
Wu et al. BMC Medicine          (2023) 21:170  
https://doi.org/10.1186/s12916-023-02876-w

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medicine

Investigating the relationship 
between depression and breast cancer: 
observational and genetic analyses
Xueyao Wu1†, Wenqiang Zhang1†, Xunying Zhao1, Li Zhang1, Minghan Xu1, Yu Hao1, Jinyu Xiao1, Ben Zhang1, 
Jiayuan Li1, Peter Kraft2,3†, Jordan W. Smoller4,5† and Xia Jiang1,6,7*†   

Abstract 

Background Both depression and breast cancer (BC) contribute to a substantial global burden of morbidity and 
mortality among women, and previous studies have observed a potential depression-BC link. We aimed to compre-
hensively characterize the phenotypic and genetic relationships between depression and BC.

Methods We first evaluated phenotypic association using longitudinal follow-up data from the UK Biobank 
(N = 250,294). We then investigated genetic relationships leveraging summary statistics from the hitherto largest 
genome-wide association study of European individuals conducted for depression (N = 500,199), BC (N = 247,173), 
and its subtypes based on the status of estrogen receptor (ER + : N = 175,475; ER − : N = 127,442).

Results Observational analysis suggested an increased hazard of BC in depression patients (HR = 1.10, 
95%CIs = 0.95–1.26). A positive genetic correlation between depression and overall BC was observed ( rg = 0.08, 
P = 3.00 ×  10–4), consistent across ER + (rg = 0.06, P = 6.30 ×  10–3) and ER − subtypes ( rg = 0.08, P = 7.20 ×  10–3). Sev-
eral specific genomic regions showed evidence of local genetic correlation, including one locus at 9q31.2, and four 
loci at, or close, to 6p22.1. Cross-trait meta-analysis identified 17 pleiotropic loci shared between depression and BC. 
TWAS analysis revealed five shared genes. Bi-directional Mendelian randomization suggested risk of depression was 
causally associated with risk of overall BC (OR = 1.12, 95%Cis = 1.04–1.19), but risk of BC was not causally associated 
with risk of depression.

Conclusions Our work demonstrates a shared genetic basis, pleiotropic loci, and a putative causal relationship 
between depression and BC, highlighting a biological link underlying the observed phenotypic relationship; these 
findings may provide important implications for future studies aimed reducing BC risk.
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Background
Individuals with mental health disorders are often at an 
increased risk for an array of subsequent medical condi-
tions including cancer [1]. One example of this pheno-
typic association is depression and breast cancer (BC), 
both of which disproportionately or primarily affect 
women and contribute to a substantial global burden of 
morbidity and mortality [2, 3]. Hypothesized underlying 
biological mechanisms include enhanced inflammation 
and oxidative stress, inhibited immune surveillance, and 
dysfunctional activation of the autonomic nervous sys-
tem and the hypothalamic–pituitary–adrenal axis [1]. 
Population-based evidence regarding the depression-BC 
relationship, however, remains inconsistent. While one 
meta-analysis aggregating data from 11 cohort stud-
ies involving 182,241 individuals identified an increased 
(though non-significant) risk of BC among individuals 
with depression (pooled relative risk (RR) = 1.13, 95% 
confidence intervals (95%CIs) = 0.94–1.36) [4], another 
meta-analysis restricted to cohort studies with follow-
up periods longer than ten years reported a significant 
association (pooled RR = 2.50, 95%CIs = 1.06–5.91) [5]. 
Nevertheless, phenotypic correlations derived from 
observational studies can be subject to bias, confounding, 
and reverse causality [6].

One way to disentangle these conflicting findings is 
to investigate the potential genetic underpinnings of 
comorbid disorders. Twin studies have established that 
both depression and BC are under genetic influence, 
with heritability estimates of 37% and 31%, respectively 
[7, 8]. More recently, large-scale genome-wide analysis of 
common variants have found significant genetic correla-
tions between depression and multiple female reproduc-
tive phenotypes [9–11] including age at menarche and 
age at natural menopause (well-established risk factors 
for BC [12]). Multiple loci have further been identified 
(assessed in GWAS catalog [13] on Jan 15, 2023) as influ-
encing both traits (i.e., TENM2, BTN2A1, ESR1, ASTN2, 
SLC6A15). These results suggest that depression and BC 
may be linked by shared biology, though the extent and 
nature of such links remains unclear.

Recent advances in statistical genetics have yielded 
a range of methods to enable comprehensive genome-
wide cross-trait analyses to characterize the shared and 
distinct genetic influences across traits, driving forward 
epidemiologic associations with novel insights into the 
underlying biological mechanisms [6]. Here we apply 
these methods to dissect the genetic and phenotypic rela-
tionships between depression and BC. Specifically, lever-
aging the hitherto largest observational and genetic data, 
we quantified phenotypic association, global and local 
genetic correlations, pleiotropic loci, and potential causal 
relationships. Given the role estrogen receptor (ER) plays 

in the pathogenesis of depression [14], we further inves-
tigated the shared genetic architecture with depression 
across BC subtypes characterized by distinct ER status. 
Figure  1 illustrates the overall design of the study, with 
Additional file  1: Figure S1 providing an accompanying 
graphical abstract.

Methods
We first used data from UK Biobank (UKBB) to evaluate 
the phenotypic association. We then leveraged summary 
statistics from genome-wide association study (GWAS) 
conducted for each trait to characterize the shared 
genetic architecture through a genome-wide cross-trait 
analysis. The Strengthening the Reporting of Observa-
tional Studies in Epidemiology (STROBE) checklists for 
both observational and genetic studies are detailed in 
Additional file 2.

Data sources
UK Biobank data
UKBB is a large-scale prospective cohort study with 
more than 500,000 UK participants (55% women) aged 
40–69  years when recruited in 2006–2010 [15]. At 
recruitment, all participants gave informed consent for 
participation and follow-up. Overall, 503,317 participants 
consented to join the study cohort and visited an assess-
ment center, among which we only considered women of 
European descent (N = 257,150). We defined a diagno-
sis of depression as the ICD-10 (international classifica-
tion of diseases, 10th revision) codes F32, F33, F34, F38, 
and F39, and a diagnosis of BC as the ICD-10 code C50 
and the ICD-9 code 174, using linked records of hospital 
admission in UKBB (Data-Field: 41,202 and Data-Field: 
41,204). After excluding 6,856 participants with a his-
tory of BC at baseline, 250,294 participants were finally 
included.

GWAS datasets
GWAS summary data for depression was obtained from 
a meta-analysis of 807,553 individuals (246,363 cases 
and 561,190 controls, all of European ancestry) combin-
ing the three largest existing genetic studies of depres-
sion (UKBB, 23andMe and the Psychiatric Genomics 
Consortium (PGC)) [9]. The phenotypes ranged from 
self-reported help-seeking for problems with “nerves, 
anxiety, tension or depression” (termed “broad depres-
sion”) (51.8%), self-reported clinical diagnosis of major 
depression (MD) (30.7%), and clinically ascertained 
diagnosis of MD (17.5%). Independent trait-associ-
ated genome-wide significant single nucleotide poly-
morphisms (SNPs) were identified at a P-threshold of 
5 ×  10–8, after clumping SNPs in linkage disequilibrium 
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(LD) ( r2 > 0.10 across a 3.0  Mb window) with the top-
associated SNPs.

We extracted the effect size and relevant information of 
the 102 GWAS-identified depression-associated signifi-
cant SNPs and used those SNPs as instrumental variables 
(IVs) in Mendelian randomization (MR) analyses [16] 
(Additional file 3: Table S1). We also retrieved the full set 

of summary statistics for depression, in which data from 
23andMe were excluded (due to limited data availability).

The largest available GWAS summary data for overall 
BC was obtained from a meta-analysis of 247,173 individ-
uals (133,384 clinically ascertained BC cases and 113,789 
controls, all of European ancestry), combining data from 
82 participating studies of the Breast Cancer Association 
Consortium (BCAC) and 11 other BC genetic studies 

Fig. 1 Flowchart of the overall study design. We first used longitudinal follow-up data from the UK Biobank to evaluate the phenotypic association 
between depression and breast cancer. We then leveraged summary statistics from the hitherto largest genome-wide association study conducted 
for each trait to characterize the shared genetic architecture through a genome-wide cross-trait analysis. BC: breast cancer; ER: estrogen receptor; 
GWAS: genome-wide association study; GTEx: Genotype-Tissue Expression project; MR: Mendelian randomization
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[17]. Top-associated SNPs in the combined meta-analysis 
reaching a P-threshold of 5 ×  10–8 were reported. This 
GWAS identified 32 novel susceptibility loci in addition 
to 153 previously detected loci (for a total of 185 genome-
wide significant loci). For subtype-specific BC, the hith-
erto largest GWAS summary data was obtained from a 
meta-analysis of 122,977 BC cases (69,501 ER + BC and 
21,468 ER − BC) and 105,974 controls (all of European 
ancestry) combining data from BCAC and DRIVE (Dis-
covery, Biology and Risk of Inherited Variants in Breast 
Cancer Consortium) [18]. No overlapping participating 
studies were shared between the BCs and depression 
GWASs.

We extracted the effect size and relevant information 
of the 185 GWAS-identified BC-associated significant 
SNPs for reverse-direction MR analysis. As trait-associ-
ated SNPs were not reported for subtype-specific BC, we 
determined IVs as the lead SNPs reaching genome-wide 
significance (P < 5 ×  10–8) after removing SNPs in LD ( r2 
> 0.001 across a 10.0 Mb window). We also downloaded 
full summary statistics for all BCs (overall and subtypes).

Details on the characteristics of each included data set 
are presented in Additional file 3: Table S2.

Statistical analysis
Observational analysis
We constructed a Cox proportional hazards regression 
model with exposure to depression modeled as a time-
dependent variable. We used three sets of adjustments to 
minimize the role of confounding. Estimates in model 1 
were adjusted only for age, assessment center, and the top 
40 genetic principal components. Estimates in model 2 
were adjusted additionally for income, Townsend depri-
vation index, body mass index (BMI), smoking, drinking, 
physical activity, sleep duration, and education. Esti-
mates in model 3 were adjusted, on top of model 2, for 
family history of BC, reproductive factors (parity, age at 
menarche, menopausal status, use of oral contraceptives, 
and hormone replacement therapy), diagnosis of other 
mental health disorders, and treatment/medicine for 
antidepressants or antipsychotics. All analyses were con-
ducted using SAS version 9.4 (SAS Institute, Cary, NC).

Global genetic correlation analysis
To evaluate an overall shared genetic basis between 
depression and BC, we estimated their global genetic 
correlation using cross-trait LD Score Regression (LDSC) 
[19]. LDSC requires only GWAS summary statistics 
as input and quantifies the average sharing of genetic 
effect between pairs of traits. The genetic correlation ( rg ) 
ranges from –1 to 1, with –1 indicating a perfect nega-
tive correlation and 1 indicating a perfect positive corre-
lation. A Bonferroni corrected P-value of 0.017 was used 

as significant threshold (P < 0.05/3, number of overall BC 
and subtypes).

Local genetic correlation analysis
To identify genomic regions that contribute dispro-
portionately to the global genetic correlation between 
depression and BC, we further estimated local genetic 
correlation in 1,703 pre-defined LD-independent regions 
using both Heritability Estimator from Summary Sta-
tistics (ρ-HESS) and Pairwise-GWAS (GWAS-PW) 
[20, 21]. While ρ-HESS provides a precise quantifica-
tion of each genomic region, GWAS-PW uses a Bayes-
ian framework to calculate the posterior probabilities of 
association (PPA) of a genomic region under four mod-
els [21]. Significant local signal was determined if the 
P-value from ρ-HESS survived multiple corrections (Pρ-

HESS < 0.05/1703), or if PPA of model 3 (PPA _3, the prob-
ability that a genomic region associated with both traits) 
from GWAS-PW was larger than 0.5.

Cross‑trait meta‑analysis
Significant genetic correlation either suggest genetic vari-
ants having independent effect on both traits (pleiotropy) 
or genetic variants influencing one trait via its effect 
on the other (causality). We next performed a cross-
trait meta-analysis using Cross-Phenotype Association 
(CPASSOC) to identify pleiotropic loci [22]. Based on the 
fixed-effect model, CPASSOC provides two estimates, 
 SHom and  SHet, to combine summary statistics across 
traits while controlling population structure and cryp-
tic relatedness.  SHom is the most powerful when genetic 
effect sizes are homogenous, which is unlikely to be true 
when meta-analyzing multiple traits. As an extension 
of  SHom,  SHet maintains statistical power even under the 
presence of heterogeneity by assigning more weights to 
the larger trait-specific effect sizes, and was thus adopted 
for the analysis herein.

We applied PLINK’s “clumping” function to obtain 
independent loci (parameters: –clump-p1 5e-8 –clump-
p2 1e-5 –clump-r2 0.2 –clump-kb 500) [23]. Within each 
locus, the variant with the lowest P-value was kept as 
index SNP. Significant pleiotropic SNPs were defined as 
index variants satisfying PCPASSOC < 5 ×  10–8 and Psingle-

trait < 1 ×  10–3 (for both traits). Novel pleiotropic SNPs 
were defined as significant pleiotropic SNPs that did not 
reach genome-wide significance in single-trait GWASs 
(5 ×  10–8 < Psingle-trait < 1 ×  10–3), were independent ( r2
< 0.20) of previously reported genome-wide significant 
SNPs (of depression and BC), and none of their neigh-
boring SNPs (± 500  kb) reached P < 5 ×  10–8 in single-
trait GWASs.

We used Ensembl Variant Effect Predictor (VEP) [24] 
and 3DSNP [25] for detailed functional annotation of the 
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identified pleiotropic SNPs. While VEP selects candidate 
genes based on simple physical proximity [24], 3DSNP 
annotates the regulatory function of SNPs by exploring 
their 3D interactions with genes mediated by chromatin 
loops [25].

Fine mapping credible set analysis
Because an index SNP is not likely to be the causal SNP, 
we further identified a credible set of variants that were 
99% likely to contain causal variants at each of the pleio-
tropic loci through FM-summary (https:// github. com/ 
haili anghu ang/ FM- summa ry) [26]. Briefly, FM-summary 
is a Bayesian fine-mapping algorithm that maps only the 
primary signal and uses a flat prior with steepest descent 
approximation, assuming at least one causal variant 
exists within a given region.

Colocalization analysis
To investigate whether the same variants are responsi-
ble for two GWAS signals as opposed to distinct genetic 
variants in proximity, we next performed a colocalization 
analysis using Coloc [27]. This method provides poste-
rior probabilities for five mutually exclusive hypotheses 
regarding the sharing of causal variants in a genomic 
region. We extracted summary statistics for variants 
within 500 kb of each shared index SNP, and calculated 
the posterior probability for H4 (PPH4, the probability 
that both traits associated through sharing a single causal 
variant). A locus was considered colocalized if PPH4 was 
greater than 0.5.

Transcriptome‑wide association studies
Many genetic variants influence complex traits by mod-
ulating gene expression; thus, investigating overlapped 
genes may help clarify causal mechanisms. To identify 
associations between depression and BC with regard 
to gene expression in specific tissues, we conducted a 
transcriptome-wide association study (TWAS) using 
FUSION [28] by integrating GWAS summary data with 
expression weights across 49 tissues from GTEx (Geno-
type-Tissue Expression, version 8). We first performed 49 
TWASs for each trait, one tissue-trait pair at a time, to 
identify an independent set of gene-tissue pairs. We then 
intersected single-trait TWAS results to examine if there 
were shared gene-tissue pairs across traits. The Bonfer-
roni correction was used within each tissue to account 
for multiple comparisons.

Mendelian randomization analysis
We finally performed a comprehensive two-sample MR 
analysis to detect potential causal relationships. We used 
the random-effect inverse-variance weighted (IVW) 
approach as the primary approach [29]. This method 

pools the Wald ratio estimate of each SNP and obtains 
the average casual effect estimate between two traits. 
To reduce biased estimate due to pleiotropic effects of 
genetic instruments, we adopted two complementary 
methods: MR-Egger regression (detects and corrects for 
bias due to directional pleiotropy) [30], and weighted 
median approach (provides a consistent causal estima-
tion with even ≥ 50% invalid IVs) [31]. As these two 
approaches were less powerful than IVW in detecting 
true causal effects, we defined a significant causal esti-
mate as significant in IVW (P-value < 0.05/3, number of 
overall BC and subtypes) and showing directional con-
sistency in MR-Egger regression and weighted median 
approach.

Additional sensitivity analyses were conducted to 
validate MR model assumptions (i.e., relevance, inde-
pendence, and exclusion restriction) [32], including: (i) 
exclusion of palindromic IVs with strand ambiguity; (ii) 
exclusion of pleiotropic IVs associated with potential 
confounding traits (confirmed by GWAS Catalog [13]); 
(iii) leave-one-out analysis where one SNP was removed 
at a time and IVW was conducted based on the remain-
ing SNPs; and (iv) MR-Pleiotropy Residual Sum and 
Outlier (MR-PRESSO) to evaluate the presence of hori-
zontal pleiotropy and to re-calculate causal effects after 
removing the detected outliers [33]. A multi-variable MR 
(MVMR) approach [34] was further employed to account 
for the effect from major confounders, including BMI 
[35], smoking initiation [36], alcohol consumption [36], 
physical activity [37], sleep duration [38], and educational 
attainment [39], where confounders were incorporated 
together with depression, one at a time as well as simul-
taneously. To evaluate whether genetically predicted BC 
exerts a causal effect on depression, a reverse-direction 
MR was performed where BC-associated independent 
SNPs were used as IVs.

MR analyses were conducted using packages “TwoSa-
mpleMR” (version 0.5.4), “MRPRESSO” (version 1.0), and 
“MendelianRandomization” (version 0.7.0) in software R 
(version 4.1.0).

Results
Phenotypic association
Baseline characteristics of UKBB participants included 
in the observational analysis are presented in Additional 
file  3: Table  S3. In total, participants were followed for 
3,014,168 person-years (11.41 ± 2.95 years), during which 
529 depression patients and 9,516 depression-free indi-
viduals developed BC (Table  1). After adjusting for age, 
assessment center, and the top 40 genetic principal com-
ponents, we observed a positive association between 
depression and risk of BC (hazard ratio (HR) = 1.075, 
95%CIs = 0.963–1.199). The effect was strengthened 

https://github.com/hailianghuang/FM-summary)
https://github.com/hailianghuang/FM-summary)
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when additionally adjusted for income, Townsend dep-
rivation index, and lifestyle-related factors (HR = 1.090, 
95%CIs = 0.951–1.250). In the fully adjusted model, the 
effect stabilized to 1.096 (95%CIs = 0.951–1.264).

Global and local genetic correlation
A limited but significant positive genetic correlation 
was found for depression with overall BC ( rg = 0.08, 
P = 3.00 ×  10–4), which was also observed in both ER + (rg 
= 0.06, P = 6.30 ×  10–3) and ER − subtypes ( rg = 0.08, 
P = 7.20 ×  10–3), all withstanding Bonferroni correction 
(Table 2).

When the whole genome was partitioned, one genomic 
region at 6p22.1 (harboring a previous-reported depres-
sion locus ZSCAN12) was identified as contributing a 
significant local genetic correlation to depression and 
overall BC (Pρ-HESS = 1.83 ×  10–5). When examining 
cancer subtypes, a region at 6p22.2 (harboring a pre-
vious-reported depression locus ABT1) was identified 
as contributing to both depression and ER + BC (Pρ-

HESS = 7.30 ×  10–6), which was further replicated by 
GWAS-PW (PPA_3 = 0.73). Additionally, GWAS-PW 
identified three regions showing high probability of 
shared associations between depression and ER + BC, 
including two regions near 6p22.2 (6p22.1, PPA_3 = 0.71; 
6p22.3–22.2, PPA_3 = 0.89), and one region at 9q31.2 
(PPA_3 = 0.52, harboring a previous-reported BC locus 
KLF4) (Fig. 2). No significant shared region was found for 
depression with ER − BC.

Cross‑trait meta‑analysis and pleiotropic loci
Motivated by the significant genetic overlap observed 
for depression and BC, we continued to explore at the 
individual variant level. In total, 17 independent loci 
reached genome-wide significance in CPASSOC (PCPAS-

SOC < 5 ×  10–8 and Pdepression < 1 ×  10–3 and PBC < 1 ×  10–3), 
including 12 loci shared between depression and over-
all BC, and nine loci shared between depression and 
ER + BC (Table 3). No significant shared locus was found 
for depression with ER– BC.

Of these 17 pleiotropic SNPs, interestingly, SNP 
rs2403907 represented the strongest shared signal across 
both overall (PCPASSOC = 1.55 ×  10–33) and ER + BC 
(PCPASSOC = 1.91 ×  10–32), located at an intergenic 
region at 21q21.1. SNPs rs67981811 (overall BC: PCPAS-

SOC = 6.25 ×  10–24; ER + BC: PCPASSOC = 3.14 ×  10–23) 
and rs17693963 (overall BC: PCPASSOC = 8.96 ×  10–21; 
ER + BC: PCPASSOC = 8.85 ×  10–21) were the second and 
the third strongest shared signals, both located at the 
6p22.1 region that harbors a depression-associated risk 
locus [9].

In addition to “known” pleiotropic SNPs (SNPs signifi-
cantly associated with both traits in previous GWASs, 
N = 6) or “single-trait-driven” pleiotropic SNPs (SNPs 
significantly associated with one of the two traits in pre-
vious GWASs, N = 10), we identified one novel shared 
SNP (re56101042) for depression and overall BC (PCPAS-

SOC = 6.53 ×  10–9). This SNP is located at 14q32.32 near 
snoU13 and TRAF3. The former gene represents a small 
nucleolar RNA recently implicated as a biomarker in 

Table 1 Observational association between depression and breast cancer

Model 1: adjusted for age, assessment center, and the top 40 genetic principal components

Model 2: adjusted for age, assessment center, the top 40 genetic principal components, income, Townsend deprivation index, body mass index, smoking, drinking, 
physical activity (IPAQ), sleep duration, and education

Model 3: adjusted for age, assessment center, the top 40 genetic principal components, income, Townsend deprivation index, body mass index, smoking, drinking, 
physical activity (IPAQ), sleep duration, education, family history of breast cancer, parity, age at menarche, menopausal status, use of oral contraceptives, hormone 
replacement therapy, diagnosis of other mental health disorders (i.e., bipolar disorder, multiple personality disorder, or schizophrenia/psychosis), and treatment/
medication for antidepressants or antipsychotics

Depression status during 
following up

Breast cancer cases/person 
years

Model 1 Model 2 Model 3

No 9,516/2,912,715 1.000 (ref ) 1.000 (ref ) 1.000 (ref )

Yes 529/101,453 1.075 (0.963–1.199) 1.090 (0.951–1.250) 1.096 (0.951–1.264)

Table 2 Global genetic correlation between depression and breast cancer

rg Genetic correlation, se Standard error, gcov Genetic covariance

Trait 1 Trait 2 rg rg _se rg _P gcov gcov_se

Depression Overall breast cancer 0.08 0.0213 3.00 ×  10–4 0.0102 0.0028

ER + breast cancer 0.06 0.0231 6.30 ×  10–3 0.0093 0.0034

ER– breast cancer 0.08 0.0311 7.20 ×  10–3 0.0107 0.0039
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vulnerability to brain injury [40], while the latter gene 
functions in immune modulation and inflammation via 
its regulation of nuclear factor-κB signaling [41], which 
has been implicated in the pathogenesis of both psychi-
atric disorders and tumorigenesis [1]. Four genes (AMN, 
ANKRD9, MIR4309, and RCOR1) were additionally iden-
tified to interact with rs56101042 through three-dimen-
sional chromatin looping [25]. Detailed annotations for 
each SNP discovered by CPASSOC are shown in Addi-
tional file 3: Tables S4-S5.

Identification of causal variants and colocalization
For each of the 17 pleiotropic SNPs, we further deter-
mined a 99% credible set of causal SNPs, providing tar-
gets for downstream experimental analysis (Additional 
file  3: Tables S6-S7). We found 413 candidate causal 
SNPs across all loci shared by depression and overall BC, 
and 282 candidate causal SNPs across all loci shared by 
depression and ER + BC. In particular, SNPs rs5757946 
(22q13.1) and rs11049366 (12p11.22) were identified as 
having a posterior probability of 1.00 in the 99% credible 
set.

We also performed colocalization analysis to deter-
mine whether pleiotropic SNPs driving the associations 
in two traits were the same (Additional file 3: Table S8). 
A substantial proportion of shared loci (five out of the 12 
loci shared by depression and overall BC; and five out of 
the nine loci shared by depression and ER + BC) colocal-
ized at the same candidate SNPs (eight of which showed a 
PPH4 > 0.90), reinforcing shared causal associations.

Transcriptome‑wide association studies and shared genes
Results from tissue-specific TWAS revealed gene-level 
genetic overlap (single-trait results shown in Additional 
file  3: Table  S9 and Additional file  1: Figure S2). After 
multiple corrections, a total of five genes were shared 
by depression and overall BC of which two were also 
shared by depression and ER + BC, enriched in six tissues 
including brain, blood, uterus, colon, artery and heart 
(Table  4). Four genes were located at pleiotropic loci 
identified in cross-trait meta-analysis, including FLOT1 
and HLA-S at 6p21.33, ENSG00000247934.4 at 12p11.22, 
and GRAP2 at 22q13.1.

While data on ENSG00000247934.4 was limited, it rep-
resents an antisense to CCDC91 previously implicated in 

Fig. 2 Local genetic correlation between depression and breast cancer. Red bars in Manhattan plots and red dots in QQ plots represent loci 
showing significant local genetic correlation with ρ-HESS after multiple testing adjustments (P < 0.05/1,703). Blue bars in Manhattan plots and 
blue dots in QQ plots represent additional loci showing a high probability of shared associations using GWAS-PW (PPA _3 > 0.5). a Manhattan plot 
showing the local genetic correlation, genetic covariance, and SNP-heritability estimated from ρ-HESS between depression and overall breast 
cancer. b QQ plot presenting region-specific P-values for ρ-HESS-estimated local genetic correlation between depression and overall breast cancer. 
c Manhattan plot showing the local genetic correlation, genetic covariance, and SNP-heritability estimated from ρ-HESS between depression 
and ER + breast cancer. d QQ plot presenting region-specific P-values for ρ-HESS-estimated local genetic correlation between depression and 
ER + breast cancer. DEP: depression; BC: breast cancer; ER: estrogen receptor
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BC and brain morphology estimates (compared with data 
from GWAS Catalog [13]). Among other TWAS-signif-
icant shared genes, FLOT1 was previously implicated in 
depression and aerodigestive squamous cell carcinoma. 
We also identified three novel genes, HLA-S, ZSWIM1, 
and GRAP2. As a pseudogene located at the major his-
tocompatibility complex (MHC) region, HLA-S was 
reported to be associated with a broad range of condi-
tions including schizophrenia, gastric, and hepatocel-
lular cancers. By regulating T helper cells development, 
ZSWIM1 plays a critical role in immune system [42], and 
signals a poor prognosis of ovarian cancer [43]. Simi-
larly, GRAP2 was implicated in T cell-mediated immune 
responses [44], as well as in medullary thyroid cancer and 
lung adenocarcinoma prognosis [45, 46].

Mendelian randomization
Finally, we conducted a two-sample MR analysis com-
bining 102 GWAS-identified depression-associated 
SNPs (F-statistic ranging from 91.5 to 329.6 (Additional 
file  3: Table  S1)) as an IV to examine a potential causal 
effect of depression on BC. Using IVW, genetic liabil-
ity to depression was significantly associated with an 
increased risk of overall BC (odds ratio (OR) = 1.12, 
95%CIs = 1.04–1.19, P = 1.40 ×  10–3). The estimates 
remained directionally consistent in MR-Egger regres-
sion and the weighted median approach, despite larger 
statistical uncertainties (Fig.  3). No indication of hori-
zontal pleiotropy was observed (PMR-Egger intercept = 0.86). 
Sensitivity analyses excluding palindromic SNPs or plei-
otropic SNPs supported the robustness of these results. 
Leave-one-out analysis demonstrated the absence of 
outlying variants (Additional file 1: Figure S3) which was 
validated by MR-PRESSO (OR = 1.13, 95%CIs = 1.06–
1.21, P = 5.00 ×  10–4). MVMR accounting for potential 

confounders generated similar results with even more 
pronounced magnitude and significance, suggesting a 
depression-BC causal relationship independent of com-
mon confounders (Additional file 1: Figure S4).

In subgroup analysis defined by ER status, we found a 
non-significant association of depression with ER + BC 
(IVW OR = 1.08, 95%CIs = 0.99–1.18, P = 6.98 ×  10–2; 
PMR-Egger intercept = 0.86), and a suggestive significant asso-
ciation of depression with ER– BC (IVW OR = 1.12, 
95%CIs = 1.01–1.24, P = 3.77 ×  10–2; PMR-Egger inter-

cept = 0.82), though neither withstood multiple testing 
corrections (Fig.  3). In MVMR, while a putative causal 
effect of depression on ER + BC was observed, the causal 
effect of depression with ER– BC attenuated to null after 
adjustment for each confounder, and none survived mul-
tiple corrections (Additional file 1: Figure S4).

No evidence of reverse causality was found such 
that genetically predicted BC did not seem to influ-
ence depression risk (IVW OR = 1.01, P = 0.49; MR-
Egger OR = 0.98, P = 0.20; weighted median OR = 1.01, 
P = 0.34). Similar null effects were identified for ER + and 
ER– subtypes (Fig. 3).

Discussion
To our knowledge, this is the largest observational and 
genetic analysis to systematically investigate the pheno-
typic association as well as the shared genetic architec-
ture underlying depression and BC. Our observational 
study demonstrated a positive association of depression 
with BC risk, which was corroborated by findings from 
genetic analyses. We found evidence supporting a sig-
nificant shared genetic basis, both globally and region-
ally, indicating shared biology between the two traits. 
This genetic overlap was further decomposed into both 
pleiotropy and causality, reflected by the pleiotropic 

Table 4 Significant shared transcriptome-wide association analysis results between depression and breast cancer

All these loci were TWAS significant (PBonferroni < 0.05) for both depression and breast cancer in at least one GTEx tissues

TWAS Transcriptome-wide association studies, CHR Chromosome, Best.GWAS.ID rsID of the most significant GWAS SNP in locus, TWAS.Z TWAS Z-score, BC Breast cancer, 
ER Estrogen receptor

Tissue Ensembl gene ID Gene symbol CHR BC Depression

Best.GWAS.ID TWAS.Z PBonferroni Best.GWAS.ID TWAS.Z PBonferroni

Depression and overall breast cancer

 Whole Blood ENSG00000137312.14 FLOT1 6 rs3130975 -4.66 2.56 ×  10–02 rs3130557 -6.15 6.10 ×  10–06

 Uterus ENSG00000225851.1 HLA-S 6 rs3130975 4.30 4.07 ×  10–02 rs3130557 4.84 3.07 ×  10–03

 Artery Coronary ENSG00000247934.4 . 12 rs7297051 7.41 4.87 ×  10–10 rs11049301 -4.44 3.48 ×  10–02

 Brain Cerebellum ENSG00000168612.4 ZSWIM1 20 rs3746506 -4.60 3.15 ×  10–02 rs9074 4.83 9.79 ×  10–03

 Heart Left Ventricle ENSG00000100351.16 GRAP2 22 rs17001868 -4.87 6.69 ×  10–03 rs139915 -4.50 3.93 ×  10–02

Depression and ER + breast cancer

 Colon Transverse ENSG00000137312.14 FLOT1 6 rs3130975 -4.49 4.68 ×  10–02 rs3130557 -7.49 4.31 ×  10–10

 Artery Coronary ENSG00000247934.4 . 12 rs7297051 5.50 1.49 ×  10–04 rs11049301 -4.44 3.48 ×  10–02
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loci identified in CPASSOC, the shared genes revealed 
by TWAS, and the putative causal relationship demon-
strated by MR.

Overall, the genetic correlation between depression 
and BC was limited ( rg = 0.08) but statistically signifi-
cant. In addition, significant local genetic correlations 
were found for several specific genomic regions includ-
ing a locus at 9q31.2, and 4 loci at, or close to 6p22.1. 
Chr6q22.1 represents an important locus at MHC, a 
region well-known for containing multiple genes essen-
tial for the adaptive immune system as well as the anti-
tumoral immune response [47]. The MHC region has 
been associated with depression in some prior studies 
[9–11, 48], with the strongest association located in the 
classical or extended class I region; moreover, a study 
has also identified a 66% down-regulation of MHC 
class I expression in BC tissues [49], collectively high-
lighting its role in the etiological connection underly-
ing these two traits. Leveraging genotype imputation, a 
recent (also the largest) study on depression and classi-
cal MHC variants indicated an overall non-significant 
association [50], calling for additional efforts to dissect 
signals within the extended MHC.

Significant genetic overlap can be the result of biologi-
cal or horizontal pleiotropy (in which a genetic variant 
affects multiple traits) and/or mediated or vertical pleiot-
ropy (in which a genetic variant affects a trait via its effect 
on an intermediate trait) [51]. In our downstream analy-
sis performed to explore these alternatives, 17 pleiotropic 
loci between depression and BC were identified, har-
boring genes which were previously implicated in neu-
ral development and brain functions (i.e., HCN1, ABT1, 
ZSCAN12, ZNF184, KLC1, MKL1, SGSM3, CCDC91), or 
biological processes related to tumor growth (i.e., ABT1, 
ZSCAN12, ZNF184, KLC1, TTC28, MKL1, CCDC91, 
OLFM4, DDR1). Notably, several shared loci were located 
at genes that play essential roles in immune, inflam-
matory, and stress responses (i.e., PSORS1C1, TRAF3, 
APOPT1, PRSS16, BTN3A2). Multiple genes showed 
strong evidence of colocalization, especially among those 
located near the MHC (i.e., ABT1, BTN3A2, ZNF184, 
PRSS16, ZSCAN12, SLC17A3).

One advantage of meta-analyzing GWASs of differ-
ent traits is that combining association evidence across 
multiple studies can reveal signals which might not 
have reached genome-wide significance in a single-trait 

Fig. 3 Bi-directional causal relationship underlying depression and breast cancer. a Estimates of causal effects for genetically predicted depression 
with overall breast cancer, ER + breast cancer, and ER– breast cancer, respectively. b Estimates of causal effects for genetically predicted overall 
breast cancer, genetically predicted ER + breast cancer, and genetically predicted ER– breast cancer with depression. Boxes represent the point 
estimates of causal effects, and error bars represent 95% confidence intervals. Inverse-variance weighted approach was adopted as the primary 
analysis. MR-Egger regression, weighted median, and MR-PRESSO approaches were adopted as sensitivity analysis. BC: breast cancer; ER: estrogen 
receptor
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analysis. Indeed, we found a novel locus (lead SNP 
rs56101042) shared between depression and BC, only 
reported previously as associated with allergic disease 
[52]. While its direct involvement in the development 
of depression or BC is not known, this SNP interacts 
with several genes that have already been reported (i.e., 
TRAF3 and RCOR1 [53, 54]), or that could play a role in 
the pathogenesis of the two traits (i.e., AMN, ANKRD9, 
and MIR4309). Encoding a transmembrane protein 
named amnionless, AMN is involved in the plasma mem-
brane transport of Cubilin, and may influence cancer 
progression through the Cubilin-FGF8 (fibroblast growth 
factor 8) interaction [55]. AMN may also function in psy-
chiatric illness given its role in the vitamin  B12 transpor-
tation into nervous system [56]. ANKRD9 encodes an 
ankyrin repeat domain protein which was implicated in 
drug-induced mental disorder [57], and recognized as a 
tumor suppressor in gastric cancer among Asians [58]. 
MIR4309 has been found to be significantly elevated 
among patients with disordered sleep (a core symptom 
of depression) [59], as well as up-regulated in tissues of 
gastric cancer [60]. Further experimental studies would 
be needed to provide more detailed functional annota-
tion of rs56101042, particularly in relation to the onset of 
depression and BC.

By integrating data from GWAS and GTEx tis-
sue expression, TWAS suggested shared mechanistic 
hypotheses between depression and BC on a gene-tissue 
pair level. The four loci identified in both CPASSOC and 
TWAS analysis implicate common biological mecha-
nisms in depression and BC regulation, involving cell 
proliferation [61], brain structure [62, 63], and immune 
response [44]. In addition to tissues of brain, uterus, and 
blood (well-recognized as relevant to depression and/
or BC [64–66]), our TWAS reported shared regulatory 
features in the digestive (i.e., colon transverse) and car-
diovascular systems (i.e., artery coronary and hear left 
ventricle), suggesting the possibility of shared pathways 
extending to a wider range of organs. A growing body 
of literature has shown that functional disorders of the 
digestive system may play a critical role in a variety of 
psychiatric disorders including depression. One of the 
speculated mechanisms is the communication of gut 
microbiome with the brain through the brain-gut axis 
[67]. Interestingly, gut microbiome may also affect breast 
carcinogenesis by promoting anti-tumor immunity and/
or modulating systemic estrogen levels [68]. As another 
major cause of mortality and morbidity, cardiovascular 
disease shares a number of common risk factors with 
both conditions, and represents one of the most preva-
lent comorbidities for depression and BC in clinical set-
tings [69, 70]. More studies are needed to clarify the role 
of these hypothesized mechanisms.

To date, epidemiological evidence regarding the 
depression-BC relationship has been inconclusive, but 
our observational and MR analyses showed consist-
ent evidence for a putative causal role of depression 
in BC among European populations. Our MR results 
extended existing MR analyses [71, 72] with substan-
tially improved accuracy and precision of causal esti-
mates by applying: (i) the most updated GWAS of 
overall BC; (ii) a broader range of complementary 
analysis to validate the MR assumptions; and (iii) an 
extensive MVMR design to evaluate the independ-
ent effect of depression. The estimated causal effects 
remained directionally consistent across a variety of 
sensitivity analyses, as well as after adjustment of mul-
tiple confounders, supporting the robustness of our 
MR findings. When extended to BC subtypes, we found 
consistently positive associations with greater statisti-
cal uncertainties. Future studies with larger sample 
sizes are warranted to establish or rule out a potential 
causal link in a subtype-specific manner.

Several limitations need to be acknowledged. Using 
data of European ancestry populations restricted the gen-
eralizability of our results, and future studies including 
more diverse ancestries are needed. The broad depres-
sion phenotype used in the current study is regarded as 
a relatively non-specific index of vulnerability to psycho-
logical distress, rather than highly specific for MD [73]. 
However, we performed sensitivity analysis restricting to 
clinically ascertained MD cases and identified consistent 
results (fully adjusted observational analysis using only 
ICD-10 codes F32 and F33 for MD diagnosis: HR = 1.091, 
95%CIs = 0.946–1.258; genetic correlation and MR anal-
yses applying an older MD GWAS [10] involving only 
clinically defined MD cases: rg = 0.07, P = 3.00 ×  10–4; 
 ORMR = 1.08, P = 4.30 ×  10–2). Additionally, due to lim-
ited data availability at the time of conducting the analy-
sis, we were unable to utilize sex-specific GWAS data of 
depression to match with the female-specific outcome 
BC. However, sex-heterogeneity did not seem to play a 
significant role when using female-specific depression 
GWAS summary statistics which now become available 
[74]. Although underpowered, female-specific genetic 
correlation analysis and MR analysis yielded statisti-
cally significant and directionally consistent results ( rg 
= 0.09, P = 1.60 ×  10−3;  ORIVW = 1.11, P = 0.04). Using 
sufficiently powered female-specific data would be valu-
able for future studies. Although depression is highly het-
erogeneous, we did not investigate depression subtypes 
(i.e., typical vs. atypical) or additional BC subtypes due 
to limited well-powered GWAS available for these phe-
notypes. Finally, validation of the study findings in addi-
tional follow-up cohorts and GWAS is needed. Future 
in-depth experimental works are also warranted to better 
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understand pathophysiological mechanisms that may 
underlie genetic overlap between depression and BC.

Conclusions
In sum, the current study advances our understanding 
of previously reported associations between depression 
and BC by providing evidence of genetic correlation, 
pleiotropic loci, and a possible causal effect of depression 
on BC. Our findings further suggest potential biological 
mechanisms linking these disorders and may have impli-
cations for future studies aimed reducing BC risk.
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