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Abstract 

Background  Insomnia symptoms are widespread in the population and might have effects on many chronic condi-
tions and their risk factors but previous research has focused on select hypothesised associations/effects rather than 
taking a systematic hypothesis-free approach across many health outcomes.

Methods  We performed a Mendelian randomisation (MR) phenome-wide association study (PheWAS) in 336,975 
unrelated white-British UK Biobank participants. Self-reported insomnia symptoms were instrumented by a genetic 
risk score (GRS) created from 129 single-nucleotide polymorphisms (SNPs). A total of 11,409 outcomes from UK 
Biobank were extracted and processed by an automated pipeline (PHESANT) for the MR-PheWAS. Potential causal 
effects (those passing a Bonferroni-corrected significance threshold) were followed up with two-sample MR in MR-
Base, where possible.

Results  Four hundred thirty-seven potential causal effects of insomnia symptoms were observed for a diverse range 
of outcomes, including anxiety, depression, pain, body composition, respiratory, musculoskeletal and cardiovascular 
traits. We were able to undertake two-sample MR for 71 of these 437 and found evidence of causal effects (with direc-
tionally concordant effect estimates across main and sensitivity analyses) for 30 of these. These included novel find-
ings (by which we mean not extensively explored in conventional observational studies and not previously explored 
using MR based on a systematic search) of an adverse effect on risk of spondylosis (OR [95%CI] = 1.55 [1.33, 1.81]) and 
bronchitis (OR [95%CI] = 1.12 [1.03, 1.22]), among others.

Conclusions  Insomnia symptoms potentially cause a wide range of adverse health-related outcomes and behav-
iours. This has implications for developing interventions to prevent and treat a number of diseases in order to reduce 
multimorbidity and associated polypharmacy.
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Background
While there is still much debate over the exact purpose of 
sleep, it is clear that sleep is vital for healthy functioning 
and likely to be multifaceted. Experiments on rats have 
suggested that sleep is linked to antioxidative enzyme 
levels in the brain which regulate the levels of reactive 
oxygen species (by-products of the metabolization of 
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oxygen which damage cells) [1]. It has also been proposed 
that sleep is vital for the consolidation of information, 
learning, and memory [2, 3]. Insomnia is defined as regu-
lar dissatisfaction with the quality or quantity of sleep for 
a prolonged period and includes difficulty initiating or 
maintaining sleep [4]. Evidence suggests that 6–7% of the 
European population have a diagnosis of insomnia, while 
33–37% self-report having insomnia symptoms [5–7]. 
It is the second most prevalent mental health disorder 
(after anxiety disorder) and is more common in women 
and the elderly [6, 7]. Multimorbidity, defined as patients 
living with two or more chronic health conditions, is 
associated with polypharmacy, poor quality of life and 
premature mortality [8, 9]. It is increasingly recognised as 
a threat to global health and identifying potential causes 
of multimorbidity is a research priority [10].

Given the high prevalence of insomnia symptoms, and 
their potentially causal associations with many diseases 
(including increased risk of depression [11, 12], sub-
stance use [13, 14], autism spectrum disorder and bipolar 
disorder [15], dementia [16], high body mass index and 
diabetes [17, 18], hypertension [19], cardiovascular dis-
ease [20–22], pain [23] and inflammation [24]), insomnia 
symptoms could lead to multimorbidity. However, stud-
ies to date have largely been observational and may not 
reflect causal effects, and/or have focused on hypoth-
esised selected outcomes, predominantly mental, neu-
rocognitive and cardiometabolic outcomes, rather than 
systematically, using a hypothesis free approach, search-
ing for potential causal effects across a wide range of 
health and disease outcomes. If insomnia symptoms are a 
cause of multimorbidity then insomnia treatments, such 
as cognitive behavioural therapy for Insomnia [25] rec-
ommended by UK National Institute for Health and Care 
Excellence [26], might be an effective means of reduc-
ing other diseases and multimorbidity, in those with 
insomnia.

Mendelian randomisation (MR) is a method used for 
testing causal relationships that generally uses genetic 
variants that are robustly associated with the exposure of 
interest as instrumental variables (IV) [27]. MR is typi-
cally less prone to confounding of the exposure-outcome 
association and reverse causation than conventional 
observational epidemiology; as genetic variation is deter-
mined at conception, it cannot be altered by disease sta-
tus [28]. However, it has other potential sources of bias, 
in particular those due to weak instruments, confounding 
of the instrument-outcome association and horizontal 
pleiotropy [29] (the core assumptions of MR have been 
previously reported in detail [30]). A MR-phenome-wide 
association study (MR-PheWAS) is a hypothesis-free 
approach that tests for causal effects of a trait of inter-
est [31] on many phenotypes [32]. To our knowledge, 

only one previous study has undertaken an MR-PheWAS 
of insomnia symptoms [33]. In that study, the automated 
tool PhenoScanner [34] was used to explore causal effects 
of maternal insomnia symptoms on 17,503 outcomes. It 
identified 2844 potential causal effects (p-value < 0.05) 
including on adiposity, mental health, musculoskeletal, 
respiratory/allergic and reproductive phenotypes. How-
ever, that MR-PheWAS was part of an illustrative exam-
ple in a methodological paper focused on addressing one 
of the MR assumptions, and none of the potential causal 
effects were explored further with replication or sensitiv-
ity analyses. The aim of this study is to explore the causal 
effects of insomnia symptoms on a wide-range of disease 
and health-related traits. We followed the STROBE-MR 
reporting guidelines when writing this paper [35] and 
this study was not pre-registered.

Methods
Study population
We used data from UK Biobank, a large prospective 
cohort study (dataset ID 43017 of UK Biobank applica-
tion 16729, phenotypic data extracted on 24/02/2021). 
UK Biobank recruited 503,325 adults aged from 37 
to 73  years. They were recruited between 2006 and 
2007 and attended one of the 22 test centres across 
the UK. Of the 503,325 participants, genetic data (see 
Additional file  1: Text S1) was successfully obtained 
for 487,406 participants [36]. Participants were then 
excluded from this sample if they did not meet the 
genetic quality control [37], they were not of white-
British ancestry, they were not part of the maximal 
subset of individuals not related to any other individual 
to the third degree or higher or they had since with-
drawn their consent (as of 09/08/2021). The remaining 
336,975 participants were included in the MR-PheWAS 
(See Additional file 1: Fig. S1 for a flow diagram).

Genetic risk score
We generated a weighted genetic risk score (GRS) using 
129 independent single-nucleotide polymorphisms 
(SNPs) previously identified [18] to associate with self-
reported insomnia symptoms (answering yes to any of 
eight questions about insomnia diagnosis, symptoms 
or treatment versus answering no to all these question 
plus three more questions about diagnosis and treat-
ment of collections of diseases which include insom-
nia—see Additional file 1: Text S2) at GWAS significance 
(with p < 5 × 10−8) in 23andMe, Inc. (Additional file  2: 
Table  S1). These data were requested from 23andMe 
as they were not provided in the original GWAS paper. 
SNPs were weighted by their per-allele association with 
insomnia symptoms in the original GWAS. We used a 
linkage disequilibrium (LD) threshold of R2 > 0.001 to 
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clump the GWAS significant SNPs into independent 
SNPs. LD was calculated in the 1000 Genomes European 
data [38], and the TwoSampleMR (MR-base) R package 
v0.5.6 [39] was used to clump GWAS significant SNPs 
into independent SNPs. One SNP (rs28458909) was not 
available in UK Biobank and thus was replaced by a proxy 
(rs28780988) that was in close LD (R2 = 1). All palindro-
mic SNPs had an effect allele frequency falling below 0.49 
or above 0.51 in UK Biobank and 23andMe and therefore 
could be harmonised.

As the SNPs used to construct the GRS are not repli-
cated, there is a higher chance that spurious SNPs could 
have been falsely detected. We created two sensitivity 
analysis GRS which used SNPs which were replicated 
in a meta-analysis of 23andMe and UK Biobank. These 
analyses are only sensitivity analyses as they are at risk 
of overfitting due to UK Biobank being used to identify 
SNPs (see Additional file 1: Text S3 and Additional file 2: 
Table S2).

Outcomes
A total of 11,409 outcome variables were derived and 
analysed using PHESANT [40]. Outcomes included those 
obtained from responses to baseline and follow-up ques-
tionnaires, baseline assessments such as weight, height, 
blood pressure and bone density measurements, follow-
up assessments such as accelerometer measurements and 
a range of different scans (including brain and cardiac 
scans), biomarker measures from blood or urine samples 
and outcomes from linkage to primary and secondary 
care, and the national cancer and death registers. In order 
to summarise our overall findings from the MR-PheWAS, 
outcomes were assigned to categories and subcategories 
based on their UK Biobank category (e.g. Online follow-
up > Mental health > Anxiety). Measurements that were 
not health-related outcomes were assigned to the Auxil-
iary Variables category. These included outcomes such as 
hospital administration records and procedural metrics. 
Individual sleep variables from the mental health and 
physical health categories were then reassigned to a sleep 
category and medication variables in the physical health 
category that were for mental disorders were reassigned 
to the mental health category. We then manually assigned 
outcomes in these two categories to subcategories.

MR‑PheWAS analysis
The PHESANT package (v1.0) was used for the MR-
PheWAS. We adjusted for age at assessment, sex and 
the top 10 genetic principal components to control for 
populations stratification [41]. A complete case analysis 
was undertaken by PHESANT meaning participant num-
bers differ between outcomes and we chose to exclude 

outcomes with less than 100 cases. PHESANT derives 
outcomes from the UK Biobank data and defines whether 
they are continuous, binary, ordered categorical or unor-
dered categorical and tests the association with a trait of 
interest, in our case the insomnia symptoms GRS, using 
linear (using inverse normal rank transformed data to 
ensure a normal distribution), logistic, ordered logis-
tic, and multinomial logistic regression, respectively. 
The results are presented as difference in mean standard 
deviation (SD) of inverse rank normal transformed con-
tinuous outcomes and odds ratio (OR) for categorical 
outcomes, per 1 SD increase in the weighted GRS. We 
defined potential causal effects as any insomnia symp-
toms GRS-outcome association that passed the Bon-
ferroni-corrected significance threshold of 4.38 × 10−6 
(0.05/11,409) in the MR-PheWAS. The less conservative 
false discovery rate correction was also calculated and 
reported but was not used to identify potential causal 
effects for follow-up.

Follow‑up two‑sample MR
We undertook follow-up analyses using two-sample 
MR for all outcomes for which the association with 
the GRS was identified as a potential causal effect of 
insomnia symptoms and an appropriate GWAS could 
be found. The purpose of this was to confirm the reli-
ability of the potential causal effects identified in the 
MR-PheWAS and to provide a causal estimate. The 
TwoSampleMR package (MR-base) v0.5.6 [39] was used 
to conduct the follow-up. It was decided a priori that 
outcomes included in the auxiliary variables or sleep 
categories would not be followed up. We conducted an 
automated search for relevant GWAS using pre-spec-
ified search terms for each outcome and a predeter-
mined workflow to select the most appropriate GWAS 
for each outcome. First, we conducted an automated 
search for relevant GWAS using pre-specified search 
terms for each outcome. The search automatically 
excluded GWAS that included solely UK Biobank data, 
included non-European populations or stratified by sex, 
based on the meta-data included in the MR-Base data-
base. Of the remaining GWAS, we excluded those that 
did not match a follow-up outcome on manual inspec-
tion, those for which the origins of the data used could 
not be determined and those that used UK Biobank or 
23andMe data. If the only GWAS available for a par-
ticular outcome included UK Biobank or 23andMe 
data (but did not only include UK Biobank or 23andMe 
data), we undertook follow-up in those GWAS and 
report the extent of overlap between the two samples. 
Of the remaining GWAS, we then chose the most suit-
able for a given trait. This was either the most suitable 
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match in terms of the trait used in that GWAS or where 
multiple GWAS had suitable traits, we chose the one 
with the larger sample size. All GWAS from FinnGen 
were then updated to the newest version when the fifth 
release was added to the MR-Base database.

The two-sample MR analysis used the same 129 SNPs 
and  SNP-insomnia symptoms associations  used by the 
MR-PheWAS GRS [18], and the SNP-outcome associa-
tions were extracted from the GWAS for each outcome. 
We used the TwoSampleMR (MR-base) package for the 
two-sample MR analyses, which has a built-in func-
tion for harmonising SNPs between the SNP-exposure 
and SNP-outcome summary results (in this study so 
that results reflect the effects of having symptoms on 
outcomes for each SNP). By default, SNPs are excluded 
if harmonisation is not possible (e.g. if a suitable proxy 
cannot be found for missing SNPs or if SNPs were pal-
indromic with allele frequencies near to 0.5). We used 
the inverse-variance weighted (IVW) method for our 
main two-sample MR analyses [42] and weighted median 
regression MR [43] and MR-Egger [44] as sensitivity 
analyses to explore potential bias due to unbalanced hori-
zontal pleiotropy. We did not correct for multiple test-
ing as these analyses only followed up results which had 
past the very conservative Bonferroni-corrected thresh-
old used in the MR-PheWAS. All code can be found at 
https://​github.​com/​MRCIEU/​PHESA​NT-​MR-​PheWAS-​
Insom​nia v1.1.

Systematic search of previous literature
At the suggestion of a peer reviewer, we undertook a sys-
tematic search to identify published MR studies of the 
effect of insomnia on health outcomes. This was used 
to explore the extent to which the MR-PheWAS identi-
fied novel findings that have not been previously stud-
ied with MR. We searched Embase and Web of Science 
on 8/12/2022 for articles containing “Insomnia” AND 
(“Mendelian randomisation” OR “Mendelian randomiza-
tion”) in any field. We excluded articles which were not 
fully peer-reviewed original research articles or were not 
investigating the causal effect of insomnia on an outcome 
through MR. We then extracted information on the rel-
evant analyses from each article and whether they found 
evidence of a causal effect.

Results
The study population had a  mean age of  57  years, 54% 
were female and 32% were educated to degree level 
(Table  1). Self-reported insomnia symptoms were com-
mon, with 48% reporting these sometimes and 28% 
usually.

MR‑PheWAS
The insomnia symptoms GRS was associated with an 
increased risk of insomnia symptoms in UK Biobank: OR 
of self-report of usually versus never/rarely/sometimes 
having trouble falling or staying asleep = 1.08 [95% Con-
fidence Interval (CI): 1.07, 1.09] per one standard devia-
tion higher GRS (p = 3.59 × 10−84, McFadden’s pseudo 
R2 = 0.01). See Additional file  1: Fig. S2 for the associa-
tion of each SNP with insomnia symptoms.

Of the 11,409 associations included in the MR-
PheWAS, 437 were identified as potential causal effects 
(Additional file  2: Table  S3). These included anxiety, 
stress, depression, mania, addiction, pain, body compo-
sition, immune, respiratory, endocrine, dental, musculo-
skeletal, cardiovascular and reproductive traits, as well as 
socioeconomic and behavioural traits. Figure 1 shows the 
proportion of potential causal effects of insomnia symp-
toms by broad categories of outcomes. For associations 
between insomnia symptoms and mental health-related 
outcomes, 96 of 301 (32%) were identified as potential 
causal effects. There were higher proportions of these in 
10 out of 17 of the mental health subcategories (Fig. 2), 
including depression (38%), anxiety (48%), general (33%), 
well-being (87%), suicide and self-harm (24%) and mania 
(19%). Of the physical health category, 197 out of 6451 

Table 1  Baseline characteristics for the white-British UK Biobank 
sample of 336,975 individuals included in the MR-PheWAS

A level advanced level, AS level advanced subsidiary level, CSE certificate of 
secondary education, GCSE General Certificate of Secondary Education, HND 
Higher National Diploma, HNC Higher National Certificate, NVQ National 
Vocational Qualification, SD standard deviation
a Mean (SD) for continuous variables and number and percentage for categorical 
variables

Mean (SD) or N (%)a

Age at assessment centre (years) 57 (8)

Townsend area deprivation score  − 1.58 (2.93)

Sex 336,975 (100%)

  Male 155,702 (46%)

  Female 181,269 (54%)

Insomnia 336,744 (99.9%))

  Usually 95,380 (28%)

  Sometimes 160,877 (48%)

  Never/Rarely 80,483 (24%)

Education 333,846 (99%)

  College or university degree 106,741 (32%)

  A levels/AS levels or equivalent 38,439 (11%)

  O levels/GCSEs or equivalent 74,089 (22%)

  CSEs or equivalent 18,114 (5%)

  NVQ/HND/HNC or equivalent 22,097 (7%)

  Other professional qualifications (e.g. nursing 
or teaching)

17,284 (5%)

  None 57,078 (17%)

https://github.com/MRCIEU/PHESANT-MR-PheWAS-Insomnia
https://github.com/MRCIEU/PHESANT-MR-PheWAS-Insomnia
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(3%) associations with the insomnia symptoms GRS were 
identified as potential causal effects. Higher proportions 
of potential causal effects (Fig. 3) were seen for the pain 
(30%) and body composition (19%) subcategories. For 
the family and childhood category, 17 out of 96 (18%) 
associations were identified as potential causal effects. 
This category included some outcomes that could not 
be plausibly affected by adult insomnia and might reflect 
shared family (inherited) predisposition to insomnia and 
its potential causal effects on fertility and health-related 
outcomes across family members. For the lifestyle/
behaviours category, 44 out of 854 outcomes (5%) were 
identified as potential causal effects, while for the soci-
odemographic category 38 out of 1053 (4%) were. There 
were 2 of 2160 (0.1%) outcomes identified as potential 
causal effects from the brain imaging category. Alter-
natively, the brain/cognition category had no potential 
causal effects. Full details of the numbers in each cat-
egory/subcategory and the numbers and percentages of 
outcomes in those categories that are potentially influ-
enced by insomnia symptoms are provided in Additional 

file 2: Tables S4 and S5. For the results of the sensitivity 
analyses, see Additional file  1: Text S4, Figs. S3-S4 and 
Additional file 2: Table S3.

Follow‑up two‑sample MR
Of the 437 potential causal effects identified in the MR-
PheWAS, we identified 71 with a relevant GWAS in 
MR-Base [45–132], and hence eligible for follow-up (see 
Additional file  1: Fig. S5 and Additional file  2: Tables 
S6-S8). Of these, 45 outcomes showed clear evidence of 
an effect of being a self-reported insomnia symptoms 
case versus not in the IVW MR analyses, having 95% CIs 
which excluded the null (Figs. 4a, b and 5 and Additional 
file  2: Tables S9-S10). Three of these estimates (HDL 
cholesterol, triglycerides and absolute leukocyte count) 
contradicted the direction of the MR-PheWAS estimate. 
Of the 42 remaining, 30 (7 continuous and 23 binary) of 
these had effect estimates in the same direction across all 
main and sensitivity two-sample MR analyses although 
with CIs often including the null. These 30 outcomes 
include a range of categories: substance use and mental 

Fig. 1  Proportion of potential causal effects of insomnia on outcomes within different categories. n is the total number of outcomes in the 
category. Additional file 2: Table S3 gives the category for each outcome. Results shown in this figure are also provided in Additional file 2: Table S4
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health-related outcomes such as acute alcohol intoxica-
tion, mental and behavioural disorders due to tobacco, 
neuroticism, anxiety disorder and post-traumatic stress 
disorder; body composition outcomes such as obesity, 
body fat percentage, body mass index, hip circumference 
and waist circumference; musculoskeletal outcomes such 
as low back pain, gonarthrosis, unspecified arthrosis, 
unspecified joint disorders, shoulder lesions, unspeci-
fied soft tissue disorders, spondylosis and dorsalgia; 
digestive health-related outcomes such as irritable bowel 
syndrome, diverticular disease of intestine, unspeci-
fied gastritis (including duodenitis), gastro-oesophageal 
reflux disease, diaphragmatic hernia and oesophagitis; 
allergy or respiratory outcomes such as allergic disease 
(asthma, hay fever or eczema), asthma and bronchitis; 
and outcomes which were not related to others in the 
set such as unspecified headache syndromes, C-reactive 
protein level and HbA1c. Cochran’s Q showed evidence 
of between SNP heterogeneity (p < 0.05) in both the IVW 
and MR-Egger analyses for 16 of these 30 outcomes: 

Anxiety, asthma, obesity, body mass index, body fat 
percentage, hip circumference, waist circumference, 
C-reactive protein level, unspecified arthrosis, unspeci-
fied joint disorders, unspecified soft tissue disorders, 
shoulder lesions, low back pain, gonarthrosis, dorsalgia 
and allergic disease. Only anxiety disorders showed evi-
dence of unbalanced horizontal pleiotropy in the MR-
egger intercept, implying that heterogeneity in most SNP 
estimates is due to either balanced pleiotropy or different 
causal biological mechanisms of the SNP on insomnia 
symptoms.

Systematic search of previous literature
After deduplication, abstract review and full-text review, 
81 articles exploring the effect of insomnia on a health 
outcome via MR were identified in the systematic search 
(see Additional file  1: Fig. S6). Article information and 
a summary of the findings for each article included can 
be seen in Additional file  2: Table  S11 (while informa-
tion for articles excluded at full-text screening with the 

Fig. 2  Proportion of potential causal effects of insomnia on outcomes within different mental health subcategories. n is the total number of 
outcomes in the category. Additional file 2: Table S3 gives the subcategory for each outcome. Results shown in this figure are also provided in 
Additional file 2: Table S5
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reason for exclusion can be seen in Additional file  2: 
Table S12). These articles showed evidence that insomnia 
may have causal effects on anxiety, neuroticism, posttrau-
matic stress disorder, subjective well-being, depressive 
symptoms, major mood disorder, a range of cardiovas-
cular outcomes (including coronary heart disease, angina 
pectoris and hypertension), type 2 diabetes mellitus, 
cholesterol levels, body mass, osteoarthritis, rheuma-
toid arthritis, pain, migraine, gastro-oesophageal reflux 
disease, irritable bowel syndrome, miscarriage, allergic 
disease, asthma, smoking and alcohol use, among oth-
ers. Of the 30 directionally consistent findings across the 
MR-PheWAS, two-sample follow-up MR and two-sam-
ple sensitivity analyses (for which the 95% CI excluded 
the null in the MR-PheWAS and the IVW two-sample 
follow-up), only spondylosis, unspecified joint disorders, 
shoulder lesions, unspecified soft-tissue disorders, gas-
tritis (including duodenitis), oesophagitis, diverticular 
disease of intestine, diaphragmatic hernia, bronchitis, 
unspecified headache syndromes and C-reactive protein 

levels were not supported by previous MR literature (i.e. 
no clear evidence of a concordant evidence in the previ-
ous literature). While the systematic search identified 
no papers investigating the effects of insomnia on acute 
alcohol intoxication, mood and behavioural disorders 
due to tobacco, certain body composition outcomes and 
gonarthrosis (arthrosis of the knee) specifically, there was 
evidence for closely related and overlapping outcomes in 
the previous literature.

Discussion
In this study, we conducted an MR-PheWAS of insom-
nia symptoms using 11,409 outcome variables. Of these 
GRS-outcome associations, 437 met our criteria for 
being potential causal effects, of which 71 were possible 
to follow-up using two-sample MR. Follow-up analyses 
showed consistent evidence of an adverse causal effect 
of insomnia symptoms on 30 outcomes including those 
related to anxiety disorders, respiratory disorders, mus-
culoskeletal disorders, disorders of the digestive system 

Fig. 3  Proportion of potential causal effects of insomnia on outcomes within different physical health subcategories. n is the total number of 
outcomes in the category. Additional file 2: Table S3 gives the subcategory for each outcome. Results shown in this figure are also provided in 
Additional file 2: Table S5
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Fig. 4  a, b Two-sample MR results of the effect (odds ratio), comparing genetically predicted self-reported insomnia cases versus non-cases for 
binary outcomes. *GWAS has overlap with UK Biobank or 23andMe
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and body composition measurements. A number of these 
had not previously been investigated using MR. These 
included respiratory disorders, soft-tissue disorders and 
digestive disorders. Together with the potential causal 
effects that we were not able to follow-up, these findings 

support a role for insomnia symptoms in multimorbidity. 
The findings also suggest that effective insomnia treat-
ments, such as the cognitive behavioural therapy-insomnia 
[25], which has been shown to be an effective treatment 
for depression when comorbid with insomnia [133], could 

Fig. 4  continued
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be used to treat a range of other adverse health-related 
outcomes; however, this requires further investigation.

We found evidence (which was directionally consistent 
across the MR-PheWAS, the two-sample follow-up and 

the two-sample sensitivity analyses, and for which the 
95% CIs excluded the null in the former two) for a num-
ber of outcomes which have not been explored in MR 
research. These outcomes were spondylosis, unspecified 

Fig. 5  Two-sample MR results of the effect (mean difference), comparing genetically predicted self-reported insomnia cases versus non-cases, for 
continuous outcomes. *GWAS has overlap with UK Biobank or 23andMe
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joint disorders, shoulder lesions, unspecified soft-tissue 
disorders, gastritis (including duodenitis), oesophagitis, 
diverticular disease of intestine, diaphragmatic hernia, 
bronchitis, unspecified headache disorders and C-reac-
tive protein levels. The bidirectional relationship between 
insomnia and headache has been extensively researched 
in previous non-MR literature [134]. Furthermore, a posi-
tive association between insomnia and C-reactive protein 
levels has previously been shown in standard observa-
tional research [135]. C-reactive protein is a marker of 
inflammation which is itself a response of the immune 
system, providing evidence that insomnia may affect the 
immune system. The relationship between insomnia and 
the other outcomes has not been extensively researched 
in conventional epidemiology studies and these are, 
therefore, novel findings. However, diaphragmatic her-
nia, is a birth defect and so it is implausible this could be 
caused by insomnia, indicating the results are subject to 
violations of the core assumptions.

Strengths and limitations
A key strength of our hypothesis-free MR-PheWAS is 
that it allows for many potential novel causal effects of 
insomnia symptoms to be identified. Furthermore, we 
used two-sample MR to follow up as many of the poten-
tial causal effects as possible and included sensitiv-
ity analyses to explore potential bias due to horizontal 
pleiotropy.

Limitations include variations in power due to the 
differing numbers of samples and cases across UK 
Biobank phenotypes meaning our MR-PheWAS analy-
ses may have been underpowered for some outcomes. 
For the two-sample MR analyses, sample sizes ranged 
between 1000 and 360,838 for the outcome GWASs. 
With larger sample sizes, more precise estimates may 
have been obtained. Also, 366 (84%) potential causal 
effects could not be followed up because we were 
unable to identify suitable summary GWAS data in 
MR-Base. It is possible that for some outcomes, suit-
able GWASs may exist but may not have been added 
to MR-Base or may have become available after the 
search was conducted. As GWASs are conducted for 
a wider range of outcomes and GWASs increase in 
size, future research should explore avenues not cur-
rently explored in our follow-up and update the cur-
rent analyses to increase power. We did update all 
FinnGen GWASs to the most recent versions which 
were released after the search for GWASs and screen-
ing was completed, but did not search for new GWASs 
specifically. In the two-sample MR follow-up, there 
was overlap between a number of the outcome GWASs 
and the exposure GWAS. This has the potential to 
bias the results away from the null; however, previous 

research has suggested sample overlap often does not 
have a large effect [136].

It is possible that some of the potential causal effects 
of insomnia that we have identified are driven by 
the health outcome in question causally influencing 
insomnia [33]. As GWASs get larger, they are more 
likely to identify genome-wide significant associations 
for phenotypes that are downstream of other health-
related factors. For example, previous MR studies have 
shown that depression affects insomnia [12, 18], and 
a large GWAS of insomnia might identify statistically 
robust SNPs associated with insomnia, some of which 
are identified because of the relationship of depres-
sion with insomnia. Given the number of outcomes 
explored in this study, investigating reverse causality is 
left to future work. It is also possible that the results 
are subject to horizontal pleiotropy. In our two-sample 
follow-up, we used sensitivity analyses to explore bias 
due to unbalanced horizontal pleiotropy. These meth-
ods do not look at specific hypothesised pleiotropic 
paths but rather help to see whether pleiotropic paths 
might have biased estimates.

The questionnaires that were used in the GWAS that 
provided our genetic instruments are widely used in 
observational studies. They reflect a person’s subjec-
tive reporting of symptoms, which may not be con-
sistent of a diagnosis of insomnia. That said clinical 
diagnostic codes misclassify an important number who 
would meet diagnostic criteria as not everyone with 
symptoms will seek clinical help and not all of those 
who do will be diagnosed in the same way [137]. Fur-
thermore, there may be differences in the health effects 
of short- and long-term insomnia and the insomnia 
definition used in the GWAS does not acknowledge 
the length of time the symptoms have been experi-
enced, only whether they are present or not. Also, the 
non-representativeness of UK Biobank may also bias 
the results. Finally, it is important to note our presen-
tation of MR-PheWAS results as proportions of poten-
tial causal effects in different phenotypic categories, 
which, although a useful summary, may be misleading 
if the correlations within each category differs across 
categories.

Conclusions
Our results suggest that insomnia symptoms may have 
broad effects on health. In particular, we identified novel 
effects (that replicated in follow-up analyses) on respira-
tory disorders, soft-tissue disorders and digestive dis-
orders and confirmed previously identified effects on 
mental health, hyperglycaemia, pain and body composi-
tion outcomes. These findings support a role for insom-
nia symptoms in multimorbidity and the possibility that 
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effective insomnia treatments should be integrated into 
the treatment of other diseases. Future research should 
follow up individual outcomes in greater depth, includ-
ing novel methods being developed for time-varying 
exposures and non-linear associations, to confirm novel 
findings.
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