameters [33]. Our findings 
and others might provide strong evidence to pinpoint 
the consistent and distinctive values of certain types of 
phosphatidylethanolamines related to GDM, from pre-
conception to postpartum phases. And the identification 
of these might help classify and prevent GDM and even 
postpartum type 2 diabetes among women at risk. Future 

studies should explore such metabolites and pathways 
underlying the GDM etiology in alternative populations 
and with larger sample sizes.

The strength of this study lies in the preconception 
blood sample within 12 months prior to conception, and 
the comprehensive measures of metabolomics based on 
an untargeted approach, from a group of homogenous 
Chinese women. The study is not without limitations. 
Firstly, the relatively small sample size may limit the sta-
tistical power of the study. We are not able to validate 
our results in a subset of samples within our cohort. 
However, even with 33 pairs of GDM cases and con-
trols, we robustly annotated two metabolites that could 
distinctively differentiate GDM subjects from non-
GDM controls after FDR correction. Secondly, the study 
design of one-time measurement of metabolites within 
12  months prior to conception might not capture the 
dynamic trajectories of metabolic profiles. Even though 
it may be practically much more challenging, future 
studies with longitudinal measures before pregnancy are 
warranted. Considering our subjects were more moti-
vated to maintain a relatively healthy lifestyle and phy-
sique to achieve a successful pregnancy than the general 
population [34], and those who entered pregnancy with 

Fig. 2  Receiver operating characteristic (ROC) curve admissions of the predictive models on GDM using identified metabolites and traditional 
risks. The red line represents the ROC curve of model 3: GDM ~ all traditional maternal risk factors including maternal age, ppBMI, family history 
of diabetes, prior history of GDM, preconception prediabetes and parity at the preconception phase (R2 = 0.048, AUC = 0.620). The yellow line 
represents the ROC curve of model 5: GDM ~ all eight metabolites identified at preconception in addition to model 3 (R2 = 0.377, AUC = 0.843)
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livebirth outcomes had a more healthful plant-based 
eating dietary pattern [35], the impact of identifying 
metabolites due to dynamic trajectories in our study is 
speculated less significant than the general population. 
Lastly, even though we developed the prediction model 
from a nested case–control study, the under-sampling 
of non-outcomes might potentially overestimate the 
AUC performance in our study.

Conclusions
Our data identified distinctive signatures of metabolites 
of GDM, specifically in preconception fasting serum (i.e., 
phosphatidylethanolamines 36:4 and 38:6), which is of 
potential value to understand in depth on the etiology 
of GDM as early as in the preconception phase. Future 
studies with larger sample sizes in a multiracial prospec-
tive study setting with external validation and multiple 
time points of metabolites testing are warranted to vali-
date the association of these signatures with GDM and 
even evaluate the predictive value of such metabolites.
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