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Abstract 

Background Childhood obesity is a global health concern and can lead to lifetime cardiometabolic disease. New 
advances in metabolomics can provide biochemical insights into the early development of obesity, so we aimed to 
characterize serum metabolites associated with overweight and adiposity in early childhood and to stratify associa‑
tions by sex.

Methods Nontargeted metabolite profiling was conducted in the Canadian CHILD birth cohort (discovery cohort) 
at age 5 years (n = 900) by multisegment injection‑capillary electrophoresis‑mass spectrometry. Clinical outcome was 
defined using novel combined measures of overweight (WHO‑standardized body mass index ≥ 85th percentile) and/
or adiposity (waist circumference ≥ 90th percentile). Associations between circulating metabolites and child over‑
weight/adiposity (binary and continuous outcomes) were determined by multivariable linear and logistic regression, 
adjusting for covariates and false discovery rate, and by subsequent sex‑stratified analysis. Replication was assessed in 
an independent replication cohort called FAMILY at age 5 years (n = 456).

Results In the discovery cohort, each standard deviation (SD) increment of branched‑chain and aromatic amino 
acids, glutamic acid, threonine, and oxoproline was associated with 20–28% increased odds of overweight/adipos‑
ity, whereas each SD increment of the glutamine/glutamic acid ratio was associated with 20% decreased odds. All 
associations were significant in females but not in males in sex‑stratified analyses, except for oxoproline that was 
not significant in either subgroup. Similar outcomes were confirmed in the replication cohort, where associations of 
aromatic amino acids, leucine, glutamic acid, and the glutamine/glutamic acid ratio with childhood overweight/adi‑
posity were independently replicated.

Conclusions Our findings show the utility of combining measures of both overweight and adiposity in young 
children. Childhood overweight/adiposity at age 5 years has a specific serum metabolic phenotype, with the profile 
being more prominent in females compared to males.
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Background
Obesity has become a hallmark of modern childhood 
with over 340 million children and adolescents with 
overweight or obesity worldwide [1, 2]. Its growing 
prevalence in children, including a disproportionate rise 
during the COVID-19 pandemic, likelihood of leading 
to lifetime obesity, and association with cardiometabolic 
risk factors are major concerns [3–5].

Various methods are available for assessing obesity 
including body mass index (BMI), waist circumference, 
waist to height ratio, and body fat percentage estimated 
from sum of skin thickness or more quantitative meas-
ures (e.g., bioelectrical impedance analysis) [6]. While 
BMI standardized for age and sex remains the most com-
monly used metric of obesity in children, other adipos-
ity measures of central body fat distribution such as waist 
circumference, and visceral fat are less investigated in 
children [7, 8]. In all cases, metabolite derived biomark-
ers hold promise in improved prediction of future car-
diometabolic disease than weight or other traditional risk 
factors alone even at early life stages [9, 10].

State-of-the-art mass spectrometry (MS) or nuclear 
magnetic resonance (NMR) are major instrumental 
platforms used in metabolomics analysis of complex 
biological sample [11, 12]. As substrates or products of 
biochemical pathways, metabolites capture the output of 
upstream processes involving the genome, the transcrip-
tome, and the proteome, as well as downstream changes 
in lifestyle, diet, and environmental exposures [13, 14].

A systematic review of metabolomic studies of obe-
sity in children (age range of 0.25 to 18 years) in the past 
15 years resulted in a total of 41 articles and reported an 
emerging metabolic profile of childhood obesity most 
consistent for branched-chain and aromatic amino acids 
[15]. However, the literature in young children (specifi-
cally < 6  years) is limited. Given that insulin resistance 
is usually only evident around puberty, as shown in the 
longitudinal study of the development of insulin resist-
ance from age 5 to 16  years [16], studying overweight/
adiposity during early childhood, e.g., at age 5  years, 
offers a novel window to investigate how early subclini-
cal metabolic perturbations develop. Such investigations 
are valuable especially that childhood adiposity is a pre-
dictor of cardiometabolic health in adulthood. Likewise, 
no studies have researched sex-specific differences in 
early childhood despite the opportunity this could offer 
in understanding early pathophysiology and optimizing 
nutrition or growth rate intervention windows based on 
sex. We hypothesized that there would be sex-related dif-
ferences in metabolic-adiposity profiles prior to and apart 
from puberty-related differences.

In the present study, we sought to (i) characterize 
serum metabolites associated with overweight/adiposity 

measures in 900 children at 5 years of age, (ii) investigate 
early sex-dependent differences, and (iii) validate our 
results in an independent cohort of 456 children of the 
same age.

Methods
Study design
This study was embedded in the CHILD Cohort Study 
(discovery cohort), a general population-based Cana-
dian birth cohort that recruited pregnant women from 
Toronto, Manitoba, Edmonton, and Vancouver from 
2009 to 2012 [17]. Of 3278 infants enrolled in CHILD, 
3098 completed a follow-up 5-year visit, 1770 had serum 
specimens available, and of these 900 children had com-
plete metabolomics data available (consort diagram 
Additional File 1: Figure S1). Replication of metabolite 
biomarker candidates was tested among 456 children age 
5 years with complete metabolomics data, as previously 
published [18], from the Family Atherosclerosis Moni-
toring In earLY life (FAMILY) prospective birth cohort 
study (replication cohort) [19], analyzed by the same vali-
dated instrumental platform as used in CHILD [20].

Non-fasting blood samples for CHILD and fasting 
blood samples for FAMILY were collected and serum 
was fractionated within 24 h from collection according to 
standard protocols, stored at – 80 °C and shipped on dry 
ice [6]. Child anthropometric measures included weight, 
height, waist circumference, and skin fold thickness 
(the sum of subscapular and triceps skinfolds). BMI was 
calculated as weight in kilograms divided by height in 
meters squared, and standardized BMI-for-age z-scores 
were derived based on the World Health Organization 
(WHO) child growth standards [6]. Age- and sex-stand-
ardized waist circumference z-scores were derived based 
on percentile curves created for 18,745 children aged 
2.0–10.9  years of the European IDEFICS (Identification 
and prevention of Dietary-and lifestyle-induced health 
EFfects in children and infantS) cohort [21].

Children were classified as overweight if their 
z-BMI ≥ 85th percentile (BMI-for-age greater than 1 
standard deviation above the WHO growth reference 
median) or high adiposity if their waist circumference 
was ≥ 90th percentile (cohort- and sex-specific) [22, 23]. 
Two hundred forty-two children in CHILD and 106 chil-
dren in FAMILY met these criteria and were classified as 
cases (Fig. 1). If neither of the criteria was met, children 
were classified as non-cases (658 children in CHILD and 
350 children in FAMILY).

Data on covariates were obtained from standard-
ized questionnaires, including night sleep (hours/day), 
screen time (< 2  h/day cutoff as per Canadian guide-
lines recommendations) [24], social disadvantage index 
(composed of household income, marital status and 
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maternal employment) [25], maternal education (years), 
breastfeeding status at 1  year (whether or not the child 
was breastfed up to the first year of life, irrespective of 
breastfeeding exclusivity), diet quality score [26, 27], and 
physical activity level (average hours per week spent in 
moderately vigorous physical activity participating in 
organized and unorganized sports and activities, outside 
of school hours) [18].

Serum metabolomics analysis
A high-throughput platform based on multisegment 
injection-capillary electrophoresis-mass spectrometry 
(MSI-CE-MS) was used for the analysis of polar ionic 
metabolites in serum filtrate samples as described in 
detail elsewhere [28]. Briefly, an Agilent 6230 time-of-
flight MS with a coaxial sheath liquid Jetstream electro-
spray ion source equipped to an Agilent G7100A CE 
was used for data acquisition. This multiplexed separa-
tion platform takes advantage of a serial sample injection 
format of 13 samples within a single CE run including a 
pooled quality control (QC) sample prepared by combin-
ing equal aliquots of serum filtrate samples from all study 
participants for assessment of technical precision [29, 
30]. An iterative data workflow based on temporal signal 

pattern recognition with serial sample injections was used 
to reject spurious signals, redundant peaks, and back-
ground ions when performing nontargeted metabolomics 
to report authenticated serum metabolites [20, 30].

Fifty-one serum metabolites were consistently meas-
ured in over 75% of the samples and satisfied QC criteria 
of a variance under 30% when using MSI-CE-MS under 
2 configurations with positive and negative-ion mode 
detection. Forty-six metabolites were unambiguously 
identified (level 1) and subsequently quantified using a 
calibration curve, where ion responses were normalized 
to an internal standard (Additional File 2: Table S1). Four 
unknown serum metabolites were annotated based on 
their characteristic accurate mass and relative migration 
time under positive or negative ion mode. Metabolite 
combinations and ratios frequently used in the literature 
were derived for branched-chain amino acids (BCAAs) 
as the sum of leucine, isoleucine, and valine, aromatic 
amino acids (AAAs) as the sum of tyrosine and phenyla-
lanine, and the glutamine/glutamic acid ratio.

Of note, fasting status was the only differing collection 
parameter between the discovery and validation cohorts, 
while type of specimen, collection and storage param-
eters, sample preprocessing, and metabolomics analysis 
were identical between cohorts.

Statistical analysis
Descriptive statistics for anthropometrics, age, blood 
pressure, and lifestyle factors were presented as mean 
and standard deviation overall (n = 900) and stratified 
by cases (n = 242) and non-cases (n = 658), for children 
5  years of age. Categorical variables were presented 
as counts and percentages. All metabolite concentra-
tions (or relative peak area if standard was unavailable) 
were natural-log transformed before analyses to obtain 
approximately normal distributions. They were subse-
quently scaled to standard deviation (SD) units for each 
cohort. Significant metabolite associations with pedi-
atric overweight/adiposity at age 5  years were tested 
separately for each metabolite using multivariable 
logistic regression. Similarly, sex-dependent differences 
were tested in multivariable logistics regression mod-
els stratified by child sex. Based on the literature and 
prior knowledge, a parsimonious set of covariates that 
associate with childhood obesity were initially selected 
as listed under study design. All variables significant 
by association with our categorical or continuous out-
comes in a simple univariate regression (α ≤ 0.10) were 
entered into backward elimination selection proce-
dures, whereby the sum of BCAAs was included in the 
global model as a representative of metabolite expo-
sures because it shows the strongest association to 
childhood obesity in the literature [15]. As a result, our 

Fig. 1 Overweight/adiposity cases at age 5 years in CHILD and 
FAMILY birth cohorts
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final multivariable models adjusted for maternal educa-
tion, child night sleep at age 5 years, breastfeeding sta-
tus at 1 year, in addition to child age and sex. The same 
analysis was conducted using linear regression models 
with the continuous measure of z-BMI, and adiposity 
(i.e., waist circumference, and sum of skinfolds) as the 
outcome variables. Statistical significance for the mul-
tivariable regression analyses was set at p < 0.05 and a 
Benjamini–Hochberg false discovery rate (FDR) of 0.1 
was considered to adjust for multiple testing.

Among the 900 study participants in CHILD, all 
covariates were available for 696 children (77.3%). To 
test consistency of results, missing values of covari-
ates, assumed to be missing at random, were multiple 
imputed (n = 20 imputations) using the MICE (Multi-
variate Imputation by Chained Equations) R package 
that uses a conditional multiple imputation approach. 
Estimates were pooled from all 20 imputed datasets. 
Metabolites associated with the overweight/adiposity 
combined dichotomous outcome were then analyzed 
in the FAMILY validation cohort with full adjustment 
and subsequent sex-stratified analysis. Among the 456 
study participants in FAMILY, all covariates were avail-
able for 420 children (92%). All analyses, tables, and 
graphs were completed in R (v3.6.3; R Foundation).

Results
Participants’ characteristics
The discovery cohort included 900 children from the 
CHILD prospective birth cohort and demographic char-
acteristics are summarized in Table 1. Briefly, the mean 
age of participants was 5.03  years; and 45% were girls. 
One hundred twenty-three children met both z-BMI and 
waist circumference criteria for case selection, while 88 
and 31 children were above either the z-BMI or the waist 
circumference thresholds, respectively (Fig. 1). The mean 
z-BMI score was 1.69 and 0.001, and the mean waist cir-
cumference was 58.91 cm and 50.95 cm, in children clas-
sified as cases versus in non-cases respectively. For the 
replication cohort, metabolite biomarker candidates were 
measured in 456 children from FAMILY with a mean 
age of 5.15  years and 50% were girls (Additional File 3: 
Table S2, Fig. 1).

Metabolite profiling of childhood overweight/adiposity 
at age 5 years
Comparison of serum metabolite profiles in cases 
and non‑cases
We examined each serum metabolite for association with 
the overweight/adiposity case-non-case status. Eleven 
metabolite markers were statistically different between 

Table 1 Baseline characteristics of the CHILD study population

Values are presented as mean (SD) or n (%). Diet quality score: sum of daily servings of “healthy” foods less the sum of daily servings of “unhealthy” foods

Characteristic Cases
(n = 242)

Non-cases
(n = 658)

All children
(n = 900)

Age (years) 5.02 (0.11) 5.04 (0.15) 5.03 (0.14)

Sex (female) 107 (44%) 301 (46%) 408 (45%)

Daily night sleep (hours) 10.91 (0.72) 11 (0.75) 10.98 (0.74)

Physical activity (hours/week) 11.06 (9.28) 10.55 (8.73) 10.67 (8.86)

Diet quality score 0.21 (1.75) 0.31 (2.1) 0.28 (2.02)

Maternal education (years) 15.64 (3.24) 16.94 (3.15) 16.63 (3.22)

Social disadvantage index
 Low 0–1 101(71.0%) 351 (76.0%) 452 (75.0%)

 Moderate 2–3 39 (27.0%) 99 (21.0%) 138 (23.0%)

 High 4–5 3 (2.0%) 11 (3.0%) 14 (2.0%)

Screen time exposure
 Low exposure (< 2 h) 112 (61%) 368 (67%) 480 (78%)

 High exposure (≥ 2 h) 73 (39%) 181 (33%) 254 (22%)

Systolic blood pressure (mm Hg) 107.59 (10.04) 100.58 (9.27) 102.25 (9.91)

Diastolic blood pressure (mm Hg) 60.88 (7.04) 57.94 (5.8) 58.64 (6.24)

BMI (kg/m2) 18.0 (1.94) 15.3 (0.90) 16.02 (1.77)

BMI-for-age z-score (WHO) 1.69 (0.99) 0.001 (0.67) 0.45 (1.08)

Waist circumference (cm) 58.91 (4.44) 50.95 (3.55) 52.85 (5.08)

Waist circumference z-score 2.17 (0.99)  − 0.19 (1.19) 0.45 (1.54)

Waist circumference-to-height 0.52 (0.04) 0.46 (0.03) 0.48 (0.04)

Sum of skinfolds (mm) 20.62 (5.86) 15.24 (3.63) 16.53 (4.84)
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cases and non-cases in the unadjusted, as well as the 
adjusted multivariable model, and passed FDR adjust-
ment as shown in Table  2. The top metabolite mark-
ers included BCAAs and AAAs. For the three BCAAs, 
leucine, valine, and isoleucine, their sum, and the two 

AAAs, tyrosine, phenylalanine, and their sum, each SD 
increment in log serum biomarker was associated with 
20–28% increased odds of child overweight/adiposity, 
whereas the glutamine/glutamic acid ratio was associ-
ated with 20% decreased odds. Glutamic acid, threonine, 
and oxoproline were also positively associated with over-
weight/adiposity at age 5  years. Results were consistent 
among other intermediate adjusted models adjusting for 
age and sex only, and age, sex, and maternal education 
(proxy for socioeconomic status), as well as the multiple 
imputed models (Additional File 4: Table S3).

Investigation of early sex‑dependent differences 
in metabolite markers
Next, sex-stratified analysis was conducted for the result-
ing 11 serum metabolite markers listed in Table  2. Fig-
ure 2 illustrates the odds ratio (OR) and 95% confidence 
intervals (CI) of the metabolite associations with over-
weight/adiposity categorized by sex. Separate multivari-
able logistic regression models for 387 males and 309 
females were adjusted for age, maternal education, sleep 
time, and breastfeeding status at 1 year in 97 (25%) cases 
and 290 (75%) non-cases and in 76 (25%) cases and 233 
(75%) non-cases, respectively. Almost all metabolite 
associations (except for oxoproline) were only signifi-
cant in females (49–64% increased odds for top metabo-
lite panel) indicating nearly twofold greater estimates of 

Table 2 Serum metabolites associated with child overweight/
adiposity at age 5 years in  CHILDa

BCAAs branched-chain amino acids, AAAs aromatic amino acids, OR odds ratio, 
95% CI confidence intervals, p- p-value for statistical significance, FDR false 
discovery rate d = 0.1; when p- is smaller than this value, association passes 
multiple hypothesis testing
a Multivariable logistic regression adjusting for maternal education, sleep time, 
breastfeeding status at 1 year, sex, and age [204 (23%) had missing values on 
at least one covariate; complete cases analysis n = 696: 173 cases and 523 non-
cases]

Metabolite OR 95% CI p- FDR

Leucine 1.28 (1.07–1.54) 0.007 0.009

BCAAs 1.27 (1.06–1.52) 0.009 0.018

Valine 1.26 (1.06–1.51) 0.01 0.027

AAAs 1.23 (1.03–1.48) 0.024 0.036

Isoleucine 1.23 (1.03–1.47) 0.025 0.045

Glutamic acid 1.28 (1.04–1.61) 0.025 0.054

Threonine 1.23 (1.02–1.47) 0.029 0.063

Glutamine/glutamic acid 0.81 (0.66–0.98) 0.039 0.072

Phenylalanine 1.22 (1.01–1.47) 0.042 0.082

Tyrosine 1.19 (1.00–1.42) 0.045 0.09

Oxoproline 1.22 (1.01–1.48) 0.045 0.1

Fig. 2 Serum metabolite associations with overweight/adiposity in the CHILD birth cohort categorized by sex (female and male) compared to 
non‑stratified analysis (all) depicting OR and 95% CI. OR are per 1‑SD log‑transformed metabolite concentrations and adjusted for child’s age and 
sleep time at 5 years, breastfeeding status at 1 year, and maternal education
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overweight/adiposity among females for most metabo-
lites, while the corresponding ORs for males were not 
significant.

Comparison of performance of different body composition 
metrics
Multivariable linear regression models were used to 
investigate serum metabolite associations with three 
continuous anthropometric measures, namely z-BMI, 
waist circumference/z-waist circumference, and sum of 
skinfold (n = 696). Figure 3 shows a Venn diagram of the 
number and names of serum metabolites significantly 
associated with each measure and their overlap while 

Additional File 5: Table  S4, Additional File 6: Table  S5, 
and Additional File 7: Table  S6 present the regres-
sion results for z-BMI, waist circumference, and sum 
of skinfold, respectively. Using the results of the logis-
tic regression analysis as reference for the 11 significant 
metabolites from the logistic regression analysis, waist 
circumference as a continuous outcome performed best 
in terms of number, magnitude, and strength of metab-
olite associations, followed by sum of skin folds, then 
z-BMI. Standardized z-waist circumference depicted 
the same results (data not shown). None of the 11 serum 
metabolites markers was common across all three 
anthropometric measures. BCAAs, AAAs, and glutamic 

Fig. 3 Venn diagram of the metabolites significantly associated with z‑BMI, waist circumference and sum of skinfold and their overlap in 696 
children in CHILD at age 5 years
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acid associations were broadly similar across waist cir-
cumference and sum of skin folds, although the strength 
of specific associations showed some variation, and were 
not significantly associated with z-BMI. Threonine was 
significantly associated with both z-BMI and waist cir-
cumference, while oxoproline and the glutamine/glu-
tamic acid ratio with waist circumference only.

Validation of metabolomics findings in FAMILY at age 5 years
The 11 serum biomarker candidates identified from the 
logistic regression analysis of overweight/adiposity in the 
CHILD discovery cohort were then tested in the FAM-
ILY replication cohort. Importantly, serum samples in 
FAMILY were collected when participants were fasting as 
opposed to the non-fasting serum samples in the discov-
ery cohort. Six of the 11 metabolite measures were signif-
icantly associated with overweight/adiposity in FAMILY 
as shown in Fig. 4 and Additional File 8: Table S7. Higher 
tyrosine, phenylalanine, AAAs, leucine, and glutamic 
acid, and lower glutamine/glutamic acid ratio were asso-
ciated with overweight/adiposity. The same sex-specific 
trend observed in CHILD was also observed in FAM-
ILY, where the six replicated metabolites, were only sig-
nificant in females (n = 213; 50 cases) but not in males 
(n = 207; 46 cases) in sex-stratified analyses.

Discussion
We identified a robust metabolite phenotype that was 
associated with overweight and adiposity in young chil-
dren. This panel is comprised of BCAAs and AAAs, 
glutamic acid, the glutamine/glutamic acid ratio, and 
threonine and was more evident in female children in a 
well-characterized cohort of 900 children and a replica-
tion cohort of 456 children at age 5  years. More direct 
measures of adiposity/fat distribution including waist cir-
cumference and sum of skinfold thickness yielded more 
significant associations than did z-BMI.

Our metabolomic phenotype findings are generally in 
agreement with prior obesity metabolome investigations 
in older children (7.7–11.1 years of age) despite the non-
fasting status in our discovery cohort [31, 32]. Our study 
suggests that BCAAs in children do not primarily asso-
ciate with postprandial interval [33] because the serum 
samples collected in CHILD were non-fasting—a finding 
that has also been made in adults [34, 35]. Our observa-
tion, that BCAAs concentration is associated with over-
weight and adiposity at 5 years of age, is most consistent 
with the literature as reported by at least 10 prior stud-
ies in children of varying age [15]. In studies with con-
trasting findings, BCAAs concentrations were lower in 
adolescents with obesity and type 2 diabetes compared 

Fig. 4 Metabolite associations with overweight/adiposity in the FAMILY replication cohort categorized by sex (female and male) compared to 
non‑stratified analysis (all) depicting OR and 95% CI. OR are per 1‑SD log‑transformed metabolite concentrations and adjusted for child’s age, sleep 
time, breastfeeding status at 1 year, and maternal education
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with adolescents with both normal weight or with obe-
sity [36] and were inversely associated with insulin resist-
ance in a longitudinal follow-up of children (age 5–16) 
[16]. Of note, in our FAMILY replication cohort, we have 
observed significant negative associations of BCAAs with 
fasting serum glucose (data not shown). Furthermore, we 
have previously identified a distinct metabolomic pheno-
type associated with an aggregate metabolic syndrome 
risk score in the FAMILY cohort that did not include 
BCAAs [18]. Congruent with our current analysis, this 
metabolic syndrome signature included the aromatic 
amino acid tyrosine, threonine, alanine, and glutamine/
glutamic acid ratio. These could be promising biomarkers 
of cardiometabolic disease risk in young children reflect-
ing an aggregate of risk factors that includes but is not 
limited to excessive abdominal adiposity [18, 37].

Most studies in the literature have used z-BMI to clas-
sify childhood obesity, while other adiposity measures of 
central body fat distribution such as waist circumference, 
or skin fold thickness are infrequently measured or investi-
gated among children. Using linear regression analysis, we 
have shown that metabolic differences can arise depending 
on whether an obesity or adiposity measure is used, with 
a greater number of serum metabolites being identified in 
relationship to adiposity rather than overweight/obesity. 
In accordance with research showing the independent and 
additive value of waist circumference metric in predicting 
morbidity [38], the approach we adopted by combining 
both z-BMI and waist circumference may serve as a useful 
approach for other researchers and future investigations. 
Few prior studies have investigated the variation of the 
overweight/adiposity metabolome in children by sex. Most 
studies included older children and youth where puberty 
changes become a major confounder [9, 10, 39–42]. In 
our sex-stratified analysis, we observed that the metabolic 
profile associated with overweight and adiposity at age 
5 years was mainly driven by the effects in girls, while boys 
showed mostly weaker and non-significant associations 
(albeit in the same direction). Saner et al. investigated sex 
and puberty-related metabolic differences related to adi-
posity in youth [mean age 11.9 (3.1 SD)] and found that 
tyrosine and phenylalanine were positively associated with 
z-BMI in girls only, consistent with our results, whereas in 
boys significant associations with leucine and isoleucine 
were seen post-puberty [9]. These sex-specific differences 
could be related to girls maturing earlier than boys but 
unlikely to be a direct result of sexual hormone maturation 
because adrenarche (even premature adrenarche) occurs 
at an older age than that of our cohort. Another hypoth-
esis to explain our sex-related findings may be linked to 
differences in mitochondrial plasticity between boys and 
girls—a process of mitochondrial adaptation to normalize/
correct metabolic impairments [36]. Further sex-specific 

analyses are necessary, ideally within longitudinal stud-
ies, to better understand the underpinning mechanisms 
and to test these hypotheses of sex- and puberty-related 
metabolomic associations with obesity and cardiometa-
bolic disease.

Our study has several strengths which include its large 
sample size (1345 children) and high quality as defined by 
Handakas et al. [15]. In this systematic review of 41 metab-
olomic studies of childhood obesity, 66% of studies had a 
sample size < 200, and few were rated as high quality [15]. 
Furthermore, our study addresses the disparity in research 
of sex-based differences in metabolic changes in early child-
hood. Moreover, we included a validation of our findings in 
an independent cohort of children of the same age using 
the same validated metabolomics platform with rigorous 
quality control. Several limitations should also be consid-
ered. Serum samples were non-fasting in CHILD. Metabo-
lome coverage was limited to polar ionic metabolites and 
did not include important circulating lipids, such as fatty 
acids and phospholipids [43, 44]; thus, complementing our 
analysis with other orthogonal platforms would be valu-
able. Finally, this is a cross-sectional evaluation and it is yet 
unknown if the overweight/adiposity metabolomic profiles 
are linked to future health outcomes.

Conclusions
Using metabolomics profiling of 1345 children, we have 
identified that BCAAs, AAAs, glutamic acid, and the 
glutamine/glutamic acid ratio are associated with over-
weight and adiposity in early childhood at age 5  years, 
and this relationship is more evident in girls than boys at 
age 5  years. The use of central adiposity measures, e.g., 
waist circumference, was optimal in defining this metab-
olomic pattern. Overall, our work underscores the value 
of high-throughput metabolomics in understanding dis-
ease pathways and the need for future sex-specific inves-
tigations to design future interventions to mitigate the 
obesity pandemic as early in life as possible.
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