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Abstract 

Background Early distinction between mild and serious infections (SI) is challenging in children in ambulatory care. 
Clinical prediction models (CPMs), developed to aid physicians in clinical decision-making, require broad external 
validation before clinical use. We aimed to externally validate four CPMs, developed in emergency departments, in 
ambulatory care.

Methods We applied the CPMs in a prospective cohort of acutely ill children presenting to general practices, outpa-
tient paediatric practices or emergency departments in Flanders, Belgium. For two multinomial regression models, 
Feverkidstool and Craig model, discriminative ability and calibration were assessed, and a model update was per-
formed by re-estimation of coefficients with correction for overfitting. For two risk scores, the SBI score and PAWS, the 
diagnostic test accuracy was assessed.

Results A total of 8211 children were included, comprising 498 SI and 276 serious bacterial infections (SBI). Feverkid-
stool had a C-statistic of 0.80 (95% confidence interval 0.77–0.84) with good calibration for pneumonia and 0.74 
(0.70–0.79) with poor calibration for other SBI. The Craig model had a C-statistic of 0.80 (0.77–0.83) for pneumonia, 
0.75 (0.70–0.80) for complicated urinary tract infections and 0.63 (0.39–0.88) for bacteraemia, with poor calibration. 
The model update resulted in improved C-statistics for all outcomes and good overall calibration for Feverkidstool 
and the Craig model. SBI score and PAWS performed extremely weak with sensitivities of 0.12 (0.09–0.15) and 0.32 
(0.28–0.37).

Conclusions Feverkidstool and the Craig model show good discriminative ability for predicting SBI and a potential 
for early recognition of SBI, confirming good external validity in a low prevalence setting of SBI. The SBI score and 
PAWS showed poor diagnostic performance.
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Background
Examining a feverish child is part of daily practice for 
general practitioners (GPs), paediatricians and emer-
gency physicians. In most cases, it concerns a mild, often 
viral infection with a favourable natural course [1–5]. 
Physicians however must always be cautious of poten-
tially serious infections (SI) requiring more extensive 
treatment or hospital admission. Late recognition of 
these conditions may cause serious complications and 
possibly even death. The distinction between these mild 
and serious infections is difficult at an early stage [6]. 
The physician must decide solely based on clinical his-
tory taking and examination whether he can rule out SI 
or if immediate medical treatment or referral to second-
ary care is needed. Physician’s evaluation shows a low 
sensitivity, especially when specific signs or symptoms 
are missing [3]. This diagnostic problem may cause a 
delay in the appropriate antibiotic treatment or may lead 
to unnecessary antibiotic prescriptions, aggravating the 
problem of antibiotic resistance [3, 7].

To aid doctors in clinical decision-making, several 
clinical prediction models (CPMs) have been developed. 
CPMs calculate the risk of SI from different variables 
such as demographic factors, medical history, clinical 
examination, general clinical impression and physician’s 
gut feeling something is wrong; in some CPMs, point-
of-care (POC) tests are included as well [2–5, 8]. CPMs 
take several forms. First, we have risk scores where each 
variable counts for a specified number of points. Follow-
ing management decisions depend on predefined risk 
cut-offs. Second is binomial logistic regression models 
(LRMs) with a binary outcome, calculating the probabil-
ity of one specific disease and presenting it as a percent-
age. Third is an extension of these binomial regression 
models to multinomial LRMs (more than 2 outcome 
categories) which estimate the probabilities of several 
diseases simultaneously. This resembles more closely 
the traditional clinical diagnostic process where multiple 
diseases are considered in a differential diagnosis. Some 
CPMs have proven excellent clinical performance com-
pared to physician’s evaluations [3].

Deriving CPMs has an inherent risk of overfitting, 
where the prediction is fitted too strongly to the original 
derivation data. Consequently, the model underperforms 
in populations differing from the original derivation 
cohort, necessitating the external validation of CPMs in 
independent populations [9–11].

A previous external validation study of CPMs for 
acutely ill children in ambulatory care found promis-
ing rule-out values, with still a percentage of residual 
uncertainty [12]. More recently, one CPM has proven 
extremely sensitive to external validation in ambulatory 
care in identifying acutely ill children at risk for hospital 

admission for a serious infection [2]. Although most 
acutely ill children present in primary care [12], we are 
not aware of other recent CPMs for serious infections 
in children in ambulatory care. Therefore, we wished 
to investigate whether CPMs derived in EDs could be 
applicable in primary care settings as well. From a recent 
systematic review on CPMs for feverish children in the 
emergency department (ED), we identified three clinical 
prediction models potentially applicable in primary care: 
two multinomial LRMs and one risk score, based on a 
binomial LRM [3–5, 13]. For these three models, exter-
nal validation has been performed in EDs, but not yet in 
broader ambulatory care [4, 13–17]. We searched the ref-
erences of the included studies for other relevant CPMs, 
and we identified one additional CPM, another risk score, 
assessing the broader risk of serious illness [8]. In our 
study, we aimed to externally validate and, if applicable, 
update these four CPMs for SI in children in a population 
of children with an acute illness presenting to ambulatory 
care in Belgium.

Methods
We performed this secondary analysis of prospectively 
gathered observational data to externally validate these 
four CPMs for SI in children by assessing discrimina-
tive value and calibration. Subsequently, we performed a 
model update of the LRMs in our dataset. The study is 
reported in agreement with the TRIPOD guideline on 
transparent reporting of multivariable prediction models 
for diagnosis [18].

External validation dataset
From 15 February 2013 to 28 February 2014, children 
from 1  month to 16  years with an acute illness were 
included in 92 GP practices, 6 ambulatory paediatric 
practices and 6 EDs in Flanders, Belgium, as part of the 
ERNIE2 study [2]. Further details on the inclusion and 
exclusion criteria are reported elsewhere [19]. Seventy-
four diagnostic items were registered. Age is reported as 
mean and interquartile range.

In the ERNIE2 study, SI was defined as an infection 
requiring hospital admission for more than 24 h. It com-
prised both the serious bacterial infections sepsis and 
bacteraemia, meningitis, pneumonia, osteomyelitis, cel-
lulitis and cUTI as well as appendicitis, gastro-enteritis 
with dehydration and viral respiratory tract infection 
with hypoxia [19]. The diagnosis was checked in the 
GP’s electronic medical records and the hospital records. 
Depending on the condition, microbiological, biochemi-
cal, histological, radiological or clinical criteria were 
required for a definite diagnosis [19]. An adjudication 
committee of clinicians with expertise in acute paediatric 
care assessed all available information of cases with no 
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definite diagnosis in the medical record or after the inter-
view with the GP and assigned outcome by consensus [2]. 
Since the distinction between viral and bacterial gastro-
enteritis could not be made in the ERNIE2 dataset, the 
data of participants with gastro-enteritis were excluded 
from the analysis of SBI in the current study.

Clinical prediction models
The first CPM, Feverkidstool, is a multinomial LRM 
predicting the risk of pneumonia and other serious bac-
terial infections (SBI) in feverish children from 10 clini-
cal variables and a POC CRP test [4]. In the derivation 
of the Feverkidstool, positive cultures of normal sterile 
sites or consensus diagnosis were required [4]. In the 
main recruiting hospital, the diagnosis of pneumonia 
was based on radiological criteria, assessed by two radi-
ologists, blinded to the clinical information; in the other 
recruiting hospitals, assessment of chest radiographies 
was performed by a single radiologist, not blinded to the 
clinical information.

The second model, a CPM constructed by Craig et al. 
(hereafter named the Craig model), is a multinomial 
LRM predicting the risk of complicated urinary tract 
infections (cUTI), pneumonia and bacteraemia in fever-
ish children [3]. The model consists of 26 items, including 
several variables from history taking. Craig et al. divided 
the diagnoses of UTI, pneumonia and bacteraemia into 
definite and probable, based on microbiological and radi-
ological criteria, which were nearly identical to our diag-
nostic criteria [3]. All probable cases were reviewed by 
a final diagnosis committee, composed of two specialist 
paediatricians and a radiologist for pneumonia, blinded 
to the clinical information. The presence or absence of 
bacterial infections was based on consensus.

In our validation dataset, the broader inclusion crite-
rion of acutely ill children presenting at ambulatory care 
was used, whereas the derivation of Feverkidstool and 
the Craig model inclusions were limited to children pre-
senting with fever at the ED [3, 4]. Feverkidstool and the 
Craig model were developed to predict the risk of SBI, 
excluding viral infections. Unlike in the ERNIE2 cohort, 
the Feverkidstool and Craig model studies did not 
require hospital admission as a marker of SBI. Children 
with SBI receiving outpatient care therefore would have 
been included in these studies but were not considered 
SBI in our cohort.

The third CPM, the SBI score, is a risk score assess-
ing the risk of SBI (excluding viral infections) in acutely 
ill children. It consists of eight clinical items and was 
derived from a binomial LRM (hereafter named the SBI 
model) [5]. As in the ERNIE2 cohort, the SBI score study 
required hospital admission as a marker of SBI, plus dis-
ease-specific findings such as positive cultures in sterile 

sites or radiological signs, nearly identical to our diagnos-
tic criteria.

The fourth CPM, the Pediatric Advanced Warning 
Score (PAWS), is a risk score based on seven age-specific 
vital parameters in children [8]. PAWS was developed to 
predict the risk of serious illness, broader than serious 
infections alone, in the ED. In a pilot case–control study, 
admission from the ED to the paediatric intensive care 
unit was used as a marker of serious illness, compared 
to children admitted to the general paediatric ward. We 
applied PAWS to our clinical endpoint of serious infec-
tions requiring hospital admission (including viral infec-
tions). See Additional file 1: Tables S1-S7 for more details 
on participants, predictor and outcome variables and 
regression coefficients in the derivation studies [20–26].

Model validation
The presence of each predictor variable from the different 
models was evaluated in the ERNIE2 database. If vari-
ables were similar, but not exactly corresponding, a proxy 
was used. Missing values were considered non-deviant 
(see the ‘Discussion’ section), except for participants 
with missing data on outcome, age, sex or temperature, 
which were excluded. An outcome value was required to 
correctly perform the analyses, age was required for age-
specific vital signs, temperature was registered twice in 
our dataset (both recorded by the parents and recorded 
by the physician) and was required as an absolute value 
in the algorithm of Feverkidstool, and for sex, no non-
deviant result could be imputed.

To assess the discriminative ability of the multinomial 
LRMs, Feverkidstool and Craig model, we calculated 
the conditional pairwise concordance statistic, hereafter 
referred to as the C-statistic, using the original reported 
coefficients and intercepts. The conditional risk was 
calculated by dividing the probability of the disease of 
interest by the sum of the probabilities of the disease of 
interest and of the absence of SBI. The C-statistic and 
its 95% confidence interval (CI) were calculated as the 
area under the receiver operating characteristic curve 
(AUC) of this conditional risk with the R statistical soft-
ware version 4.1.2 (R Foundation for Statistical Comput-
ing, Vienna, Austria) [27] using the pROC-package [28]. 
To assess the calibration of the models, we constructed 
multinomial calibration plots and calculated calibration 
intercepts and calibration slopes using the non-paramet-
ric framework by Van Hoorde et  al. [24, 25] (see Addi-
tional file 1 for more details on calibration intercepts and 
slopes).

For the binomial SBI model, discrimination and cali-
bration were evaluated using the val.prob.ci.2 function, 
an adaptation of the rms package [21].
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For the risk scores SBI score and PAWS, sensitivity, 
specificity, positive (LR( +)) and negative likelihood ratio 
(LR( −)) and the respective 95%-CIs were calculated at 
the cut-offs proposed by the original authors.

Model update
First, we performed logistic recalibration of the LRMs 
[24, 25]. Next, we performed model revision by refit-
ting the variables in our dataset and re-estimating 
individual coefficients. Finally, we applied uniform 
shrinkage of the revised coefficients towards the 
recalibrated values using a heuristic shrinkage factor 
to correct for overfitting on our dataset [22]. For refit-
ting of the multinomial LRMs Feverkidstool and Craig 
model, the multinom-function of the nnet-package 
was used [26], and for the binomial LRM SBI model, 
the rms-package was used [23] (see Additional file  1 
for more details on logistic recalibration and the heu-
ristic shrinkage factor).

We assessed discrimination and calibration of the 
updated models as described above and calculated sen-
sitivity, specificity and positive and negative likelihood 
ratio at low- and high-risk cut-offs.

Results
Participants
A total of 8962 acutely ill children were included, of 
which 730 were excluded due to missing essential data 
(age, sex, temperature, outcome) and 21 for exceed-
ing the age range, leading to 8211 participants in the 
current analysis. SI was established in 498 children, 

leading to an intermediate prevalence of 6.1% (5.6–
6.6%) in our combined ambulatory setting [12]. SBI 
was diagnosed in 276 children, resulting in a preva-
lence of 3.4% (3.0–3.8%). These SI most often affected 
the youngest children. Two-thirds of SI consisted of 
pneumonia and gastro-enteritis with dehydration. The 
participant characteristics are summarized in Table  1 
(see Additional file  1: Tables S1, S3, S5 and S7 for a 
comparison between the validation and the derivation 
cohorts).

Model validation
For the Feverkidstool, all 11 variables were available 
in the ERNIE2 database. For the Craig model, 11 of 26 
variables exactly matched the available variables. The 
variables ‘rash’, ‘stridor’ and ‘audible wheeze’ were not 
systematically registered in our database but had been 
registered by physicians in the free text space ‘other 
signs of illness’. For nine variables, a proxy was used of 
which eight proxies closely resembled the original vari-
ables. For urinary symptoms, only the weak proxy ‘does 
your child urinate less’ was available. The categories 
‘felt hot’ and meningococcal and pneumococcal vac-
cination were not available. Four of the eight variables 
of the SBI model and SBI score matched the variables 
in the ERNIE2 database. For the other four variables, a 
proxy was used with a close resemblance to the origi-
nal variable. For PAWS, five of the seven variables were 
available. For the missing variables ‘work of breathing’ 
and the AVPU scale, two moderate-quality proxies were 

Table 1 Baseline characteristics of the included children

Children with serious infection (n = 498) Children without serious infection (n = 7713)

Median age in years (interquartile range) 1.62 (0.78–3.79) 1.97 (0.99–4.02)

Sex, male (%) 268 (54%) 4133 (54%)

Inclusion by general practitioner (n = 2902) 23 2879

Inclusion by ambulatory paediatrician (n = 2719) 109 2610

Inclusion by emergency department (n = 2590) 366 2224

Outcome (hospital admission > 24 h with)

 Abscess/cellulitis 10 0

 Appendicitis 15 0

 Complicated urinary tract infection 57 0

 Gastro-enteritis with dehydration (bacterial and 
viral)

162 0

 Meningitis (bacterial and viral) 16 0

 Osteomyelitis 0 0

 Pneumonia 171 0

 Sepsis/bacteraemia 7 0

 Viral respiratory tract infection with hypoxia 60 0

Non-serious infection 0 7713
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used (see Additional file 1: Tables S1, S3, S5 and S7 for 
a detailed description of the proxies).

Feverkidstool and the Craig model showed good dis-
criminative values with C-statistics of 0.80 (0.77–0.84) 
for pneumonia and 0.74 (0.70–0.79) for other SBI by 
Feverkidstool, and 0.80 (0.77–0.83) for pneumonia 
and 0.75 (0.70–0.80) for cUTI by the Craig model. For 
the SBI model and the prediction of bacteraemia by 
the Craig model, we found poor discriminative ability 
(C-statistics of 0.66 (0.59–0.73) and 0.63 (0.39–0.88), 
respectively) (Table 2 (A)).

Calibration plots for the LRMs are shown in Figs. 1, 
2 and 3, and calibration intercepts and slopes are sum-
marized in Table  2 (B). Feverkidstool showed a mild 
underestimation of the probability of pneumonia and a 
large overestimation of the risk of other SBI, resulting 
in a strong underestimation of the absence of SBI. The 
Craig model overestimated the risk for all outcome cat-
egories and thereby underestimated the absence of SBI. 
Risk predictions for SBI by the SBI model were gravely 
overestimated.

The analytical performance of the SBI score and 
PAWS are summarized in Table  2 (C). Both models 
showed extremely low sensitivities (< 32%).

Sensitivity analyses for the original age ranges and 
participants included in the emergency department are 
available in Additional file 1: Tables S8-S11.

Model update
The discriminative ability increased for both Feverkid-
stool and the Craig model, with the strongest increases 
for cUTI and bacteraemia (C-statistics of 0.86 (0.83–
0.86) and 0.80 (0.66–0.94), respectively). The SBI model 
barely improved after updating (Table  2 (A)). Calibra-
tion of all models improved markedly with accurate 
risk predictions for pneumonia and absence of SBI by 
both Feverkidstool and the Craig model. Predictions for 
bacteraemia remained overestimated, and for cUTI, we 
found mild underestimation of risk. Updated regres-
sion coefficients are available in Additional file 1: Tables 
S2, S4 and S6. Calibration plots of the updated models 
are shown in Figs. 4, 5 and 6, and calibration intercepts 
and slopes of the updated models are summarized in 
Table 2 (B).

Sensitivity was low for all outcome categories of the 
updated Feverkidstool and Craig model (< 71%). Espe-
cially for bacteraemia, the Craig model failed to correctly 
identify any of the cases. Specificities on the other hand 
were very high for all outcome categories from risk cut-
offs of 10%. The sensitivity of the updated SBI model 
however was good at a low-risk cut-off of 2.5% risk, at the 
cost of a very low specificity (Table 2 (C)).

Discussion
Main findings
In this study, we performed an external validation of four 
CPMs for SI in 8211 children from 1 month to 16 years 
presenting with acute illness in ambulatory care. The 
multinomial LRMs Feverkidstool and Craig model 
showed varying C-statistics for the different outcomes 
ranging from 0.63 to 0.80. Predictions of pneumonia by 
Feverkidstool were well calibrated, but the other out-
comes showed weak calibration. After the model update, 
Feverkidstool and the Craig model achieved good dis-
criminative ability with C-statistics for the different 
outcomes ranging from 0.78 to 0.86 and good overall 
calibration. At low-risk cut-offs, however, sensitivities 
ranged from 0 to 0.71, and negative likelihood ratios 
ranged from 1 to 0.37, limiting the rule-out value for SBI. 
Specificity (> 0.97) and positive likelihood ratios (> 10.29) 
on the other hand were very high at higher-risk cut-offs. 
The models therefore seem more suited for ruling in than 
for ruling out SI in ambulatory care. The risk scores SBI 
score and PAWS performed very poorly in our cohort 
with extremely low sensitivities of 0.11 and 0.32, respec-
tively. They appear unfit to effectively rule out SI in the 
ambulatory setting.

Strengths and limitations
This validation was performed in a very large, prospective 
cohort in a clinically relevant, broad ambulatory setting. 
It is the first validation study of these models to include 
GP and paediatric outpatient practices, representing a 
low-prevalence setting for SBI. However, the vast major-
ity of SI were diagnosed in the ED, making separate anal-
yses for those settings unreliable.

The CPMs were developed in different countries with 
distinct healthcare systems, vaccination policy and vacci-
nation uptake. Further heterogeneity is introduced by the 
different variables and the differences between the deri-
vation and validation cohorts. For the Feverkidstool, the 
most accurate external validation could be performed, 
since all variables were present in the validation dataset 
and the derivation and validation cohort had similar age 
and sex distributions. The proportion of SBI was clearly 
higher (12% vs. 3%), reflecting the difference in setting. 
The Craig model had the lowest proportion of variables 
available, yet still showed good diagnostic performance. It 
was derived in younger children from 0 to 5 years, while 
we applied it to children from 1 month to 16 years. For 
the SBI score, four good-quality proxies were used on a 
total of eight variables. Children in the derivation cohort 
were on average slightly younger (median 1.58  years vs. 
1.96  years), and had a similar proportion of SBI (3.8% 
vs. 3.4%). For PAWS two moderate-quality proxies were 
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Table 2 Diagnostic performance of the clinical prediction models

A: C-statistics of the logistic regression models

Original model (95%-CI) Updated model (95%-CI)

Feverkidstool (n = 8049) Pneumonia 0.80 (0.77–0.84) 0.83 (0.80–0.86)

Other SBI 0.74 (0.70–0.79) 0.78 (0.74–0.83)

Craig model (n = 8211) Pneumonia 0.80 (0.77–0.83) 0.83 (0.80–0.86)

Complicated UTI 0.75 (0.70–0.80) 0.86 (0.83–0.90)

Bacteraemia 0.63 (0.39–0.88) 0.80 (0.66–0.94)

SBI-model (n = 8049) 0.66 (0.59–0.73) 0.67 (0.60–0.73)

B: Calibration intercepts and calibration slopes of the logistic regression models

Original model Updated model

Calibration intercept (95%-CI) Calibration slope (95%-CI) Calibration intercept (95%-CI) Calibration slope (95%-CI)

Feverkidstool

 Pneumonia vs. absence of SBI 0.09 (− 0.07 to 0.24) 1.01 (0.87 to 1.14) 0.00 (− 0.16 to 0.16) 1.04 (0.92 to 1.17)

 Other SBI vs. absence of SBI  − 2.76 (− 2.96 to − 2.56) 0.50 (0.38 to 61) 0.00 (− 0.20 to 0.20) 1.05 (0.86 to 1.25)

Craig model

 Pneumonia vs. absence of SBI  − 0.87 (− 1.03 to − 0.71) 0.72 (0.63 to 0.81) 0.00 (− 0.16 to 0.16) 1.05 (0.93 to 1.18)

 Complicated UTI vs. absence of SBI  − 1.33 (− 1.59 to − 1.06) 0.69 (0.49 to 0.88) 0.00 (− 0.26 to 0.26) 1.27 (1.00 to 1.55)

 Bacteraemia vs. absence of SBI  − 1.31 (− 2.06 to − 0.55) 0.30 (− 0.10 to 0.71) 0.00 (− 0.75 to 0.75) 0.34 (0.02 to 0.65)

SBI model  − 4.97 (− 5.10 to − 4.85) 0.71 (0.60 to 0.83) 0.00 (− 0.12 to 0.12) 1.03 (0.87 to 1.20)

C: Diagnostic test parameters for updated regression models and original risk scores

Sensitivity (95%-CI) Specificity (95%-CI) LR( +) (95%-CI) LR( −) (95%-CI)

Updated Feverkidstool

 Pneumonia

  Risk ≥ 2.5% 0.71 (0.64–0.78) 0.77 (0.76–0.78) 3.09 (2.79–3.42) 0.37 (0.29–0.47)

  Risk ≥ 10% 0.29 (0.22–0.36) 0.98 (0.97–0.98) 12.40 (9.41–16.36) 0.73 (0.66–0.80)

  Risk ≥ 30% 0.08 (0.04–0.13) 1.00 (1.00–1.00) 31.52 (15.83–62.78) 0.93 (0.89–0.97)

 Other SBI

  Risk ≥ 2.5% 0.51 (0.41–0.61) 0.87 (0.86–0.88) 3.91 (3.21–4.75) 0.56 (0.46–0.68)

  Risk ≥ 10% 0.04 (0.01–0.10) 1.00 (0.99–1.00) 10.29 (3.69–28.67) 0.96 (0.93–1.00)

  Risk ≥ 30% 0 (0–0.04) 1 (1–1) NA 1 (1–1)

Updated Craig model

 Pneumonia

  Risk ≥ 2.5% 0.69 (0.61–0.76) 0.81 (0.80–0.81) 3.56 (3.19–3.97) 0.38 (0.31–0.48)

  Risk ≥ 10% 0.27 (0.21–0.35) 0.97 (0.97–0.98) 10.89 (8.24–14.39) 0.74 (0.68–0.82)

  Risk ≥ 30% 0.08 (0.04–0.13) 1.00 (1.00–1.00) 43.66 (20.84–91.47) 0.93 (0.89–0.97)

 Complicated UTI

  Risk ≥ 2.5% 0.23 (0.13–0.36) 0.96 (0.95–0.96) 5.62 (3.45–9.16) 0.80 (0.70–0.93)

  Risk ≥ 10% 0.04 (0.00–0.12) 1.00 (1.00–1.00) 40.87 (8.68–192.51) 0.97 (0.92–1.01)

  Risk ≥ 30% 0 (0–0.06) 1 (1–1) NA 1 (1–1.00)

 Bacteraemia

  Risk ≥ 2.5% 0 (0–0.41) 1.00 (1.00–1.00) 0 (0–0.13) 1.00 (1.00–1.00)

  Risk ≥ 10% 0 (0–0.41) 1.00 (1.00–1.00) 0 (0–0.97) 1.00 (1.00–1.00)

  Risk ≥ 30% 0 (0–0) 1 (1–1) NA 1 (1–1)

Updated SBI model

 Risk ≥ 2.5% 0.93 (0.89–0.95) 0.25 (0.24–0.26) 1.23 (1.19–1.27) 0.30 (0.19–0.45)

 Risk ≥ 10% 0.11 (0.07–0.15) 0.98 (0.98–0.99) 6.23 (4.25–9.15) 0.91 (0.87–0.95)

 Risk ≥ 30% 0.01 (0.00–0.03) 1.00 (1.00–1.00) 3.78 (0.87–16.46) 0.99 (0.98–1.00)

SBI score

 Score ≤ 5 0.11 (0.08–0.15) 0.98 (0.98–0.98) 5.81 (4.15–8.15) 0.90 (0.87–0.94)

 Score > 8 0.01 (0.00–0.02) 1.00 (1.00–1.00) 4.20 (0.93–18.87) 0.99 (0.98–1.00)

PAWS

 Score ≥ 3 0.32 (0.28–0.37) 0.86 (0.85–0.87) 2.28 (1.98–2.61) 0.79 (0.74–0.84)
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available on seven variables, mildly reducing the accuracy 
of our external validation.

Inevitably, as in any large study in daily clinical prac-
tice, not all data were registered completely. We per-
formed single imputation of the missing values and 
considered them non-deviant, from the assumption 
that normal parameters are less frequently registered 
in a child in good clinical condition with a low prob-
ability of SI, especially by GPs. Further research focus-
sing on developing more appropriate methodology to 
perform multiple imputation for multinomial models 
could facilitate future analyses for similar research 
questions [29].

Comparison with existing literature
The Feverkidstool is by far the most studied model, with 
several external validation studies in EDs both by the 

original research team and independent external valida-
tions [4, 13–17, 30]. We found a comparable C-statistic 
for pneumonia as in the original derivation study, but a 
clearly lower C-statistic for other SBI [4]. In external vali-
dation studies, C-statistics ranged from 0.72 to 0.89 for 
pneumonia and from 0.68 to 0.82 for other SBI, increas-
ing after the model update [13–17]. Sensitivities at low-
risk cut-offs were clearly higher compared to our findings 
[4, 16].

Decision rules in the ED based on the Feverkidstool did 
not report a substantial impact on the patient outcome 
or reduction of overall antibiotic prescription [17, 31]. 
The decision rule however proved non-inferior to usual 
care and resulted in fewer antibiotic prescriptions in 
children with low to intermediate risk for SBI, suggest-
ing more appropriate antibiotic prescriptions [31], and 

Table 2 (continued)
2.5% was chosen as a low-risk cut-off, and 10% and 30% were chosen as high-risk cut-offs. Diagnostic test parameters were calculated at the proposed risk cut-offs for 
PAWS and the SBI score, with a score ≤ 5 as a low-risk cut-off and > 8 as a high-risk cut-off for the SBI score

SBI Serious bacterial infections, UTI Urinary tract infection, CI Confidence interval, LR( +) Positive likelihood ratio, LR( −) Negative likelihood ratio

Fig. 1 Non-parametric multinomial calibration plots of Feverkidstool. SBI, serious bacterial infections
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Fig. 2 Non-parametric multinomial calibration plots of the Craig model. SBI, serious bacterial infections; UTI, urinary tract infections

Fig. 3 Calibration curve of the SBI model. SBI, serious bacterial infections; RCS, restricted cubic splines; CL, confidence limit
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was cost-saving by reducing hospitalization and parental 
absenteeism [32].

The discriminative value of the Craig model was bet-
ter in the original study [3] and lower in a validation 
study in children under three months [13]. The AUC of 
the original SBI model was 0.77 [5], but similar to our 
findings, this could not be confirmed at external valida-
tion [13]. The developers of PAWS found a sensitivity of 
70% and a specificity of 90%, contrasting strongly with 
our findings [8].

Impact on research
Our study contributes to the broad external validation 
required before using a CPM reliably in daily practice 
[11]. Children with acute illnesses most often consult GP 
practices, yet less studies are conducted in general prac-
tice [12], necessitating the need to validate existing pre-
diction rules in this setting.

In our study, we found a comparable performance 
between the Craig model with a large number of clini-
cal variables on three outcome categories [3] and 
Feverkidstool with less variables, but including a POC 

CRP test and a broad outcome category of other SBI 
[4]. Both strategies can lead to well-performing mod-
els, raising the question whether CPMs for SI in pri-
mary care should include both a sufficient number of 
clinical variables and an additional POC test. Calibra-
tion of original models proved best for the Feverkid-
stool predicting pneumonia. Adding the POC CRP test 
may therefore prove the model more applicable across 
settings with less need for more complicated model 
updating strategies.

Impact on clinical practice
Implementation of these models may be impacted by 
the availability of resources. Feverkidstool includes 
the result of a POC CRP test, which may not be read-
ily available at all sites. Pulse oximetry and meas-
urement of other vital signs in children, useful for 
Feverkidstool, the SBI score and especially the physi-
ology-based risk score PAWS, are often not routinely 
available in primary care. The other variables are easy 
to determine after proper history taking and clinical 

Fig. 4 Non-parametric multinomial calibration plots of updated Feverkidstool. SBI, serious bacterial infections
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Fig. 5 Non-parametric multinomial calibration plots of the updated Craig model. SBI, serious bacterial infections; UTI, urinary tract infections

Fig. 6 Calibration curve of updated SBI model. SBI, serious bacterial infections; RCS, restricted cubic splines; CL, confidence limit
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examination and applicable across different settings 
and healthcare systems. The Craig model, consisting of 
26 clinical signs and symptoms, only requires a ther-
mometer, a stethoscope and an otoscope. The LRMs 
Feverkidstool, Craig model and SBI model require a 
simple software application.

The Feverkidstool and the Craig model can sup-
port clinical reasoning and the decision-making pro-
cess of physicians. Combining the numerous findings 
from history taking and clinical examination at various 
stages of disease is challenging and may lead to under-
estimation of SI by discarding information [3] or lead 
to overestimation of SI from fear to miss serious, but 
treatable conditions [33]. Physicians appear most suc-
cessful in correctly identifying serious bacterial illness 
in the presence of very specific signs and symptoms 
[3]. A CPM may perform better in identifying SI by 
combining individual findings in the absence of very 
specific signs [3, 4]. Rule-out values however seemed 
limited in our study.

For primary care, these models could be calibrated 
to be more accurate at lower risk thresholds, making 
them more suitable for the exclusion of SBI at the cost 
of more false-positive results and less accurate predic-
tions in higher probability ranges [3]. These models 
could then be translated into decision rules with clini-
cal management suggestions at predefined risk cut-
offs and integrated in electronic health records to aid 
physicians in real time. Broad impact studies in ambu-
latory care could further investigate the potential for 
better recognition of SBI, more appropriate antibiotic 
prescription and possible cost reduction by applying 
these decision rules.

Conclusions
The Feverkidstool and the Craig model show good dis-
crimination for predicting SBI, confirming good external 
validity in a low prevalence setting of SBI. Their rule-out 
values at low-risk probabilities were rather limited. Their 
potential for early recognition and management of SBI 
should be evaluated in broad-impact studies in ambula-
tory care. The SBI score and PAWS showed poor perfor-
mance in our cohort.
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