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Abstract 

Background Comorbidities are expected to impact the pathophysiology of heart failure (HF) with preserved ejection frac‑
tion (HFpEF). However, comorbidity profiles are usually reduced to a few comorbid disorders. Systems medicine approaches 
can model phenome‑wide comorbidity profiles to improve our understanding of HFpEF and infer associated genetic profiles.

Methods We retrospectively explored 569 comorbidities in 29,047 HF patients, including 8062 HFpEF and 6585 HF 
with reduced ejection fraction (HFrEF) patients from a German university hospital. We assessed differences in comor‑
bidity profiles between HF subtypes via multiple correspondence analysis. Then, we used machine learning classifiers 
to identify distinctive comorbidity profiles of HFpEF and HFrEF patients. Moreover, we built a comorbidity network 
(HFnet) to identify the main disease clusters that summarized the phenome‑wide comorbidity. Lastly, we predicted 
novel gene candidates for HFpEF by linking the HFnet to a multilayer gene network, integrating multiple databases. 
To corroborate HFpEF candidate genes, we collected transcriptomic data in a murine HFpEF model. We compared 
predicted genes with the murine disease signature as well as with the literature.

Results We found a high degree of variance between the comorbidity profiles of HFpEF and HFrEF, while each 
was more similar to HFmrEF. The comorbidities present in HFpEF patients were more diverse than those in HFrEF 
and included neoplastic, osteologic and rheumatoid disorders. Disease communities in the HFnet captured impor‑
tant comorbidity concepts of HF patients which could be assigned to HF subtypes, age groups, and sex. Based 
on the HFpEF comorbidity profile, we predicted and recovered gene candidates, including genes involved in fibrosis 
(COL3A1, LOX, SMAD9, PTHL), hypertrophy (GATA5, MYH7), oxidative stress (NOS1, GSST1, XDH), and endoplasmic 
reticulum stress (ATF6). Finally, predicted genes were significantly overrepresented in the murine transcriptomic dis‑
ease signature providing additional plausibility for their relevance.

Conclusions We applied systems medicine concepts to analyze comorbidity profiles in a HF patient cohort. We were 
able to identify disease clusters that helped to characterize HF patients. We derived a distinct comorbidity profile 
for HFpEF, which was leveraged to suggest novel candidate genes via network propagation. The identification of dis‑
tinctive comorbidity profiles and candidate genes from routine clinical data provides insights that may be leveraged 
to improve diagnosis and identify treatment targets for HFpEF patients.
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Graphical Abstract

Background
Heart failure (HF) with preserved ejection fraction 
(HFpEF) represents an unmet public health concern with 
rising prevalence [1, 2]. Accumulating evidence indicates 
HFpEF is clinically and biologically distinct from HF with 
reduced ejection fraction (HFrEF), as reflected by miss-
ing therapy response in HFpEF patients to drugs effec-
tive in HFrEF [3]. HF patients suffer from a wide range 
of comorbidities, which are considered important for HF 
development and progression [4]. In the pathogenesis of 
HFpEF, comorbidities have been suggested as causal fac-
tors [3, 5] and could possibly be linked to genetic etiol-
ogy. Treatment of comorbidity has also been shown to 
have beneficial effects of cardiac physiology [6], empha-
sizing the potential to address HF subtypes through their 
comorbidities.

Systems medicine attempts to model disease in a holis-
tic manner. One facet of this, network medicine, is used 
to analyze complex systems such as patients, organs, or 
cells via network representation [7, 8]. Comorbidity net-
works represent diseases as nodes, connected via edges 
based on co-occurrence in patients. These networks can 
be used to define disease modules or explore topological 
changes between patient cohorts [9–12]. Previous work 
has shown that disease comorbidity is also often linked 
to shared disease genes that locate close together in 

gene-based networks like protein–protein interaction 
networks [12, 13]. This observation is often the basis 
of network-based gene prediction, where novel dis-
ease genes are predicted based on network proximity to 
known disease genes.

Cardiovascular diseases are particularly suited for sys-
tem medicine approaches due to the typical multiorgan 
involvement [14] and multifactorial etiology [15]. To 
date, such approaches to study HFpEF have been lim-
ited, though the comorbidity-driven pathophysiology of 
HFpEF makes it a promising subject. In addition, despite 
the technological advances in multi-omics, knowledge of 
molecular characteristics of HFpEF remains limited, pos-
sibly due to difficulties of biopsy acquisition in HFpEF 
patients [16] and heterogeneity of HFpEF patients [17].

In this study, we applied a network medicine approach 
to describe comorbidity patterns in HFpEF and investi-
gate a shared genetic background associated with these 
patterns. We first demonstrated that comorbidity profiles 
vary between HFpEF and HFrEF patients and derived 
distinct comorbidity profiles for each cohort. Then, 
we built a comorbidity network that contained disease 
clusters relevant for HF patients. The construction of 
a multilayer heterogeneous network by integration of 
prior knowledge resources allowed us to translate the 
comorbidity profiles into a gene signature for HFpEF. 
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We corroborated this signature in the cardiac transcrip-
tome of a murine HFpEF model. This network medicine 
approach allowed us to identify distinct comorbidity pro-
files and novel genetic patterns in HFpEF.

Methods
Study population
The study population was derived from a research data 
warehouse containing data from patients that visited 
the Department of Cardiology, Angiology, and Pneu-
mology at Heidelberg University Hospital, Heidelberg, 
Germany [18]. Heidelberg University Hospital acts as 
a tertiary care center for the surrounding region, spe-
cializing in the treatment of cardiomyopathy. From this 
data warehouse, we identified patients with HF, visit-
ing between 01.01.2008 and 01.01.2021. The study pro-
tocol was approved by the local ethics committee. HF 
was defined as two or more HF-relevant International 
Classification of Disease, version 10 (ICD-10) diagnosis 
codes (I50*, I11.0, I13.0, I13.2, I42.0, I42.5, I42.8, I42.9, 
I25.5) or at least one HF-relevant diagnosis and at least 
one of the following criteria: (i) elevated N-terminal pro 
b-type natriuretic peptide (NTproBNP) (> 120  ng/ml), 
(ii) recorded New York Heart Association functional 

class, (iii) echocardiography based E/e’ > 15 ( ratio of early 
diastolic mitral inflow velocity to early diastolic mitral 
annulus velocity), (iv) echocardiography or MRI-based 
left ventricular ejection fraction (LvEF) < 50%, and (v) 
documented loop diuretic. Patients with HF before age 
40, those with a diagnosis of inheritable cardiomyopathy 
(I42.1-I42.4, I42.6, I42.7), and heart transplant patients 
(Z94.3) were excluded from the HF cohort. Within 
the HF cohort, HF subtypes were identified, based on 
echocardiographic or MRI-based LvEF. Patients with 
LvEF ≥ 50% were labeled HFpEF, LvEF 40–50% HFmrEF 
(HF with mid-range ejection fraction), and ≤ 40% HFrEF 
(Fig. 1). For all patients in the HF cohort, demographics, 
ICD-10 codes, operational and procedural codes, and 
targeted clinically relevant measurements were processed 
(Additional file 1: Fig. S1A, B) [11, 19–38].

Multiple correspondence analysis (MCA)
Disease profiles of HFpEF, HFrEF, and HFmrEF cohorts 
were captured as binary variables (0—patient has no 
record, 1—patient has a record of disease) of 569 phe-
nome-wide association scan codes (PheCodes) (Addi-
tional file  1: Supplementary Methods). In this feature 
space (569 comorbidities × 17,665 HF patients), we 

Fig. 1 Patient cohort description. Phenotyping algorithm to define HF cohorts. HF patients were selected with hospital visits over a time span 
of 13 years at the University Hospital Heidelberg. We defined a general HF cohort by selecting patients with either two or more HF relevant 
ICD‑10 codes or one HF relevant ICD‑10 code and one additional HF relevant clinical characteristic, yielding 29,047 HF patients. Based on LvEF, we 
subclassified HF patients to HFrEF, HFmrEF, or HFpEF. RWH Research Data Warehouse, HF heart failure, LvEF left ventricular ejection fraction; e/e’ 
is the ratio between early mitral inflow velocity and mitral annular early diastolic velocity on echocardiography
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performed MCA (R-package FactoMiner [39]). Each 
MCA dimension was then tested for association with 
clinical covariates with linear regression models (e.g., 
MCA-dimension 1 ~ age). For each covariate, we then 
summed the variance associated to all significantly asso-
ciated dimensions (p-value < 0.05) as an estimate for the 
total associated variance.

Patient classifier
We trained random forest and regularized logistic regres-
sion (elastic net) models to predict HFpEF and HFrEF 
cohort labels on 569 PheCodes. The highest achieved mean 
area under the receiver operating characteristic (AUROC) 
in hyperparameter tuning was reported as an estimate 
for the model test error (Additional file 1: Supplementary 
Methods).

To derive the comorbidity profiles for HFpEF and HFrEF, 
we performed a forward selection with an L1-regularized 
logistic regression model of the 196 non-zero features from 
the elastic net model. Models were trained in R with R 
packages tidymodels using model engines from glmnet [40] 
and ranger [41].

HF comorbidity network (HFnet) construction
In disease comorbidity networks, nodes represent diseases 
while edges represent statistical association of co-occur-
rence, resulting in the graphical depiction of comorbidi-
ties as diseases that are statistically dependent. In detail, 
we selected edges using Fisher’s exact test for estimating 
statistical dependence and its Benjamini–Hochberg (BH) 
corrected p-value (< 0.0001) to discard non-significant dis-
ease pairs and keep a more sparse network structure. To 
determine strength of association, we calculated ɸ correla-
tion, which can be interpreted as a Pearson correlation for 
binary variables. We selected all edges with positive corre-
lation. To account for  bias in ɸ correlations, we scaled the 
values by dividing by mean correlation values for every dis-
ease and assigned these values as edge weights [42].

Network node characteristics, such as betweenness, 
closeness, and degree centrality, and transitivity were calcu-
lated with the igraph R package. To calculate metrics based 
on graph distance, we replaced weights for edge i (Wi) with 
a new edge score Si: Si = max(W )−Wi . The constructed 
network was then compared to other comorbidity net-
works (Additional file 1: Supplementary Methods).

HF heterogeneous network (HFhetnet) construction
Disease‑gene association
We used disease–gene associations provided by Dis-
GeNet v7.0 [43, 44] and mapped the ICD-10 codes 
in DisGeNet to PheCodes (Additional file  1: Supple-
mentary Methods). To ensure that the most frequent 

diseases in our cohort were mapped, we selected the 
most frequent 3-digit ICD-10 codes that were not 
mapped to DisGeNet and performed manual annota-
tion via Unified Medical Language System (UMLS) IDs 
for 23 disease entities (Additional file 2: Supp. Table 1), 
e.g., PheCode 427.2 (atrial fibrillation) was manually 
mapped to the UMLS ID C000423. We only included 
disease–gene associations with a DisGeNet confidence 
score > 0.29. This cut-off was chosen, such that either 
one curated source or multiple experimental sources 
were necessary for disease–gene associations. Details 
on DisGeNET score calculation can be found at https:// 
www. disge net. org/ dbinfo.

Gene–gene association
To consider multiple layers of gene organization, we 
constructed a multilayer gene network from different 
sources.

Omnipath [45, 46] is a meta resource of a multitude of 
biological knowledge databases, and we curated a net-
work by connecting two genes if a resource provides a 
co-membership for a signaling pathway. We used the 
number of resources that reported a relationship as an 
estimate for the confidence in the relationship, which we 
introduced as edge weights in the Omnipath layer.

The protein–protein interaction (PPI) network was 
constructed based on the union of publicly available data 
from experimental and literature curated data (HuRi-
union [47]) [48].

Gene Ontology (GO) gene networks have been con-
structed before, and we used the GO networks con-
structed by [49].

Each gene network was reduced to remove loops and 
multiple edges. To filter for genes relevant in cardiac tis-
sue, gene networks were subset to genes expressed in the 
human heart on RNA or protein level. For protein expres-
sion, we used proteomic data [50, 51], where we selected 
all peptides that were detected in the human heart and 
used the leading gene associated with each peptide. For 
gene expression, we selected genes that were detected 
in the heart tissue in the Genotype-Tissue Expression 
(GTEx) Project v8 with a transcript per million value > 1 
[52]. We chose this threshold to discard non-expressed 
genes but include lowly expressed genes. To ensure that 
gene programs only active in diseased hearts were also 
captured, we also included genes that were captured in a 
meta-analysis of HF transcriptomes [32, 33].

Disease–gene prediction and prioritization
To predict genes from diseases within the HFhetnet, we 
relied on a network propagation algorithm developed 
for multilayer networks (random walk with restart on 

https://www.disgenet.org/dbinfo
https://www.disgenet.org/dbinfo
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multiplex heterogeneous networks; RWR-MH [53]). This 
algorithm is an extension of the random walk algorithm 
that tries to find a stationary distribution of probabilities 
that a node is visited when a random walk on the net-
work is initiated in a set of seed nodes.

We assessed the performance of the link prediction 
task within the HFhetnet. For a given disease that was 
present in the HFhetnet and directly linked to two or 
more genes, we attempted to predict those genes after 
removing the direct links from the HFhetnet and running 
RWR-MH with the disease as seed node. The position of 
the target genes in the resulting probability ranking was 
then assessed with multiple metrics to estimate success 
of disease gene recovery (Additional file  1: Supplemen-
tary Methods).

For HFpEF and HFrEF gene prediction, we applied 
the RWR-MH, using the comorbidity profiles from the 
patient classifier as the seed nodes in the HFhetnet. This 
yielded two vectors of RW probabilities for each comor-
bidity profile. The top 500 genes yielded non-zero prob-
ability values for each profile. To select gene candidates 
that were differently ranked, we calculated a prioritiza-
tion score for HFpEF and HFrEF. For this, we calculated 
Gi = Pi ∗ |�Ri|.

G is the gene prioritization score, P is the RW-based 
probability, ΔR is the rank difference between HFpEF and 
HFrEF rankings for gene i.

Transcriptome analysis
We filtered lowly expressed genes and normalized sam-
ples using the Trimmed mean of M-values (edgeR [54]) 
and subsequent variance-stabilizing transformation 
(limma voom) and performed differential expression 
analysis (limma [55]. We performed principal compo-
nent analysis and Gene Ontology enrichment with the 
enrichr [56] R package. For the overrepresentation analy-
sis, we ranked genes by t-statistic and performed gene set 
enrichment analysis (fgsea R package [57]) of the top pre-
dicted HFpEF and HFrEF genes using different cut-offs.

Results
The study population
The study population consisted of 29,047 patients with 
HF (Fig.  1). Within this cohort, we identified three sub 
cohorts, HFpEF (8062 patients), HFrEF (6585 patients), 
and HFmrEF (3018 patients) based on LvEF. LvEF was 
not recorded in 11,382 HF patients, preventing subco-
hort labeling (i.e., unlabelled HF cohort). HFpEF patients 
were more often female compared to HFrEF patients (35 
vs 25%, p < 0.01) (Table 1). However, we did not observe 
a significant difference in body mass index (median 
[IQR] = 26.8 [24.2, 30.0] vs 26.5 [24.1, 30.1] for HFpEF 
vs HFrEF, p = 0.9) or age (median [IQR] = 70 [61, 88] for 

HFpEF vs 70 [60, 70] for HFrEF, p = 0.5). When pheno-
typic data were available, cholesterol, LDL, HDL, and 
blood pressure values were higher in HFpEF patients 
compared to HFrEF, while NT-proBNP values were 
higher in HFrEF patients. Comorbidity burden meas-
ured by Elixhauser index was slightly lower in HFpEF 
than HFrEF patients, as previously reported [58]. HFpEF 
patients were intubated (8.5% vs 15%, p < 0.001) or 
received an implantable cardioverter-defibrillator (16% vs 
26%, p < 0.001) less frequently than HFrEF patients, sug-
gesting that the HFrEF cohort be a later stage of HF.

High variation in comorbidity profiles is associated 
with HFpEF/HFrEF subtype
We expected differences in the composition of comor-
bidity profiles between HF subtype cohorts. To quantify 
this variance, we applied MCA and estimated the vari-
ance associated with sub-cohort labels and clinical fea-
tures (Fig. 2A). Device implantation was the feature most 
strongly associated with variance in comorbidity profiles 
(Fig.  2B). When comparing HF subtypes, HFpEF and 
HFrEF cohort labels were associated with a high degree 
of explained variation (39.5%). HFmrEF patients seemed 
to be in an intermediate state, as they displayed lower 
variance when compared to HFpEF (25.2%) and HFrEF 
(18.6%). Sex and age were each associated with high 
variance (37.9% and 44.4%, respectively) as expected. In 
summary, this analysis approach identified a pronounced 
contrast between comorbidities in HFpEF and HFrEF 
patients.

Distinctive comorbidity profiles derived for HFpEF 
and HFrEF
Next, to explain and interpret the variance between 
HFpEF and HFrEF, we derived distinct comorbidity 
profiles for both cohorts. For this purpose, we fit ran-
dom forest and elastic net classifier models with the 569 
comorbidities as predictors to distinguish between HFpEF 
and HFrEF (Fig.  2A, Additional file  1: Fig. S2A,B). The 
highest achieved AUROCs were 0.778 for the random 
forest and 0.777 for the elastic net model, indicating that 
the random forest’s ability to model more complex inter-
actions between comorbidities did not improve classifier 
performance substantially. The most important features 
were shared in both models (Additional file 1: Fig. S2C).

Next, because elastic net parameter estimates can pro-
vide both magnitude and direction, we selected the elas-
tic net model to assign HFpEF and HFrEF a distinctive set 
of comorbidities. To select the most discriminant comor-
bidities, we performed forward selection. We found that 
the model with 100 comorbidities yielded a cross-vali-
dated AUROC of 0.780 (Additional file  1: Fig. S2D); 71 
and 29 comorbidities from this model were assigned to 
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HFpEF or HFrEF, respectively, which we will refer to as 
their comorbidity profiles.

These comorbidity profiles might be influenced by age, 
sex, time of visit, or time relative to HF diagnosis. We 
therefore investigated whether these factors influence the 
assignment of these 100 comorbidities to HF subtype by 
fitting a series of logistic regression models in different 
data subsets (Additional file 1: Supplementary Methods). 
We found that the derived comorbidity profiles of HFpEF 
and HFrEF yielded mostly consistent patterns independ-
ent of these factors (Additional file 1: Fig. S4).

The HFpEF profile (15 disease categories) was more 
diverse than the HFrEF profile (10 disease categories) and 
included comorbidities from the digestive disease, hemat-
opoietic and neoplastic disease categories (Fig. 2C). Car-
diovascular disease was the most important category in 
both profiles, accounting for 48.2% of the sum of param-
eter estimates in HFrEF and 38.3% in HFpEF. In HFpEF, 
important comorbidities included hypertensive and pul-
monary heart disease, essential hypertension, inflamma-
tory cardiac conditions (pericarditis, myocarditis), sleep 
apnea, osteopenia, neoplasms (multiple myeloma, breast 
cancer, metastasis in digestive systems), and rheumatoid 

disorders. The HFrEF comorbidity profile was character-
ized among others by myocardial infarction, ischemic 
heart disease, tobacco abuse, mitral valve disease, coma 
and cardiogenic shock, neurological disorders (vascular 
dementia, cerebral edema), chronic kidney disease, and 
diabetes type II (Fig. 2D, Additional file 1: Fig. S3).

In conclusion, the observed variation in comorbid-
ity profiles between HFpEF and HFrEF was analyzed by 
interpreting patient classifiers. The derived features cap-
tured known subtype associations such as typical eti-
ologies of HF including hypertensive heart disease (with 
HFpEF) and ischemic heart disease (with HFrEF) but also 
more novel and understudied comorbidities associated 
with HFpEF such as breast cancer or rheumatoid arthritis 
with HFpEF.

The HF comorbidity network (HFnet) captures HF specific 
disease relationships
To analyze patterns of disease co-occurrence in the HF-
patient cohort, we constructed a comorbidity network as 
previously described [11, 12, 59–61]). This network was 
built by calculating pairwise disease correlations for the 
general HF-patient cohort (Fig.  3A) (Additional file  1: 

Table 1 Clinical characteristics of HFrEF, HFmrEF, and HFpEF cohorts. Descriptive statistics of HFrEF, HFmrEF and HFpEF cohorts. F 
female, m male, BMI body mass index, BP blood pressure, LDL low‑density lipoprotein, HDL high‑density lipoprotein, ICD implantable 
cardioverter defibrillator, PCI percutaneous coronary intervention, NT‑BNP N‑terminal pro b‑type natriuretic peptide. All numerical 
values are median (IQR), Elixhauser index is mean (SD)

All continuous values displayed as median (IQR) except for Elixhauser index which is mean (SD). All dichotomous values displayed as N (%)
* Kruskal–Wallis p-value across all subtypes
+ Wilcoxon–rank sum or chi-squared p-value for HFpEF vs HFrEF

HF subtypes

Variable N Overall HFpEF HFmrEF HFrEF p-value* p-value+

(N = 17,665) (N = 8062) (N = 3018) (N = 6585)

Sex 17,617  < 0.001  < 0.001

 Female 5247 (30%) 2822 (35%) 790 (26%) 1635 (25%)

 Male 12,370 (70%) 5228 (65%) 2218 (74%) 4924 (75%)

Age (years) 17,665 70 (60, 78) 70 (61, 78) 70 (59, 77) 70 (60, 78) 0.093 0.5

BMI 9132 26.8 (24.2, 30.0) 26.8 (24.2, 30.0) 26.9 (24.2, 29,9) 26.5 (24.1, 30.1) 0.08 0.9

Systolic BP (mmHg) 5146 148 (134, 160) 150 (139, 164) 148 (135, 160) 140 (127, 154)  < 0.001  < 0.001

Diastolic BP (mmHg) 5146 84 (76, 92) 85 (78, 93) 84 (76, 93) 82 (73, 90)  < 0.001  < 0.001

LDL (mg/dL) 12,270 87 (69, 110) 88 (69, 110) 91 (72, 113) 84 (67, 106)  < 0.001  < 0.001

HDL (mg/dL) 12,368 44 (36, 54) 46 (38, 56) 43 (36, 53) 40 (34, 50)  < 0.001  < 0.001

Triglycerides (mg/dL) 13,859 112 (85, 153) 112 (85, 151) 112 (85, 156) 113 (85, 156) 0.11 0.006

Cholesterol (mg/dL) 13,577 160 (135, 188) 163 (138, 190) 164 (140, 192) 153 (129, 183)  < 0.001  < 0.001

N PheCodes 17,665 13 (8, 21) 13 (9,21) 12 (7, 19) 14 (9, 22)  < 0.001 0.088

Elixhauser Index 17,665 5.39 (2.72) 5.36 (2.68) 5.09 (2.70) 5.56 (2.76)  < 0.001  < 0.001

Intubated 17,665 1766 (10.0%) 552 (6.8) 257 (8.5%) 957 (15%)  < 0.001  < 0.001

ICD Implantation 17,665 3213 (18%) 1007 (12%) 468 (16%) 1738 (26%)  < 0.001  < 0.001

PCI 17,665 9116 (52%) 4267 (53%) 1554 (51%) 3295 (50%) 0.002  < 0.001

log (NT‑BNP) 6169 2.99 (2.45, 3.53) 3.07 (2.53, 3.55) 3.07 (2.53, 3.55) 3.45 (2.96, 3.88)  < 0.001  < 0.001
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Fig. S6A,B). The resulting significant disease–disease 
relationships were assembled to form an undirected and 
weighted HF comorbidity network (HFnet) consisting of 

569 nodes and 19,347 edges (Additional file 1: Fig. S6C), 
with edge weights defined by a statistical dependency of 
co-occurrence for each disease pair.

Fig. 2 Comparison of comorbidity profiles in heart failure subtypes. A Scheme of analysis. EH essential hypertension, CAD coronary artery disease, 
DMII diabetes mellitus type II, RA rheumatoid arthritis. B Multiple correspondence analysis of comorbidity profiles of HFpEF and HFrEF cohort. MCA 
dimensions were tested for association with clinical covariates and summed up to estimate total explained variance. C Proportions of the sum 
of parameter estimates of top 100 comorbidities of the patient classifier model, colored by disease categories. D Top 50 comorbidities of the patient 
classifier. The parameters are the absolute fitted values of the coefficients in the elastic net model for each comorbidity of the patient classifier 
separated by association to HFpEF (top) or HFrEF features (bottom). Colors indicate disease category using the same color legend as in B 
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While certain comorbidities were distinctive for HFpEF 
or HFrEF, it was unclear whether the disease relation-
ships that built the HFnet also depended on the HF sub-
type (Fig.  3A). When comparing odds ratios for each 
disease pair from both cohorts, we found a high con-
cordance (Additional file 1: Fig. S5A,B). Only 33 disease 
pairs had significantly different odds ratios between 
HFpEF and HFrEF (Breslow–Dayes test with BH correc-
tion p < 0.01) (Additional file 1: Fig. S5C), suggesting that 
in the vast majority of cases, the co-occurrence of two 
diseases did not depend on whether it was assessed in 
HFpEF or HFrEF patients.

Whether the HFnet constituted a unique wiring of dis-
eases or predominantly captured generalizable disease 
relationships was unclear. To investigate this, we ana-
lyzed and compared two additional disease networks: a 
human phenotype ontology network (HPOnet), where 
two diseases are connected if they are phenotypically 
similar, and Morbinet [11], another comorbidity network 
from a large patient cohort but without a cohort defining 
disease (Additional file 1: Supplementary Methods).

Jaccard index-based edge similarity of HFnet and 
Morbinet was 0.18 and of HFnet and HPOnet was 0.12 
(Additional file 1: Fig. S7A,B,C). We then calculated net-
work similarities with the DeltaCon algorithm to capture 
conserved node affinities between networks [28]. HFnet 
and Morbinet displayed again a higher similarity (0.46) 
than HFnet and HPOnet (0.39) (Additional file  1: Fig. 
S7D). This suggested that comorbidity correlation was 
not completely redundant with phenotype similarity. The 
differences between Morbinet and HFnet indicated that 
many disease relationships in the HFnet could be specific 
for HF patients.

Finally, we analyzed the centrality of diseases. Diseases 
which were most frequently reported could be consid-
ered the network hubs, as indicated by their high node 
degree and their closeness and betweenness centrality 
scores (Additional file  1: Fig. S8A). Our network cap-
tured well-known HF comorbidities [41, 42], like chronic 
kidney disease, which by multiple metrics was the main 
HFnet hub (Additional file 1: Fig. S8B, Additional file 3: 
Supp. Table 2). We found that closeness and degree cen-
trality were both significantly associated with the disease 
category (Additional file  1: Fig. S8C) (Kruskal–Wallis 
p < 0.01). Infectious and hematopoietic diseases had the 
highest median centrality scores (betweenness, close-
ness, and degree), indicating that patients with diseases 
from these categories were typically suffering from many 
comorbidities. Diseases affecting the circulatory system 
had the highest prevalence as was expected with a HF 
centered cohort (Additional file 1: Fig. S8C).

In summary, we found that comorbid relationships 
were mostly independent of the HF subtype. However, 

when comparing with other disease networks, many 
comorbid relationships were specific to the HFnet. This 
indicated that the constructed HFnet captured disease 
patterns relevant for HF patients, which only in part can 
be generalized to other cohorts.

The HFnet contains 9 disease clusters that represent 
important comorbidity groups in HF
Network communities represent densely connected 
subgraphs and can be helpful to summarize network 
topology. Network clustering algorithms identified nine 
disease clusters (DCs) (Additional file 1: Supplementary 
Methods, Fig. S9A-F). DCs were partially grouped by dis-
ease categories (Fig. 3B, Additional file 4: Supp. Table 3) 
and we labeled DCs by manually reviewing disease com-
position (Table 2). For instance, DC1 and DC3 contained 
the majority of cardiovascular diseases. While DC1 con-
tained cardiovascular diseases with vascular etiology 
(EH, CAD, MI) and included metabolic and endocrine 
diseases, DC3 contained valve disorders and arrhythmias 
(Fig. 3C).

We hypothesized that DCs represent facets of the sub-
cohort specific HF comorbidity spectrum, and we there-
fore tested whether DCs capture demographic or HF 
subtype-related characteristics. We quantified the simi-
larity of an individual patient’s comorbidity profile with 
each DC by calculating Jaccard indices and tested for dif-
ferences between patient cohorts (Fig. 3D). In age-strat-
ified analyses, we found that all DCs, except DC7, were 
more similar to 60–80-year-old (n = 16,54) compared 
to 40–59-year-old patients (n = 5973) comorbidity pro-
files. This could indicate a general increase of comorbid-
ity burden with age or that with age come increasingly 
consistent comorbidity profiles between individuals. The 
80 + cohort (n = 6,527) had less similarity with DC1 and 
significantly more similarity with DC3, DC5, and DC9 
profiles compared to 40–60-year-old patients. When 
comparing female and male patients, we found that 
DC6 and DC2 yielded the highest similarity differences, 
respectively. Comparing HFpEF with HFrEF patients, we 
found that DC1, DC2, DC6, and DC8 were more simi-
lar to HFpEF patients, while DC3, DC4, and DC5 were 
suggested to be similar to HFrEF patients. As DC1 and 
DC6 also captured sex-related comorbidity differences, 
we investigated further, whether DC6 diseases were more 
prevalent in HFpEF independent of sex. For this, we fit 
logistic regression models for each disease predicting 
HFpEF/HFrEF while controlling for sex (Additional file 1: 
Fig. S9G). Again, DC1, DC2, and DC6 contained more 
diseases prevalent in HFpEF while DC3, DC4, and DC5 
diseases were more prevalent in HFrEF. In addition, this 
analysis also suggested that many diseases in DC7 and 
DC8 too were distinctive for HFpEF.
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Fig. 3 The heart failure comorbidity network (HFnet). A Scheme of comorbidity network analysis. EH essential hypertension, CAD coronary artery 
disease, DMII diabetes mellitus type II, RA rheumatoid arthritis. B Disease category composition of disease clusters (DCs) in the HFnet. Number 
of nodes per cluster in top barplot and number of diseases per category in side barplot. C Subgraphs of the HFnet visualized (left DC1, right DC3). 
Node size relates to prevalence, edge width to scaled phi‑correlation, node color to disease category. Only edges with highest weights were plotted 
for visibility. D Comparison of patient cohorts based on DC similarity. Jaccard indices were calculated between each patient and each DC, then 
unpaired two‑sided Wilcoxon rank test was applied to compare different patient cohorts. The log transformed p‑value was multiplied by the sign 
of the test estimate for visualization purposes such that positive values indicate higher cluster similarity with the first cohort of the contrast label. 
Patient cohorts were selected by age stratification, sex, and HF subtype
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We further compared the comorbidity profiles from the 
patient classifier by mapping them to DCs which yielded 
a qualitatively similar DC to HF subtype association 
(Additional file 1: Fig. S9H). No DC was positively asso-
ciated with HFmrEF. Instead, HFmrEF patients were less 
similar to DC1 and DC6 than HFpEF patients and less 
similar to DC3, DC4, and DC5 than HFrEF patients.

In general, we found that aggregating comorbidity pro-
files (569 dimensions) to DC similarity (9 dimensions) 
allowed us to capture differences among patient cohorts 
in regard to sex, age, and HF subtype in meaningful dis-
ease groups.

Building the HF heterogeneous network (HFhetnet)
Biomedical research has yielded significant knowledge 
of disease gene associations, which can be harnessed to 
extrapolate novel disease gene relationships. HFpEF is a 
comorbidity-driven syndrome and we hypothesized that 
the identified HFpEF comorbidity profile could be trans-
lated to a genetic profile consisting of recurrent genetic 
associations to these comorbidities. In this part of our 
study, we first integrated multiple biomedical databases 
to construct a cardiac specific multilayer disease and 
gene network. We then estimated the success of this net-
work to recover known disease–gene associations and, 
finally, used the HFpEF comorbidity profile to identify 
the most commonly associated genes.

To construct a gene network that reflected different 
hierarchies of gene function (i.e., pathway member-
ships, PPI, and ontological similarity), we integrated 
multiple databases and represented gene–gene rela-
tionships as networks (“Methods”) (Fig.  4A). To focus 
on genes relevant in cardiac tissue, we subset the result-
ing gene networks to protein coding genes expressed in 
the heart (Additional file  1: Fig. S10A). Next, we used 

DisGeNET, a resource containing disease–gene asso-
ciations, to connect the HFnet with the gene network. 
We connected 400 diseases of the HFnet with a total 
of 4044 genes via 20,170 edges. As the HPOnet con-
structed earlier had a small intersection with the HFnet 
and captured a different type of disease relationship, 
it was included as an additional disease layer in our 
network.

The presented HFhetnet is an assembly of the data-
driven comorbidity relationships (HFnet) and six bio-
medical databases resulting in a total of 13,572 nodes 
and 181,529 edges (Additional file  5: Supp. Table  4). 
Its main structure is set up by two biological networks 
(disease layer and gene layer) that each consist of two 
or four network layers,  respectively (Fig. 4A). The two 
disease networks were the smallest when comparing 
node numbers (Fig.  4B). However, edge density was 
much higher resulting in centralization of these net-
works compared to the gene layers. Within gene layers, 
the ontological layers displayed the highest transitiv-
ity, as well as tendency to connect to hub genes (degree 
assortativity). To assess research bias in the gene net-
works, we calculated Pearson correlation between the 
number of abstracts in PubMed mentioning a gene and 
the gene’s network degree per layer and found that only 
the pathway layer (Omnipath) displayed significant cor-
relation (p-value < 0.05). This is related to a biomedical 
research bias towards the investigation of a small num-
ber of genes [62]. Thus, the integration of experimen-
tal and ontological data can ameliorate the centrality of 
overstudied genes.

In summary, we constructed the HFhetnet by inte-
grating various prior knowledge resources to incorpo-
rate genetic information. The different network layers 
of the HFhetnet captured unique node relationships 
and displayed particular network topologies.

Table 2 Overview of disease clusters. Manual labeling of disease clusters (DC) by characterizing most central and prevalent diseases 
in each cluster. EH essential hypertension, MI myocardial infarction, COPD chronic obstructive pulmonary disease, CAD coronary artery 
disease, DM II diabetes mellitus type II, CKD chronic kidney disease, RA rheumatoid arthritis

DC Label Important nodes

DC1 Cardiac/endocrine/respiratory diseases EH, MI, COPD, hyperlipidemia, hypothyroidism, CAD

DC2 Sensory/ophthalmologic/skin disease Cataract, macular degeneration, melanomas of skin

DC3 Cardiovascular disease with heart focus Valve disease, congenital anomalies, arrhythmias

DC4 Vascular/renal/diabetic diseases DM II, CKD, atherosclerosis

DC5 Critical illness/complications Infectious disease, organ failures

DC6 Rheumatoid/osteological/psychiatric diseases Osteoporosis, osteopenia, RA, depression

DC7 Gastroenterological diseases Gastritis, diverticulitis, cirrhosis

DC8 Neoplastic/hematopoietic diseases Breast cancer, aplastic anemia, lymphomas

DC9 Neurological/vascular neurological diseases Stroke, dementias, epilepsy
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Estimating the success of disease–gene prediction 
within the HFhetnet
To estimate the potential of the HFhetnet to predict dis-
ease–gene relationships, we estimated the success of 
predicting known disease genes. The rationale behind 
this approach is the guilt-by-association principle that 
assumes that functionally related genes are also associ-
ated in the network context. Extending this notion to het-
erogeneous networks, this principle can be interpreted 
as a disease being associated with relevant disease genes 
through its position in the network. To quantify this 
property, we applied a leave-one-out validation design 
to assess whether known disease genes can be recovered 
after removing the direct edges that connected them to a 

disease. After edge removal, the gene recovery was per-
formed by applying the RWR-MH algorithm which con-
siders each network layer and its topology ( Additional 
file 1: Supplementary Methods).

We performed this analysis by comparing the impact of 
three variations of the disease layer: (i) HFnet + HPOnet 
(original HFhetnet), (ii) only HFnet, and (iii) a rewired 
HFnet. Gene prediction worked best in the original 
HFhetnet (median AUROC 0.91, median AUC-PR 0.07, 
and median rank ratio 0.03) (Fig. 4C). This performance 
dropped for every metric when removing the HPO layer 
or when rewiring the HFnet (paired, two-sided Wilcox-
on’s rank sum test p < e − 10). The rewired HFnet still per-
formed better than random, which might be explained by 

Fig. 4 HFhetnet characterization. A Schematic overview of HFhetnet and its different layers built by including seven independent data sources. 
B Characterization of network layers by size (number of nodes and edges), edge density (percentage of possible edges), degree centrality, global 
transitivity (average probability of the neighbors of a node being connected), degree assortativity (preference of nodes to connect with nodes 
of similar degree), and literature bias (i.e., gene degree/PubMed score correlation). C Leave one out cross‑validation results for all diseases with two 
or more DisGeNET links. We compared the performance of gene set recovery with different versions of the HFhetnet by modifying only the disease 
network. We compared HFnet + HPOnet (i.e., the original HFhetnet), only the HFnet (without HPOnet), and a rewired HFnet. Outliers are not plotted 
for visualization purposes. Paired, two‑sided Wilcoxon test, *p < 0.001. AUC‑PR area under the precision/recall curve, AUROC area under the receiver 
operator curve. GO Gene Ontology, HPO human phenotype ontology
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(i) high edge density in the HFnet and (ii) the large size 
of the unaltered gene–gene and disease–gene network in 
comparison to the smaller HFnet.

Prediction success correlated weakly but significantly 
with gene set size (Additional file 1: Fig. S10C). In addi-
tion, neither disease prevalence nor DisGeNET confi-
dence scores were significantly correlated with prediction 
success, suggesting that frequent diseases could not be 
predicted better than less frequent diseases. Prediction 
performance depended on disease category (Additional 
file  1: Fig. S10D) (Kruskal–Wallis test p-value < 0.01 for 
all metrics) with respiratory, neurological, genitourinary, 
and cardiovascular diseases performing best.

In summary, we found that within the HFhetnet, the 
disease genes remained close via the disease’s connec-
tion through its comorbidities or phenotypically similar 
neighbors. Thus, we concluded that HFnet and its exten-
sion, HFhetnet, captured meaningful disease–disease, 
disease–gene, and gene–gene relationships, which can 
be exploited for predicting a disease’s genetic profile 
through its comorbidities.

Predicting genes associated with comorbidity profiles 
of HFpEF and HFrEF
In the first part of our study, we found that HFpEF and 
HFrEF patients were distinguishable based on their 
comorbidity profiles. We then demonstrated that dis-
eases within the HFhetnet were located in network prox-
imity to their respective disease–genes. Leveraging both 
insights, we hypothesized that genes located close to the 
HFpEF and HFrEF comorbidity profiles could yield novel 
candidates for the respective HF subtype. In this section, 
we applied the RWR-MH algorithm with the HFpEF and 
HFrEF comorbidity profiles as seed nodes resulting in 
gene ranking based on network proximity (Additional 
file 1: Fig. S11A-C).

To assess whether the resulting gene rankings recapit-
ulated known HF genes, we curated a set of HF-related 
genes from various prior knowledge sources and inde-
pendent datasets (Additional file  1: Supplementary 
Methods), which had only little intersection (Additional 
file  1: Fig. S11D). We found that prior knowledge gene 
sets were well recovered within the HFpEF and HFrEF 
gene rankings (Fig. 5A, Additional file 1: Fig. S11E). Gene 
sets that were retrieved from experimental data (gene 
expression, PheWAS, GWAS) performed worse in the 
predictions. Next, we compared these prediction results 
with random comorbidity profiles and found that the 
HFrEF profile associated with Kegg’s dilated cardiomyo-
pathy (DCM) (z-score AUROC 1.77; z-score PR-AUC 
6.7) and DisGeNETs HF genes (z-score AUROC 1.76; 
z-score PR-AUC 2.46) (Additional file 1: Fig. S11F). This 
indicated that the HFrEF comorbidity profile which was 

more cardiac centered was closer to prior knowledge of 
HF genes within the HFhetnet. In general, well-known 
genes relevant for HF were recovered for both, HFpEF 
and HFrEF comorbidity profiles including NPPA, NPPB, 
TNFa, NOS2, NOS3, CCL2, IL1B, LMNA, and TTN 
(Additional file 1: Fig. S11D).

To emphasize genes that might be HFpEF specific, we 
prioritized genes that were close to the HFpEF but not 
to the HFrEF comorbidity profile within the HFhetnet 
(Fig. 5B, Additional file 6: Supp. Table 5, Additional file 1: 
Supplementary Methods). We found that MMP1, MHY7, 
and DAPK1 received the highest scores and other can-
didates included genes functionally involved in fibrosis 
(e.g., LOX), metabolism (MVK), transcriptional regula-
tion (ATF6), coagulation (THBD), and oxidative stress 
(NOS1, XDH) (Table 3).

Corroboration of HFpEF gene candidates 
in the transcriptome of a murine HFpEF model
After translating the comorbidity profile of HFpEF 
patients to an associated genetic profile, the functional 
relevance of this predicted profile remained unclear. We 
hypothesized that the relevance of the gene predictions 
could be suggested by transcriptional dysregulation in 
myocardial tissue of HFpEF. However, human molecu-
lar data of HFpEF is sparse and mechanistic insights are 
typically derived from mouse models [3]. Hence, we col-
lected myocardial bulk transcriptomics from a murine 
HFpEF model, induced via high-fat diet and nitric oxide 
synthase inhibitor N[w]-nitro-l-arginine methyl ester 
(L-NAME) treatment [36] (Fig. 5C, Additional file 1: Sup-
plementary Methods).

First, we confirmed important HFpEF phenotype 
characteristics including preserved ejection fraction, 
increased body weight, blood glucose levels, and blood 
pressure as well as diastolic dysfunction (increased E/e’) 
(nCT = 4, nHFpEF = 4, Student’s t-test, p < 0.05, Additional 
file 1: Fig. S12).

Second, we assessed transcriptomic changes in HFpEF 
via differential gene expression analysis (Additional file 1: 
Fig. S13A-D). Upregulated genes confirmed processes 
involving fibrosis and metabolic stress (Additional file 1: 
Fig. S13C, D).

After confirming the phenotypic and molecular resem-
blance of the HFpEF model, we investigated gene expres-
sion dysregulation of the comorbidity-based gene profiles 
by performing enrichment analysis of the HFpEF and 
HFrEF gene predictions (Fig.  5D, Additional file  1: Fig. 
S13E). We found that the top 50 to 100 predicted HFpEF 
genes displayed significant enrichment in overexpressed 
genes in the murine HFpEF model, while the HFrEF pre-
dicted genes were not enriched (p-value < 0.05, Fig.  5E, 
Additional file  1: Fig. S13E). Fibrosis-related genes like 
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LOX, SMAD9, and PTHL and hypertrophy-related genes 
like GATA5, GATA3, and MYH7 could be recovered 
together with XDH, among others. This suggested that 
the genetic profile derived from human HFpEF comor-
bidities associated with relevant gene expression dysreg-
ulation during myocardial remodeling in murine HFpEF.

Discussion
In this study, we provided a  retrospective systems level 
analysis of comorbidities in a large  cohort of HF patients. 
We derived clinically relevant insights by comparing 

comorbidity profiles between HFpEF and HFrEF patients 
and biological insights by defining genes associated with 
HFpEF and HFrEF comorbidity profiles.

Patient clustering has been previously shown to yield 
novel subgroups of HFpEF defined by multivariate 
similarity [109–111]. In contrast, the clustering of fea-
tures (i.e., comorbidities) can inform about patterns of 
co-occurring disease groups. Our study demonstrated 
that this approach can be useful to interpret comorbid-
ity profiles: the aggregation of co-occurrence patterns of 
diseases can help to organize illness into different levels 

Fig. 5 HFpEF gene prediction. A AUROC and AUC‑PR for different HF‑related gene sets in random walk probability vectors based on HFpEF 
and HFrEF comorbidity profiles. Prior knowledge gene sets are DisGeNET, Kegg pathway for dilated cardiomyopathy (DCM), cardiomyopathy 
(literature curated). Data‑based gene sets are PheWAS, ReHeaT, and GWAS variants. B Prioritizing genes for HFpEF that are close to HFpEF 
comorbidity profiles in the HFhetnet and also display high ranking differences when compared to gene predictions based on HFrEF comorbidity 
profiles. C Scheme of experimental design for murine model of HFpEF by HFD/L‑NAME diet. Cardiac ventricles were harvested after 9 weeks 
and bulk transcriptomics were collected. D Volcano plot displaying gene expression regulation in the murine HFpEF model compared to control. 
Labeled genes display HFpEF predicted genes from human comorbidity profiles. E Predicted HF genes from comorbidity analysis were enriched 
in gene‑level t‑statistics of murine differentially expression analysis comparing disease with control. Gene set enrichment p‑value. ***p < 0.001. 
**p < 0.01
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of clinical concepts like organs (DC7—gastrointestinal 
tract), illness severity (DC5—intensive care), or disease 
categories (DC8—cancer). This aggregation via network 
clustering may also reduce multiple testing burdens and 
provide insights into the relevance of low prevalence 
diseases where comparisons for a single disease may be 
problematic.

In the patient classifier, HFpEF was characterized by a 
larger number of comorbidities with lesser emphasis on 
cardiac disorders. This supports the hypothesis of HFpEF 
as a comorbidity-driven systemic syndrome [112, 113]. 
We found that hypertensive heart disease was the most 
discriminant feature for HFpEF, which has been viewed 
as a major etiology for diastolic HF involving cardiac 
hypertrophy and myocardial stiffness [114, 115]. In con-
trast, ischemic etiologies including myocardial infarction 
characterized HFrEF consistent with other studies [116].

We identified more novel disease associations with 
HFpEF such as neoplastic diseases including breast can-
cer. HF related hospitalizations in breast cancer survivors 
have been recently associated more with HFpEF than 
with HFrEF [117], though the reasons for this remain 
incompletely elucidated [118]. The association to other 
cancerous diseases remains largely unexplored and 
should be addressed in future studies. Another interest-
ing aspect of the HFpEF comorbidity profile was the high 
similarity to DC6, which contained rheumatic, osteo-
logic, and mental diseases. Systemic inflammatory dis-
eases could be a driving factor for HFpEF and rheumatic 
disease could constitute a pathophysiologic linkage [112, 
119–121]. Bone mineralization also has been reported to 
be lowered in HFpEF patients [122] and is a symptomatic 
link to postmenopausal endocrinology [123]. While men-
tal health has been studied in the context of HF exten-
sively, differences between HFpEF and HFrEF are largely 
unexplored. The joint clustering of these disease com-
plexes and their similarity to female patients provides a 
potential link between female sex and HFpEF. Future 
work should further explore these relationships.

HFpEF and HFrEF clearly displayed distinguishable 
comorbidity profiles. By contrast, HFmrEF, introduced as 
a unique form of HF in 2016 [124], appeared to be a com-
bination of attributes from HFrEF and HFpEF. Thus, from 
the comorbidity perspective, it may be a transitional state 
instead of a unique syndrome as suggested before [125].

We predicted an associated genetic profile from data-
driven HFpEF comorbidity profiles. This genetic profile 
indicates that HFpEF comorbidities are associated with 
recurrent patterns of genes involved in fibrosis, inflam-
mation, cell differentiation, metabolism, and oxidative 
stress. As an example, the glutathione-S-transferases, 
NOS1 and Xanthine dehydrogenase (XDH), were iden-
tified by our network. XDH catalyzes the rate limiting 

step in purine metabolism producing uric acid [126] and 
previous literature supports both the role of serum uric 
acids in HF [104] and plasma XDH activity as relevant 
for adverse clinical outcomes in HFpEF [127]. Nitric 
oxide synthase (NOS) has been proposed to contribute to 
endothelial dysfunction in HFpEF [105, 106], and NOS1 
inhibition was recently associated with recovery of dias-
tolic dysfunction in a murine model resembling HFpEF 
[128]. Glutathione-S-transferases (GSTM1, GSTT1, 
GSTZ1) are antioxidant enzymes and polymorphisms of 
these genes have been reported as potentially relevant 
to HF and diastolic dysfunction [107, 108]. This group of 
genes could constitute crucial gene candidates involved 
in comorbidity-based HFpEF pathophysiology.

In general, HFpEF is likely to be a disease in which mul-
tiple genes and pathways contribute to the spectrum of 
phenotypes. Therefore, instead of using the disease–gene 
prediction to identify and validate individual genes, we 
have corroborated the overall effect of a spectrum of 
identified genes in murine gene expression data. While 
this provided additional evidence for the relevance of 
comorbidity-based gene prediction, further experimen-
tal validation is necessary to explore the functional role 
and reproducible validity of candidate genes. In real-
world populations, it is likely that the genetic heteroge-
neity of the HFpEF syndrome will be influenced by the 
specific comorbidities that are well represented in each 
population. In previous disease–gene prediction stud-
ies, gene prediction was performed either by selecting 
multiple seed genes or single seed diseases [129, 130]. 
We propose that our approach for gene inference based 
on data-driven comorbidity profiles might be suitable 
for systemic syndromes where multimorbidity plays an 
important role like HF and especially HFpEF.

In addition, several data resources were generated in 
this study: (i) the HFpEF gene predictions, (ii) HFhetnet, 
and (iii) murine HFpEF transcriptome to help facilitate 
future efforts to understand HFpEF-related pathophysiol-
ogy and benefit the research community.

This study had important strengths and was subject to 
several limitations. An important strength of this study is 
that we analyzed clinical care data, which is a real-world 
representation of patients and therefore allowed us to 
perform a data-driven analysis of comorbidities in this 
patient population. However, as a result, this analysis is 
limited to the information captured (i) in our hospital 
system and (ii) at the hospital visits of a patient. There-
fore, obtained results could be subject to some common 
biases found in medical record-derived data, such as non-
random interaction with the health care system result-
ing in some patient populations having more data than 
others [131], incomplete documentation [132], selection 
bias [133], missing data, and lack of documentation of 
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potential confounders [134]. In addition, possible non-
observed confounders like socioeconomic status or 
health-related behavior could not be taken into account 
due to lack of documentation in the medical record. We 
determined subtypes using LvEF, which can be error 
prone [135] and might not fully provide a sufficient cri-
terion for the HFpEF diagnosis [136]. Patients with more 
serious conditions will tend to visit a tertiary health care 
provider more often and thus could be overrepresented. 
In our study, at a tertiary care center with a focus on car-
diomyopathy, this seemed to affect the contrast between 
HFrEF and HFpEF, as HFrEF patients had higher intuba-
tion prevalence and DC 5 similarity. This may also have 
contributed to differences between this study population 
and other reports of HFpEF population characteristics. 
However, given the known heterogeneity of HFpEF and 
HFrEF [109–111], we believe these differences are plau-
sible and a more granular approach to study HFpEF sub-
types could be necessary to address inconsistent patient 
characteristics [137]. Another limitation of our study is 
the use of ICD-10 codes to capture comorbidities. Dif-
ferent ICD-10 codes are known to have different predic-
tive value for disease, and therefore, it is likely that some 
diseases are over- or underrepresented in our data [138]. 
Moreover, we performed a cross-sectional analysis and 
therefore did not consider the timing and sequence of 
comorbidities when generating comorbidity profiles.

Given these limitations, future studies are necessary 
to address the generalizability of our findings to other 
HF populations and to delineate different disease trajec-
tories by considering the time of events. Nevertheless, 
our study recapitulated known HF comorbidity patterns, 
as discussed above, that could substantiate more novel 
comorbidity patterns identified in this work.

Many open questions remain regarding HFpEF patho-
physiology and genetics [16]. Interdisciplinary and transla-
tional approaches are needed to account for the cross-organ 
disease involvement that is suggested to be critical in HFpEF. 
The increasing abundance of routine clinical care data and 
novel approaches like network medicine can provide novel 
insights and guidance for future experimental approaches.

Conclusions
In our study, we found evidence for greater diversity of 
comorbidity profiles in patients with HFpEF compared 
to HFrEF. We further identified nine co-occurring dis-
ease groups which capture differences of disease preva-
lence regarding age, sex, and HF subtype. Here, we find 
that multimorbidity in HFpEF extends to disease clus-
ters beyond typical HF comorbidities and includes rheu-
matoid, neoplastic, and gastrointestinal diseases. We 

further provided a biological interpretation of the HFpEF 
comorbidity profile, capturing overexpressed gene pro-
grams observed in murine HFpEF models. Oxidative 
stress, hypertrophy, cell differentiation, and fibrosis-
related genes are recurrent patterns in genes associated 
to comorbidities of HFpEF and could constitute a link 
for the comorbid relationships of HFpEF resulting in a 
multiorgan disease state. Thus, our work highlights that 
comorbidity profiles are an important characteristic of 
HFpEF patients and should be incorporated into both 
clinical and genomic approaches to the study of HFpEF.
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