
Jiang et al. BMC Medicine          (2023) 21:237  
https://doi.org/10.1186/s12916-023-02935-2

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Medicine

Progressive trajectories of schizophrenia 
across symptoms, genes, and the brain
Sisi Jiang1,2, Huan Huang1, Jingyu Zhou1, Hechun Li1, Mingjun Duan3, Dezhong Yao1,2,3 and Cheng Luo1,2,3*   

Abstract 

Background Schizophrenia is characterized by complex psychiatric symptoms and unclear pathological mecha-
nisms. Most previous studies have focused on the morphological changes that occur over the development of the 
disease; however, the corresponding functional trajectories remain unclear. In the present study, we aimed to explore 
the progressive trajectories of patterns of dysfunction after diagnosis.

Methods Eighty-six patients with schizophrenia and 120 healthy controls were recruited as the discovery dataset. 
Based on multiple functional indicators of resting-state brain functional magnetic resonance imaging, we conducted 
a duration-sliding dynamic analysis framework to investigate trajectories in association with disease progression. Neu-
roimaging findings were associated with clinical symptoms and gene expression data from the Allen Human Brain 
Atlas database. A replication cohort of patients with schizophrenia from the University of California, Los Angeles, was 
used as the replication dataset for the validation analysis.

Results Five stage-specific phenotypes were identified. A symptom trajectory was characterized by positive-dom-
inated, negative ascendant, negative-dominated, positive ascendant, and negative surpassed stages. Dysfunctional 
trajectories from primary and subcortical regions to higher-order cortices were recognized; these are associated with 
abnormal external sensory gating and a disrupted internal excitation–inhibition equilibrium. From stage 1 to stage 5, 
the importance of neuroimaging features associated with behaviors gradually shifted from primary to higher-order 
cortices and subcortical regions. Genetic enrichment analysis identified that neurodevelopmental and neurodegen-
erative factors may be relevant as schizophrenia progresses and highlighted multiple synaptic systems.

Conclusions Our convergent results indicate that progressive symptoms and functional neuroimaging phenotypes 
are associated with genetic factors in schizophrenia. Furthermore, the identification of functional trajectories comple-
ments previous findings of structural abnormalities and provides potential targets for drug and non-drug interven-
tions in different stages of schizophrenia.
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Background
Schizophrenia is a severe psychiatric disorder that is 
characterized by positive, negative, and cognitive symp-
toms, which involve distributed regions in the brain [1]. 
A long-standing neurodevelopmental hypothesis has 
greatly contributed to our understanding of the devel-
opment of schizophrenia [2]. The dopamine hypothesis 
suggests that a hyper-response occurs in schizophrenia; 
this is consistent with the mechanism of current antipsy-
chotic drugs, which block dopamine D2 receptors [3, 4]. 
Furthermore, although no histopathological evidence has 
yet met the definition of neurodegeneration in schizo-
phrenia, a neurodegenerative hypothesis has been pro-
posed to interpret the progressive course that is observed 
in this disease [5]. To date, many genes have been rec-
ognized as important in different periods of the clinical 
course of schizophrenia [6]. People tend to seek clini-
cal help when their symptoms meet the clinical diagno-
sis threshold; they usually show predominantly positive 
symptoms at this stage and respond well to antipsychotic 
drugs. Unfortunately, however, antipsychotic drugs can-
not effectively control negative and cognitive symptoms, 
which are the main symptom types as the disease pro-
gresses [7]. Heterogeneous symptoms exist in differ-
ent stages of schizophrenia, and the disease progression 
involves different structural and functional abnormalities.

Magnetic resonance imaging (MRI) studies have pro-
vided multimodal evidence to indicate abnormalities in 
distributed brain regions in schizophrenia and have high-
lighted the network properties of the disease [8, 9]. Many 
studies have investigated the detailed anatomical features 
of schizophrenia and provide compelling evidence of 
striatum-dominated atrophy and associated morphologi-
cal abnormalities [10]. Furthermore, longitudinal stud-
ies of individuals with first-episode schizophrenia have 
demonstrated progressive gray matter loss in this dis-
ease [11]. Similarly, one of our previous studies demon-
strated a progressive reduction in gray matter in patients 
with schizophrenia [12]. The duration of the disease 
and antipsychotic treatments are also associated with 
progressive morphological changes in the brain [13]. In 
resting-state functional MRI, multiple functional indica-
tors (FIs) have been proposed to illustrate multiple-view 
abnormalities of brain functional activity in schizophre-
nia [14–16], thus providing evidence of the underlying 
pathology of this disease. Although abnormalities are not 
completely consistent across indicators, these different 
functional features can be referred to as representations 
of complex pathological mechanisms in different func-
tional dimensions. In contrast, progressive functional 
changes are relatively less studied in schizophrenia. There 
are several possible reasons for this discrepancy: (1) the 
difficulties obtaining long-term longitudinal functional 

data from large samples, (2) the existence of large func-
tional heterogeneity in patients with schizophrenia, and 
(3) the relatively poor stability of functional signals rela-
tive to structural data.

It would be interesting to explore the intrinsic charac-
teristics of the disease itself through multiple FIs. A prior 
meta-analysis of multiple FIs integrated findings across 
publications in an attempt to identify duration-associated 
functional features [17]. However, correlation analyses 
in a cross-sectional analysis are unable to reveal specific 
patterns of dysfunction over different disease courses. 
Additionally, although a longitudinal analysis is the best 
way to reveal the progression of a disease, decades of 
longitudinal data are extremely difficult to obtain. There 
is thus a need to develop an alternative research frame-
work to address this issue. Moreover, to establish macro- 
and micro-scale understanding of diseases, studies have 
linked neuroimaging profiles with gene transcriptomic 
data across psychiatric disorders [18, 19]. Gray and white 
matter microstructures are associated with polygenic 
risk for schizophrenia and have been further suggested 
to affect the psychiatric symptoms of patients [20, 21]. 
Moreover, associations between genotypes and clinical 
phenotypes are complex over different periods of schizo-
phrenia [2, 22]. Therefore, integrating neuroimaging and 
gene transcriptomic data may provide further insights 
into the pathological mechanisms of the disease.

To address these issues, we used a longitudinal-substi-
tuted approach to investigate the progressive dysfunction 
that occurs in schizophrenia using cross-sectional data-
sets. This approach was conducted using a duration-slid-
ing dynamic analysis framework, in which multiple FIs 
were integrated to characterize whole-brain voxel-wise 
dysfunction. Affinity propagation clustering and Liptak–
Stouffer approaches were then used to acquire duration-
labeled specific stages of dysfunction in the disease. We 
hypothesized that gene expression levels would be related 
to the patterns of dysfunction as well as disease progres-
sion. We therefore used a regression model to identify 
dysfunction-associated genetic factors in distinct stages 
using the Allen Human Brain Atlas (AHBA) database 
[23]. Moreover, enriched networks were identified based 
on merged genes across stages to uncover schizophre-
nia-related pathways using Metascape [24]. The overall 
aim of the present study was to identify disease-related  
multi-trajectories, from symptoms to neuroimaging to 
genes. The study flow chart is illustrated in Additional 
file 1: Fig. S1.

Methods
Participants
For this study, 86 patients with schizophrenia were 
recruited from the Clinical Hospital of Chengdu Brain 
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Science Institute. Each patient was diagnosed based on 
the Diagnostic and Statistical Manual of Mental Disor-
ders, fourth edition. Subjects with a history of brain inju-
ries, substance-related disorders, or major medical or 
neurological disorders were excluded. Symptoms were 
evaluated using the Positive And Negative Syndrome 
Scale (PANSS). A standardized quantitative formula was 
used to evaluate the chlorpromazine equivalents for each 
antipsychotic medication [25]. As controls, 120 healthy 
individuals without neurological or psychiatric disorders 
were recruited. This study was approved by the research 
ethics committee of Chengdu Mental Health Center with 
the approval number CDMHLL-2017008, and written 
informed consent was obtained from participants (or 
their legal guardians if they were under 18 years old) in 
accordance with the Declaration of Helsinki. Detailed 
demographic and clinical information is shown in 
Table 1.

Data acquisition
MRI images were acquired on a 3-T scanner equipped 
with an eight-channel phased-array head coil (EXCITE, 
GE Healthcare, Milwaukee, WI, USA). An echo-
planar imaging sequence was used for resting-state 
functional data (echo time [TE] = 30  ms, repetition 
time [TR] = 2000  ms, data matrix = 64 × 64, field of 
view = 24  cm × 24  cm, flip angle [FA] = 90°, slice thick-
ness = 4  ms [no gap], and 32 axial slices in each vol-
ume). All subjects were asked to close their eyes without 
falling asleep during the scan. Each scan lasted 400  s 
and generated 200 volumes. A three-dimensional fast 
spoiled gradient-echo sequence was used to acquire 
axial anatomical T1-weighted images, with the fol-
lowing parameters: TE = 3.2  ms, TR = 8.2  ms, field of 

view = 25.6  cm × 25.6  cm, data matrix = 256 × 256, flip 
angle = 12°, and thickness = 1 mm (no gap).

Dysfunction in association with disease progression
The preprocessing of functional MRI and structural data 
followed the procedures detailed in our previously pub-
lished articles (Additional file  1: Method S1 [26]). Five 
FIs were used to describe the overall characteristics of 
brain function: the fractional amplitude of low-frequency 
fluctuation, regional homogeneity, and functional con-
nectivity density at global, local, and long-range levels. 
Progressive dysfunction was assessed using the follow-
ing analysis. Patients with schizophrenia were grouped 
according to disease duration. Next, an approach similar 
to an overlapping sliding window in the dynamic analysis 
was used to divide subgroups [27, 28].

Specifically, we divided patients into different groups 
with overlap according to their duration of disease. Tak-
ing 5 years as the window length, patients with a course 
of 1 to 5  years were classified into group 1, patients 
with a course of 2 to 6  years were classified into group 
2, patients with a course of 3 to 7  years were classified 
into group 3, and so on. In each subgroup, whole-brain 
voxel-wise FIs were calculated and compared with those 
of healthy controls using a two-sample t-test, with age, 
sex, total intracranial volume, and head motion included 
as nuisance covariates (Additional file 1: Method S2). To 
capture duration-specific case–control differences, an 
affinity propagation clustering approach was applied to 
create case–control t-maps of all subgroups for each FI 
[29] (Additional file 1: Method S3 [30, 31]). Each FI then 
uncovered a set of duration-related functional states, 
which characterized schizophrenia-related disturbances 
from a specific perspective. To identify progressive stages 
using multifunctional characteristics, states from distinct 
FIs were aligned according to maximum spatial similar-
ity and maximum temporal overlap (Additional file  1: 
Method S4 and Fig. S2). After clustering and alignment 
across states, patterns of dysfunction in the progressive 
stages were identified using the Liptak–Stouffer method 
[32–34] (Additional file 1: Method S5 [32–34]). Moreo-
ver, to quantify the progressive patterns of dysfunction, 
we used cerebral functional gradient maps [35] and cal-
culated the spatial correlations between schizophrenia 
stage-related cortical dysfunction and cortical hierarchy.

Associations between dysfunction and behavior
To identify the associations between stage-specific 
dysfunction and PANSS scores, we conducted partial 
linear squares regression (PLSR) for each stage. Specifi-
cally, we parcellated the whole brain into 246 regions 
and extracted the FIs of each region by averaging all 
voxels using a previously defined atlas [36]. In this way, 

Table 1 Study cohort demographics of the schizophrenia and 
control participants

F female, HC healthy control, M male, PANSS Positive And Negative Syndrome 
Scale

Characteristic Schizophrenia (n = 86) HC (n = 120) P-value

Age (years) 40.66 ± 11.17 37.73 ± 14.69 0.12

Gender (M:F) 61:25 80:40 0.52

Education 11.45 ± 2.59 11.07 ± 3.08 0.36

Duration (years) 15.22 ± 10.20 – –

Chlorpromazine 
equivalents (mg/
day)

337.96 ± 144.41 – –

PANSS score

 Total 62.21 ± 13.16 – –

 Positive 13.32 ± 5.84 – –

 Negative 20.70 ± 6.01 – –

 General 28.19 ± 5.81 – –
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a 246 × 5 FI matrix was generated for each subject as 
the neuroimaging variables, and positive, negative, 
and general PANSS scores were taken as the behav-
ioral variables. We concatenated all subjects in each 
stage and constructed a regression of the responses in 
behavioral variables on the predictors in neuroimag-
ing variables. A non-parametric technique based on 
randomly shuffling subjects (5000 times) was used for 
the inferential analysis of PLSR results, which tests 
whether the explained variance of PLS1 is significantly 
more than that expected by chance (permutation test, 
pperm < 0.001). The current study focused on the combi-
nation (PLS1) mostly associated with behavioral vari-
ables. The behavioral variables were correlated with the 
neuroimaging PLS1 scores to reveal the specific asso-
ciations between neuroimaging and behavioral charac-
teristics. We also compared the PANSS scores between 
stages using a permutation test, which randomly 
divides patients into two groups (5000 times) and cal-
culates the differences to generate the null model. The 
significance of observed differences in PANSS scores 
between the stages was determined using a comparison 
with the permutated distribution.

We also detected the network- and region-level signif-
icance of neuroimaging PLS1 loadings. In this analysis, 
eight previously defined brain networks were used to 
illustrate network-level significance: the visual network, 
sensorimotor network, salience network, dorsal atten-
tion network, limbic network, frontoparietal network, 
default mode network, and subcortical network. We 
averaged the loadings of all FIs of all regions belonging 
to each network, thus generating eight network-level 
neuroimaging loadings. Additionally, we investigated 
the significance of the loadings (averaged across FIs) in 
regions with abnormal FIs. We used regions in which 
more than 30% of voxels had significantly abnormal FIs 
in schizophrenia.

Genome expression data
The AHBA database (http:// human. brain- map. org) pro-
vides gene expression data from the brains of six healthy 
adult human donors, with 3702 spatially resolved sam-
ples. In this database, each donor’s brain has been nor-
malized and is divided into 246 smaller contiguous 
regions (atlas) with approximately homogeneous sizes. 
In the present study, we only analyzed the left hemi-
sphere data from the six donors (because data from the 
right hemisphere are included for only two donors in the 
AHBA database). We thus obtained the estimated expres-
sion values for each of the 10,027 genes in 123 regions of 
the left hemisphere, as a 123 × 10,027 regional transcrip-
tion matrix (Additional file 1: Method S6 [18, 19, 36, 37]).

Dysfunction-associated genes
The patterns of dysfunction in the progressive and non-
progressive analyses were extracted to identify dys-
function-associated genes. The PLSR model was used 
to explore dysfunction-associated genome expression 
(transcriptional activity for all 10,027 genes). In the PLSR 
analysis, which links neuroimaging data with transcrip-
tomic data, the inflation of false-positive findings may 
be observed because of spatial auto-correlation [38]. To 
account for spatial auto-correlation, a spin test based on 
spherical rotations (5000 times) was used for the infer-
ential analysis of the PLSR results (permutation test, 
pspin < 0.001) [39]. The spin test generates surrogate brain 
maps that are matched to an empirical brain for spatial 
autocorrelation, thus controlling for spatial contiguity 
and hemispheric symmetry. We also applied a bootstrap-
ping approach, which resampled using the replacement 
of the cortical regions to estimate the error on the PLS 
weights for each gene. The weight of each gene was 
then transformed to a z-score by its ratio to its boot-
strap standard error. Next, genomes with a significant 
contribution to case–control dysfunction were selected 
(p < 0.05, false discovery rate [FDR] corrected).

The significant genes in PLS1 overlapped with 52 
schizophrenia-related genes from “genes characterized 
by in situ hybridization in 1000 gene survey in cortex” in 
the AHBA database (help.brainmap.org/display/human-
brain/Documentation) (Additional file  1: Method S7 
[36]). The expression of these overlapping genes was then 
correlated to case–control statistical maps using Pear-
son’s correlation (p < 0.05, FDR corrected).

Enrichment analysis
The Metascape tool (http:// metas cape. org/) was used to 
conduct the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis for the PLS1 genes that 
were selected from the PLSR components. For the sta-
tistical z-map of each stage, dysfunction-associated 
genes were obtained according to significant PLS1 + and 
PLS1 − values (|Z|> 5, all FDR-corrected p < 0.05). Each 
stage produced one list of genes, thus generating multi-
ple lists of genes. To identify enriched networks related 
to disease progression, these multiple lists of genes were 
merged using Metascape. In the progressive analysis, the 
PLS1 − and PLS1 + gene lists were generated separately 
for the enrichment analyses.

Association between dopamine and dysfunction
Open positron emission tomography (PET) and single-
photon emission computerized tomography (SPECT) 
data from unrelated healthy controls were used (avail-
able at the NITRC website: http:// www. nitrc. org/ proje 

http://human.brain-map.org
http://metascape.org/
http://www.nitrc.org/projects/spmtemplates/
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cts/ spmte mplat es/), including  [18F] FDOPA PET and 
 [123I] FP-CIT SPECT templates. Respective dopamine 
synthesis capacity and dopamine transporter values 
were then indexed from these templates. We also used 
an  [11C] raclopride PET template from a previous study 
[40] to index striatal D2/D3 receptors. All templates were 
yielded by averaging across subjects. In the present study, 
spatial correlations between the case–control t-maps 
and the three dopaminergic templates were calculated 
(p < 0.05). The case–control t-maps of FIs and progressive 
stages were spatially correlated to the spatial patterns of 
dopamine features, including dopamine synthesis, dopa-
mine transporters, and D2 receptors.

Non-progressive analysis
A non-progressive analysis was conducted by comparing 
the FIs of all patients with those of healthy controls. The 
dysfunction-associated genes, enriched networks, and 
associations between dopamine and dysfunction were all 
investigated in this non-progressive analysis (Additional 
file 1: Method S8).

Validation analysis
We performed three additional analyses to validate the 
findings from the present study. First, we used a data-
set from a replication cohort of patients with schizo-
phrenia from the University of California, Los Angeles 
(UCLA) (from OpenNeuro: http:// openn euro. org) [41]. 
With this dataset, we calculated the case–control differ-
ences of FIs and identified the enriched networks associ-
ated with neuroimaging profiles. Second, the number of  
clusters was validated using a conventional K-means 
clustering approach. Third, different window lengths 
were used in the affinity propagation clustering analysis 
to validate the reliability of progressive dysfunction. For 
the detailed processing methods, see Additional file  1: 
Method S9 [42].

Control analysis
The main factors that affect FIs in the brain are the mor-
phological profiles of the brain and antipsychotics. We 
therefore correlated disease duration with morpho-
logical features of the brain and conducted comparisons 
between subgroups with short and long disease dura-
tions. The included morphological features were gray 
matter volume, white matter volume, and cerebrospinal 
fluid volume. Additionally, drug equivalents were com-
pared between stages using a permutation test. We also 
evaluated the correlations between FIs and antipsychot-
ics, and compared the FIs between subgroups with high 
and low drug equivalents (Additional file 1: Method S10).

Results
Symptom trajectory across stages
The present study generated 26 progressive subgroups 
based on disease duration (Additional file  2: Table  S1). 
PANSS scores (positive, negative, general, and total) in 
each subgroup are shown in Additional file  2: Fig. S3. 
Five stages were identified, with characteristic clinical 
symptoms: the positive-dominated stage 1, the negative-
ascendant stage 2, the negative-dominated stage 3, the 
positive-ascendant stage 4, and the negative-surpassed 
stage 5 (Fig.  1A). Differences in PANSS between stages 
were also observed (pperm < 0.001) (Fig.  1B). There were 
significantly higher positive scores in stages 1, 3, and 4 
than in stage 5. Furthermore, stage 3 had higher negative 
scores than stages 1 and 2 and higher general scores than 
stages 1 and 5.

Dysfunction trajectories across stages
The optimal number of clusters was selected using the 
largest Calinski–Harabasz index score (Additional file 2: 
Fig. S4). The case–control t-maps of fractional amplitude 
of low-frequency fluctuation, regional homogeneity, and 
global and local functional connectivity densities of each 
subgroup were clustered into five representative disease 
progression states, which resulted in 4 × 5 functional 
states. The long-range functional connectivity density 
subgroup case–control t-maps were clustered into six 
representative states. Thus, we finally obtained 4 × 5 (4 
features, 5 states) plus 1 × 6 (1 feature, 6 states) represent-
ative case–control differences. The conventional k-means 
clustering approach also suggested a consistent selection 
of cluster number (Additional file 2: Fig. S5). Representa-
tive states from different FIs were aligned, resulting in 
five disease progression stages. Each stage was duration-
labeled: stage 1—mean 3.66 (range: 0–8) years; stage 
2—mean 8.38 (range: 3–14) years; stage 3—mean 14.17 
(range: 10–18) years; stage 4—mean 18.18 (range: 13–23) 
years; and stage 5—mean 23.32 (range: 17–30) years.

To recognize the specific pattern of dysfunction of 
each stage, stage-specific case–control z-maps were cre-
ated using the Liptak–Stouffer method (p < 0.05, FDR 
corrected). Decreased FIs were persistently observed 
in the sensorimotor and visual cortices from stages 1 to 
5. Hypofunction of the insula was observed persistently 
from stages 2 to 5. Notably, a cluster in the ventral medial 
prefrontal cortices was observed in stages 1, 2, and 3; this 
cluster gradually expanded in stages 4 and 5 (Fig.  1C). 
Increased FIs in the striatum, dorsal prefrontal corti-
ces, and cerebellum were observed across all stages and 
had a gradually expanding spatial scope. Furthermore, 
hyperfunction of both the thalamus and hippocampus 
was observed at stage 2 and gradually expanded with 

http://www.nitrc.org/projects/spmtemplates/
http://openneuro.org
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increasing stages. Two trajectories of dysfunction were 
therefore summarized in schizophrenia (Fig.  1D). With 
window widths of 6 and 7 years (Additional file 2: Method 
Tables S2-S3), four stages were obtained. Although the 
number of stages changed, we also clearly observed 
a hyperfunction trajectory from subcortical areas to 

higher-order cortices in the frontoparietal network and a 
hypofunction trajectory from lower-order sensory regions 
to higher-order cortices in the default mode network 
(Additional file  2: Figs. S6-S7). Moreover, we found that 
the progressive dysfunction did not linearly correlate with 
cerebral functional gradients (Additional file  2: Fig. S8). 

Fig. 1 Symptoms and functional profiles in the progressive stages. A Using PANSS scores, we identified the positive-dominated stage 1, the 
negative-ascendant stage 2, the negative-dominated stage 3, the positive-ascendant stage 4, and the negative-surpassed stage 5. The PANSS 
general scores presented a slow uphill phase and a slow downhill phase. B Comparisons of PANSS scores between stages using permutation tests. 
*p < 0.05 (FDR corrected). C With disease progression, FIs progressively decreased from lower-order cortices to the insula and then to higher-order 
cortices in the default mode network (top middle of the panel), and FIs progressively increased from the subcortical regions to the thalamus/
hippocampus and then to higher-order cortices in the frontoparietal network (bottom middle of the panel). D Summarized progressive dysfunction 
trajectory in patients with schizophrenia after diagnosis. Asterisks denote regions involved at the beginning of the disease progress and circles 
denote regions involved as the disease progresses. Warm colors indicate hyperfunction and cold colors indicate hypofunction



Page 7 of 16Jiang et al. BMC Medicine          (2023) 21:237  

Notably, the relative ratio of correlations with gradient 1 
(demeaned) and gradient 2 (demeaned) showed the same 
trend as that of PANSS positive scores across the stages.

Progressive association between dysfunction 
and symptoms
In all stages, the neuroimaging PLS1 scores were sig-
nificantly positively correlated with the behavioral PLS1 
scores (p < 0.0001) (Fig.  2A, B). In the first two stages, 
both the PANSS positive and negative scores signifi-
cantly correlated with the neuroimaging PLS1 scores. 
Furthermore, in stages 3 and 5, the PANSS negative and 
general scores correlated with the neuroimaging PLS1 
scores. The PANSS positive, negative, and general scores 
all significantly correlated with the neuroimaging PLS1 
scores. Moreover, the neuroimaging PLS1 loadings of 
brain networks showed distinct association in distinct 
stages (p < 0.0001) (Fig. 2C). In the first stage, the visual 
and sensorimotor networks were predominantly signifi-
cant, whereas the salience network had significant con-
tributions in stage 2. In the last stage, the frontoparietal, 
default mode, and subcortical networks had significant 
loadings in the association between neuroimaging FIs 
and behavioral PANSS scores. The region-wise neuro-
imaging PLS1 loadings showed a similar trend of sig-
nificance, from primary to higher-order cortices and 
subcortical regions, as the disease progressed (Additional 
file 2: Fig. S9).

In the control analyses, there were no correlations 
between disease duration and drug equivalent (Addi-
tional file  2: Fig. S10A). In addition, there were no dif-
ferences in drug equivalent among the stages (p > 0.05) 
(Additional file 2: Fig. S10B). However, patients with high 
drug equivalents showed hyperfunction in the visual cor-
tices compared with patients with low drug equivalents 
(Additional file  2: Figs. S11-S12). Furthermore, reduced 
gray matter volume and increased cerebrospinal fluid 
volume were observed with longer disease durations 
(Additional file 2: Fig. S13). The case–control z-maps of 
FIs and progressive stages were significantly positively 
correlated with the spatial patterns of dopamine synthe-
sis, dopamine transporters, and D2 receptors (Additional 
file 2: Figs. S14-S15).

Dysfunction-related genetic factors
The statistical z-maps of the progressive stages signifi-
cantly correlated with their PLS1 maps (Additional file 2: 
Fig. S16). In stages 1, 2, 3, 4, and 5, the PLS1 contained 
21, 24, 27, 37, and 30 of the 52 schizophrenia-related 
genes from the AHBA in situ hybridization data, respec-
tively. These included 15, 16, 20, 28, and 24 genes that 
negatively correlated with case–control z-maps and 6, 8, 
7, 9, and 6 genes that positively correlated with case–con-
trol z-maps, respectively. Notably, the expression levels 
of KCNN3, HTR2C, and GRM3 were the most positively 
correlated with the case–control z-maps. In contrast, 

Fig. 2 Stage-specific associations between PANSS and dysfunction. A Associations between neuroimaging and behavioral PLS1 scores in each 
stage. B Correlations between PANSS positive, negative, and general scores and neuroimaging PLS1 scores. C Network-level neuroimaging PLS1 
loadings at each stage. *p < 0.05 (permutation test)
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the expression level of AH1 was the most negatively cor-
related with the case–control z-maps in the five stages 
(p < 0.05) (Fig. 3).

Enrichment networks related to dysfunction
Using Metascape, stage-specific PLS1 + , and 
PLS1 − genes were selected to form multi-gene lists 
for KEGG enrichment analyses. Enriched terms across 
the enrichment results of PLS1 − genes are shown in 
Fig. 4A. For the PLS1 − genes, the enrichment network 
included “dopaminergic synapse,” “pathways of neu-
rodegeneration-multiple diseases,” “calcium signaling 

pathway,” “cGMP-PKG signaling pathway,” and “AMPK 
signaling pathway.” According to the gene counts for 
each enriched term (Fig.  4B and Additional file  2: Fig. 
S17), stage 1 contributed to “dopaminergic synapse,” 
and stages 2–4 contributed to “pathways of neurode-
generation-multiple diseases.” In addition, neurode-
velopment-related terms were observed in all stages 
of disease progression. A protein–protein interaction 
network was enriched in stage 1 (Fig. 4C) with the sig-
nificant enrichment terms “dopaminergic synapse,” 
“morphine addiction,” and “glutamatergic synapse.” 
Moreover, a protein–protein interaction network was 

Fig. 3 Dysfunction-associated genetic profiles in the progressive stages. A Overlap between the progressive dysfunction-associated genes and 
the schizophrenia-related genes from the AHBA in situ hybridization data. A duration range was recognized for each stage. Thirty-eight related 
genes were identified across all stages. Each stage is linked with distinct genes (presented in different colors). Unrelated genes are shown in gray. B 
Positive correlations (with the most significant correlations) between associated gene expression and case–control t-maps. C Negative correlations 
(with the most significant correlations) between associated gene expression and case–control t-maps
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enriched for multiple PLS1 − gene lists across all stages 
(Fig. 4D), resulting in nine Molecular Complex Detec-
tion (MCODE) networks. The “GABAergic synapse,” 
“morphine addiction,” “MAPK signaling pathway,” and 
“PI3K-Akt signaling pathway” terms were enriched 
in this protein–protein interaction network. For the 
enrichment results of PLS1 + genes, see Additional 
file 2: Fig. S18.

Non-progressive findings
Decreased FIs were identified in the sensorimotor and 
visual cortices, whereas increased FIs existed in the 

dorsolateral and medial prefrontal cortices (Additional 
file  3: Fig. S19). Case–control differences in FIs also 
revealed important associations with the expression of 
AH1, KCNN3, HTR2C, SPTBN4, and PVALB (Additional 
file 3: Fig. S20). “Dopaminergic synapse,” “Alzheimer’s dis-
ease,” and “pathways of neurodegeneration-multiple dis-
eases” terms were enriched using merged PLS1 − genes, 
and “pathways in cancer” and “cell adhesion metabolism” 
terms were enriched with the highest significance using 
merged PLS1 + genes (Additional file 3: Fig. S21).

Both the case–control differences in FIs and 
enriched networks in the replication cohort were 

Fig. 4 Enrichment analysis of PLS1 − genes related to disease progression. A Enrichment network using merged PLS1 − genes across all stages. B 
The same enrichment network as in A with nodes as pie charts. Each pie sector is proportional to the number of hits originating from a gene list. 
The color code for the pie sector represents the gene list of a certain stage. As shown in the blue dotted box, the enriched term “dopaminergic 
synapse” originates from the gene list of stage 1, whereas the green dotted box indicates the enriched term “cGMP-PKG signaling pathway,” which 
mainly originated from genes from stages 2 and 3. The pink dotted box shows that “pathways of neurodegeneration-multiple diseases” was 
enriched from the gene lists of stages 3, 4, and 5. C Protein–protein interaction network using the PLS1 − genes of stage 1, including six MCODE 
networks. Each color represents an MCODE network. Gene Ontology enrichment analysis was applied to each MCODE network to extract “biological 
meanings” from the network component, and the top three terms (with the smallest p-values) were retained: “dopaminergic synapse,” “morphine 
addiction,” and “glutamatergic synapse.” D Protein–protein interaction network enriched with the merged PLS1 − gene lists of all stages, including 
nine MCODE networks. The terms “morphine addiction,” “GABAerigic synapse,” and “thermogenesis” (the three terms with the smallest p-values) were 
extracted using Gene Ontology enrichment analysis for each MCODE. Each color represents an MCODE network
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in line with the findings from the discovery cohort 
(Additional file  3: Figs. S22-S23). The discovery and 
replication cohorts showed highly overlapping dys-
function-associated genes (Fig.  5A). Moreover, both 
the discovery and replication datasets were well clus-
tered and contributed to shared enriched networks. 
Multi-gene lists from the discovery and replication 
cohorts resulted in an enriched network with con-
sistent enrichment terms. The top three terms (with 
the smallest p-values) were “dopaminergic synapse” 
(−  log10(p) = 12.39), “pathways of neurodegeneration-
multiple diseases” (−  log10(p) = 11.40), and “pathways 
in cancer” (−  log10(p) = 10.85) (Fig.  5B). Moreover, a 
protein–protein interaction network was enriched, in 
which the top three terms (with the smallest p-values) 

were “dopaminergic synapse” (−  log10(p) = 13.1 and 10.9 
in the discovery and replication cohorts, respectively), 
“pathways of neurodegeneration-multiple diseases” 
(−  log10(p) = 12.6 and 11.9 in the discovery and replica-
tion cohorts, respectively), and “Alzheimer’s disease” 
(−  log10(p) = 12.6 and 12.1 in the discovery and replica-
tion cohorts, respectively) (Fig. 5C).

Discussion
In schizophrenia, longitudinal studies of the prodro-
mal phase to the first episode are important for reveal-
ing the pathological mechanisms of the disease, as well 
as a basis for its clinical treatment [43]. After being diag-
nosed, the vast majority of people with schizophrenia 
experience a lifelong regimen of alternating positive and 

Fig. 5 Enriched networks in the discovery and replication cohorts. A Overlapping genes between the discovery and replication cohorts. B 
Enrichment network using merged PLS1 (|Z|> 5) genes from the discovery and replication cohorts. The top three terms (with the smallest p-values) 
were “dopaminergic synapse” (−  log10(p) = 12.39), “pathways of neurodegeneration-multiple diseases” (−  log10(p) = 11.40), and “pathways in cancer” 
(−  log10(p) = 10.85). C Protein–protein interaction network using merged PLS1 (|Z|> 5) genes, including 13 MCODE networks. Each color represents 
one MCODE network. The top right table shows the top three enriched terms, which were identified using Gene Ontology enrichment analysis for 
each MCODE network



Page 11 of 16Jiang et al. BMC Medicine          (2023) 21:237  

negative symptoms or negative-dominated symptoms 
[1]. Subtypes of schizophrenia can be classified according 
to the brain functional characteristics of patients, which 
may lead to the application of appropriate neuromodula-
tion [44, 45]. Studying the progression of brain function 
in patients receiving regular antipsychotics after clinical 
diagnosis is therefore necessary to develop antipsychotics 
and neuromodulation technologies.

Using an innovative dynamic analysis framework for 
multiple FIs in the present study, we identified five pro-
gressive stages of schizophrenia in patients after diagno-
sis. Consistent with prior studies, a trajectory of clinical 
symptoms was identified from predominantly positive 
to predominantly negative symptoms, with five distinct 
stages that were classified as positive-dominated, nega-
tive ascendant, negative-dominated, positive ascendant, 
and negative surpassed. A hypofunction trajectory also 
emerged from the primary sensorimotor and visual cor-
tices to the salience system and then to the default mode 
network, which contributes to abnormal external sensory 
gating in schizophrenia. Furthermore, a hyperfunction 
trajectory was identified from subcortical regions to the 
hippocampus and then to the dorsal frontoparietal net-
work, which is associated with a disrupted internal exci-
tation–inhibition equilibrium. We also identified that 
the regions located in primary and salience systems were 
strongly associated with behavior in patients at relatively 
early stages, whereas regions located in higher-order 
and subcortical systems were significantly associated 
with behavior in the later stages of disease progression. 
The trajectories of progressive dysfunction were non-
linearly associated with cerebral gradients, which were 
specifically concordant with the trajectories of positive 
symptoms. These findings further indicate that the dys-
function identified in the present study is essentially the 
same as that of previously reported cerebral gradients, 
and reflects integrated brain functional profiles. Further-
more, dysfunction-associated genetic analysis revealed 
that neurodevelopmental and neurodegenerative factors 
were associated with specific patterns of dysfunction over 
the disease progression and specifically highlighted the 
dopamine-centered synaptic system in the early disease 
stages. Together, these findings indicate the existence of 
progressive neuroimaging dysfunction with associated 
genetic factors in schizophrenia and will be useful for 
establishing an integrated framework to better under-
stand the pathomechanisms of this disease.

A previously proposed clinical course of schizophrenia 
defined three representative phases (treatment, relapse, 
and chronic phases) after first-episode psychosis [7]. In 
the treatment phase, positive symptoms are well-con-
trolled, with a sharp slope, and negative symptoms pre-
sent a gradual slope. Next, both the positive and negative 

symptoms ascend as the disease progresses (with a greater 
slope observed in positive symptoms). This is followed 
by a descent into the chronic phase, characterized by 
predominantly negative symptoms. Similarly, our work 
identified five stages—from predominantly positive to 
predominantly negative symptoms—after first-episode 
psychosis; this is largely consistent with the recognized 
clinical course of schizophrenia and supports the rational-
ity of our analysis framework. Furthermore, in line with 
the conventionally defined stages of relapse, we character-
ized dynamic changes in the dominance of positive and 
negative symptoms. Symptoms from the positive-domi-
nated, negative-ascendant, and negative-dominated stages 
correspond to the phase that is well-controlled with antip-
sychotics [46]. The positive-ascendant stage corresponds 
to the relapse phase, and the negative-surpassed stage 
indicates the beginning of the chronic phase [47, 48].

Consistent with previous meta-analyses of FIs [49], the 
results of the current study suggest that hypofunction 
occurs in the primary sensorimotor and visual cortices 
in the early stage of schizophrenia. Previous studies have 
documented sensory and perceptual deficits in early-
stage processing and cognitive behavior [50] that are 
associated with specific clinical symptoms, such as delu-
sions, hallucinations, and decreased voluntary motion. 
In the present study, decreased FIs were observed in 
lower-order regions (involving the primary sensorimo-
tor and visual cortices) in this positive-dominated stage, 
which are associated with a potential mechanism for 
self-disorder in schizophrenia [51] and suggest a discon-
nect with real external stimuli in the world [52]. Signifi-
cant associations between drug equivalents and FIs were 
also observed in visual cortices in the present study; this 
finding may be related to the response of positive symp-
toms to antipsychotics. There is substantial evidence of a 
hyperresponsive dopamine system in schizophrenia, and 
striatal dopamine pathways are strongly involved in dis-
ease progression [7]. It is therefore unsurprising that we 
identified striatal hyperfunction in all disease stages in 
the present study; this finding is in line with the recog-
nized hyperresponsive dopamine system in schizophre-
nia. Furthermore, abnormal striatal dopamine synthesis 
is a specific feature of the prodromal stage and worsens 
as the disease progresses [53, 54]. The patterns of dys-
function were significantly spatially correlated with 
the distribution of striatal dopamine synthesis, release 
capacity, and transporters in the current study; these 
results further support the fundamental role of striatal 
dopamine pathways in the progression of schizophrenia. 
Striatal hyperfunction and hypofunction in lower-order 
regions might therefore be representative phenotypes of 
functional disturbance in the early positive-dominated 
phase of disease progression after clinical diagnosis.
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The blockade of dopamine receptors can improve clini-
cal symptoms in patients with schizophrenia, suggesting 
a common disruption of dopaminergic pathways [55]. A 
hyperresponsive dopamine system in schizophrenia has 
been suggested to result from a tendency of the brain 
to overrespond to external salient stimuli, independent 
of their importance, thus allocating disturbance salience 
when processing signals [56]. Similarly, the sensory gat-
ing hypothesis suggests that the pathological basis of 
schizophrenia is the absence of sensory gating, which 
leads to a large amount of irrelevant information enter-
ing the brain and disrupting its function [57]. The sali-
ence network is involved in the process of differentiating 
relevant from irrelevant stimuli and assigning salience to 
stimuli-focused information [58]. In schizophrenia, how-
ever, the salience process is disrupted by aberrant dopa-
mine signaling related to irrelevant stimuli [59].

In the present study, as the disease progressed, we 
identified hypofunction in the insula. This finding sup-
ports the theory of a disrupted salience-monitoring sys-
tem in schizophrenia. Furthermore, insular hypofunction 
was accompanied by hypofunction of the default mode 
network, which is associated with abnormalities of ongo-
ing information processing (including of inner reference, 
memory, and emotions) in schizophrenia [60]. An abnor-
mal functional interaction among the so-called triple net-
work (the salience, default mode, and central executive 
networks) has been proposed to explain the pathophysio-
logical dysfunction underlying psychiatric disorders [61], 
and as a marker to understand the vulnerability of exter-
nal and internal perceptions in patients with schizophre-
nia [62]. The interaction between the salience and default 
mode networks has been suggested to be strongly linked 
to positive symptoms, but accumulating evidence also 
indicates that a complex association exists between tri-
ple network profiles and positive, negative, and cognitive 
symptoms in schizophrenia [63]. Consistent with those of 
sensory gating, these findings might partially explain the 
cascade of impairments from lower- to higher-level func-
tions in patients with schizophrenia.

In the present study, the orbitofrontal cortices wors-
ened as the disease progressed. The orbitofrontal corti-
ces play important roles in value processing and positive 
affect; their abnormal function might therefore induce 
apathy and lack of effect, which are typical clinical symp-
toms of schizophrenia. Thus, our findings are in line with 
the recognized aberrant motivation and reward-based 
learning that occur in schizophrenia [64].

As the disease progresses, negative symptoms ascend to 
be dominant after a phase of well-controlled symptoms. 
In the current study, marked hyperfunction was observed 
in the thalamus, cerebellum, and hippocampus as the dis-
ease progressed. The striatal–thalamocortical network is 

important for integrating complex information and has 
been associated with cognitive and emotional deficits in 
patients with schizophrenia [65]. Notably, the dopamin-
ergic system is not the only aberrant system in schizo-
phrenia; its modulatory γ-aminobutyric acid (GABA)
ergic and glutamatergic synaptic systems also contribute 
to the disease. The hippocampus plays a crucial role in 
driving the dopaminergic system and contributes to the 
underlying pathophysiology of schizophrenia [2, 66, 67]. 
Increased hippocampal glutamate function is associated 
with increased striatal dopamine function in schizo-
phrenia, as well as with dysfunction across symptom 
domains [67]. Hippocampal hyperfunction might there-
fore be a neuroimaging phenotype that implies long-
term memory impairment in schizophrenia [66]. From 
a molecular perspective, a magnetic resonance spectros-
copy study reported that higher GABA concentrations 
in the cerebellum are associated with greater behavioral 
impairments in patients with schizophrenia. Increased 
cerebellar function gradually emerges as the disease pro-
gresses, implying that cerebellar GABAergic modulation 
plays a role in schizophrenia. An excitatory–inhibitory 
imbalance in the cerebello-thalamo-cortical and striato-
thalamo-cortical loops has been proposed to explain the 
pathology and development of schizophrenia, in which 
the dopamine and GABA systems make predominant 
contributions [7, 68, 69]. The findings of the present 
study also suggest that the striatum and cerebellum may 
predominantly contribute to the progressive excitatory–
inhibitory disruption, which is in line with the “cognitive 
dysmetria” theory of schizophrenia [70]. In general, the 
trajectory of hyperfunction might reflect the progressive 
dysfunction of the dopaminergic system and its upstream 
GABA and glutamate modulator systems in patients with 
schizophrenia, which may correspond to their complex 
clinical symptoms.

Genome-wide association studies have identified more 
than 50 genes associated with the pathology of schizo-
phrenia, which are mainly implicated in neurodevelop-
ment and the dopamine-centered synaptic system [71]. 
In the current study, specific genetic features were iden-
tified in duration-labeled progressive stages. Multiple 
factors relating to neurodevelopment were revealed as 
the disease progressed, including AH1 and the phospho-
inositide 3-kinase–protein kinase B signaling pathways. 
Dopaminergic, glutamatergic, and GABAergic synapses 
were markedly enriched as early risk factors in the pos-
itive-dominated stage, thus supporting a substrate role 
of the dopaminergic synapse, which has been widely rec-
ognized as a cause of schizophrenia [72]. Our work thus 
provides explicit evidence to support the early involve-
ment of dopaminergic synapses and highlights the role 
of the excito-inhibitory synaptic system as the disease 
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progresses. The glutamatergic and GABA pathways are 
crucial in the upstream regulation of dopaminergic func-
tion [73], and their interaction contributes to the over-
all dysfunction that occurs in schizophrenia [74]. It has 
been proposed that imbalanced inhibitory and excitatory 
signaling complexes are a pathomechanism of schizo-
phrenia [75]. These interconnected synaptic systems reg-
ulate brain plasticity and are a potential intrinsic cause of 
schizophrenia, as well as being associated with the com-
plex symptoms of patients [76, 77].

Another notable finding of the present study was the 
emergence of neurodegenerative factors in relatively late 
stages of disease progression. A neurodegenerative model 
has been proposed to understand the mental decline that 
occurs in schizophrenia, along with its progressive clini-
cal course [78]. Although postmortem examinations have 
not found neurodegenerative pathological features (such 
as gliosis) in schizophrenia [79], the neurodegenerative 
model suggests that pathological neuronal apoptosis 
(which does not cause gliosis) occurs in schizophrenia, 
whereas necrosis does not. In support of this model, 
apoptosis-related genetic factors were identified in the 
present study. Furthermore, a progressive neurodevelop-
mental hypothesis has redefined the boundaries of neu-
rodevelopment and neurodegeneration in schizophrenia, 
and views schizophrenia as having components of both 
development and degeneration [5, 80]. Although the pre-
sent findings do not directly indicate that schizophre-
nia is a neurodegenerative disease, they do suggest that 
neurodegeneration-related genes might be involved later 
in the disease. Thus, the neurodegenerative hypothesis of 
schizophrenia requires further investigation.

Limitations
There are several limitations of the present study. First, 
our approach has high requirements for data. The sam-
ple size needs to be relatively large and the disease 
course distribution of patients needs to be relatively 
uniform, which may limit its application. Although we 
validated the associated genes in the non-progressive 
analysis using a replication cohort from the UCLA, we 
were unable to identify a suitable dataset to validate 
the progressive analysis. Moreover, although the drug 
equivalent represents the stable drug intake of patients 
within the last year of data collection, it only provides 
a partial possible drug effect. The drug effects in this 
study should therefore be analyzed using more powerful 
models. We sought to explore the association between 
neuroimaging and the transcriptome in patients with 
schizophrenia in the present study. The best way to do 
this would be to directly link each patient’s neuroim-
aging data to their transcriptome data. Unfortunately, 
however, transcriptome data were not available from the 

patients with neuroimaging data. A compromise was 
therefore made; the case–control differences in neuro-
imaging were linked to healthy transcriptome data from 
the AHBA database, to indirectly identify genes that are 
associated with the disease. This association analysis of 
the brain imaging data of disease samples and the gene 
expression levels of healthy samples was likely affected 
by sample heterogeneity, which should be improved in 
future studies (e.g., by using genetic data from disease 
samples). Moreover, the association among neuroimag-
ing, genetic features, and behavior was characterized 
by the PLSR model. This model can be overfitted and is 
not stable across datasets, especially when the number 
of samples is small; these limitations severely hinder the 
interpretability and generalizability of the results [81]. 
Therefore, a further validation analysis with larger data 
samples is needed.

Conclusions
To investigate the stage-specific patterns of dysfunction 
after diagnosis of schizophrenia, we built a novel ana-
lytical framework to explore duration-labeled progres-
sive stages using cross-sectional data. A refined symptom 
trajectory with five stages was recognized. Furthermore, 
we identified a progressive hypofunction trajectory from 
primary lower- to higher-level cortices and a progressive 
hyperfunction trajectory from subcortical to higher-level 
cortices, which are associated with abnormal external 
sensory gating and disrupted internal excitation–inhi-
bition equilibrium in schizophrenia. Progressive dys-
function correlated with specific symptoms across the 
different stages. By combining our data with genetic data 
from independent healthy controls, we further identified 
a dopaminergic-centered synaptic system in the early 
stages of schizophrenia, and neurodegenerative factors 
in the later stages. Additionally, substrates of neurodevel-
opment carried risks for disease progression. Together, 
these findings suggest that our proposed innovative 
analytical framework has the potential to reveal the 
genetic factors associated with progressive functionali-
ties in schizophrenia, thus inferring the dynamic involve-
ment of gene endophenotypes associated with clinical 
phenotypes.

Abbreviations
MRI  Magnetic resonance imaging
FIs  Functional indicators
AHBA  Allen Human Brain Atlas
PANSS  Positive And Negative Syndrome Scale
PLSR  Partial linear squares regression
KEGG  Kyoto Encyclopedia of Genes and Genomes
PET  Positron emission tomography
SPECT  Single-photon emission computerized tomography
FDR  False discovery rate
MCODE  Molecular Complex Detection



Page 14 of 16Jiang et al. BMC Medicine          (2023) 21:237 

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12916- 023- 02935-2.

Additional file 1: Fig. S1. Analysis flowchart. Fig. S2. Flow chart of the 
alignment across states of FIs.

Additional file 2: Table S1. Subgroup information with a window length 
of 5 years. Table S2. Subgroup information with a window length of 
6 years. Table S3. Subgroup information with a window length of 7 
years. Fig. S3. PANSS positive, negative, general, and total scores in all 
subgroups. Fig. S4. Calinski–Harabaz index in the different number of 
clusters with APC. Fig. S5. Explained variance and variance gain in the 
k-means approach. Fig. S6. APC results and alignment with different 
window lengths. Fig. S7. Stage patterns with window lengths of 6 and 7 
years. Fig. S8. Correlation between progressive dysfunction and cerebral 
function gradients. Fig. S9. Neuroimaging PLS1 loadings across stages. 
Fig. S10. Relationship between disease duration and drug equivalent. Fig. 
S11. Correlation between FIs and drug equivalent. Fig. S12. Comparison 
of FIs between patients with high and low drug equivalents. Fig. S13. 
Relationship between disease duration and brain structural features. Fig. 
S14. Spatial correlation between case–control t-maps of five functional 
indicators and dopamine synthesis. Fig. S15. Spatial correlation between 
case–control z-maps of five stages and dopamine synthesis. Fig. S16. 
Correlation between PLS1 maps and case–control t-maps in all progres-
sive stages of the disease. Fig. S17. Enriched terms across stages and 
PLS1gene lists, colored by p-values. Fig. S18. KEGG enrichment network 
from merged PLS1+genes of the five progressive stages.

Additional file 3: Fig. S19. Case–control t-maps of functional indica-
tors and their spatial associations with PLS1. Fig. S20. Genes related to 
the case–control t-maps of the five functional indicators. Fig. S21. KEGG 
networks using merged PLS1 genes. Fig. S22. Case–control t-maps and 
PLS1 maps of FIs in the discovery and replication datasets. Fig. S23. KEGG 
networks using merged PLS1 genes.

Acknowledgements
Not applicable.

Authors’ contributions
CL has full access to all the data in the study and takes responsibility for the 
integrity of the data and the accuracy of the data analysis. SJ, HH, MD, DY, and 
CL conceived and designed the study. HH, JZ, DY, and HL contributed to the 
data acquisition. SJ, HH, and HL contributed to the data analysis. SJ, HL, and 
CL drafted the manuscript. All authors contributed to the result interpretation 
and discussion. All authors read and approved the final manuscript.

Funding
This work was supported by a grant from the STI 2030-Major Projects 
2022ZD0208500, the National Nature Science Foundation of China (U2033217, 
61933003, 62201133, and 82101620), China Postdoctoral Science Founda-
tion (2021TQ0061), Chengdu Science and Technology Bureau (2021-YF09-
00107-SN), and CAMS Innovation Fund for Medical Sciences (CIFMS) 
(No.2019-I2M-5–039).

Availability of data and materials
Data availability: Molecular architecture (density maps of neurotransmitter 
receptors and transporters) for the integration of positron emission tomogra-
phy and single-photon emission computed tomography from the prior vivo 
molecular imaging studies are available at https:// github. com/ netne urolab/ 
hansen_ recep tors/ tree/ main/ data and https:// github. com/ juryxy/ JuSpa ce. 
Human brain-wide gene expression samples from the Allen Human Brain Atlas 
are available at https:// human. brain- map. org/ static/ downl oad. Schizophre-
nia disease-related genes (N = 52) from in situ hybridization are available at 
https:// human. brain- map. org/ ish/ search. All data generated or analyzed dur-
ing the current study are included in the published article (and its Additional 
file 1: Supplementary Information). 
Code availability: The DPABI and NIT toolbox for FI calculation is available at http:// 
www. rfmri. org/ dpabi and https:// www. neuro. uestc. edu. cn/ NIT. html [26, 82]. The 
code for gene expression analysis can be found at https:// github. com/ BMHLab/ 

AHBAp roces sing [37]. The code for PLSR analysis used in this study can be found 
at https:// github. com/ jssue stc/ Multi modal Corr, which is written based on https:// 
github. com/ Sarah Morgan/ Morph ometr ic_ Simil arity_ SZ [18], https:// github. com/ 
spin- test/ spin- test, and https:// github. com/ frant isekv asa/ rotate_ parce llati on [39]. 
The ENIGMA toolbox helps the codes for the spin test in this work (v. 1.1.3; https:// 
enigma- toolb ox. readt hedocs. io/ en/ latest/) [83]. The Metascape tool of gene 
enrichment analysis (version 3.0) was available at http:// metas cape. org/.

Declarations

Ethics approval and consent to participate
This study was approved by the research ethics committee of Chengdu Men-
tal Health Center with the approval number CDMHLL-2017008, and written 
informed consent was obtained from participants (or their legal guardians if 
they were under 18 years old) in accordance with the Declaration of Helsinki.

Consent for publication
Not applicable.

Competing interests
All authors declare no competing interests.

Author details
1 The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab 
for Neuroinformation, School of Life Science and Technology, University 
of Electronic Science and Technology of China, Chengdu 611731, People’s 
Republic of China. 2 Research Unit of NeuroInformation, Chinese Academy 
of Medical Sciences, 2019RU035 Chengdu, People’s Republic of China. 
3 High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan 
Province, Center for Information in Medicine, University of Electronic Sci-
ence and Technology of China, No. 2006, Xiyuan Ave., West Hi-Tech Zone, 
611731 Chengdu, Sichuan, People’s Republic of China. 

Received: 1 March 2023   Accepted: 12 June 2023

References
 1. Rahman T, Lauriello J. Schizophrenia: an overview. Focus (Am Psychiatr 

Publ). 2016;14(3):300–7.
 2. Birnbaum R, Weinberger DR. Genetic insights into the neurodevelopmen-

tal origins of schizophrenia. Nat Rev Neurosci. 2017;18(12):727–40.
 3. Kapur S, Remington G. Dopamine D-2 receptors and their role in atypical 

antipsychotic action: still necessary and may even be sufficient. Biol 
Psychiat. 2001;50(11):873–83.

 4. Lisman JE, Coyle JT, Green RW, Javitt DC, Benes FM, Heckers S, Grace AA. 
Circuit-based framework for understanding neurotransmitter and risk 
gene interactions in schizophrenia. Trends Neurosci. 2008;31(5):234–42.

 5. Gupta S, Kulhara P. What is schizophrenia: a neurodevelopmental or 
neurodegenerative disorder or a combination of both? A critical analysis. 
Indian J Psychiatry. 2010;52(1):21–7.

 6. Smeland OB, Frei O, Dale AM, Andreassen OA. The polygenic architecture 
of schizophrenia - rethinking pathogenesis and nosology. Nat Rev Neurol. 
2020;16(7):366–79.

 7. McCutcheon RA, Marques TR, Howes OD. Schizophrenia-an overview. 
Jama Psychiat. 2020;77(2):201–10.

 8. Kambeitz J, Kambeitz-Ilankovic L, Cabral C, Dwyer DB, Calhoun VD, van 
den Heuvel MP, Falkai P, Koutsouleris N, Malchow B. Aberrant functional 
whole-brain network architecture in patients with schizophrenia: a meta-
analysis. Schizophrenia Bull. 2016;42:S13–21.

 9. Dong DB, Wang YL, Chang XB, Luo C, Yao DZ. Dysfunction of large-scale 
brain networks in schizophrenia: a meta-analysis of resting-state func-
tional connectivity. Schizophrenia Bull. 2018;44(1):168–81.

 10. Haijma SV, Van Haren N, Cahn W, Koolschijn PCMP, Pol HEH, Kahn RS. 
Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. 
Schizophrenia Bull. 2013;39(5):1129–38.

 11. Ho BC, Andreasen NC, Ziebell S, Pierson R, Magnotta V. Long-term 
antipsychotic treatment and brain volumes: a longitudinal study of first-
episode schizophrenia. Arch Gen Psychiatry. 2011;68(2):128–37.

https://doi.org/10.1186/s12916-023-02935-2
https://doi.org/10.1186/s12916-023-02935-2
https://github.com/netneurolab/hansen_receptors/tree/main/data
https://github.com/netneurolab/hansen_receptors/tree/main/data
https://github.com/juryxy/JuSpace
https://human.brain-map.org/static/download
https://human.brain-map.org/ish/search
http://www.rfmri.org/dpabi
http://www.rfmri.org/dpabi
https://www.neuro.uestc.edu.cn/NIT.html
https://github.com/BMHLab/AHBAprocessing
https://github.com/BMHLab/AHBAprocessing
https://github.com/jssuestc/MultimodalCorr
https://github.com/SarahMorgan/Morphometric_Similarity_SZ
https://github.com/SarahMorgan/Morphometric_Similarity_SZ
https://github.com/spin-test/spin-test
https://github.com/spin-test/spin-test
https://github.com/frantisekvasa/rotate_parcellation
https://enigma-toolbox.readthedocs.io/en/latest/
https://enigma-toolbox.readthedocs.io/en/latest/
http://metascape.org/


Page 15 of 16Jiang et al. BMC Medicine          (2023) 21:237  

 12. Jiang YC, Luo C, Li X, Duan MJ, He H, Chen X, Yang H, Gong JN, Chang 
X, Woelfer M, et al. Progressive reduction in gray matter in patients with 
schizophrenia assessed with MR imaging by using causal network analy-
sis (vol 287, pg 633, 2018). Radiology. 2018;287(2):729–729.

 13. Vita A, De Peri L, Deste G, Sacchetti E. Progressive loss of cortical gray 
matter in schizophrenia: a meta-analysis and meta-regression of longitu-
dinal MRI studies. Transl Psychiatry. 2012;2: e190.

 14. Turner JA, Damaraju E, van Erp TM, Mathalon DH, Ford JM, Voyvodic J, 
Mueller BA, Belger A, Bustillo J, McEwen S, et al. A multi-site resting state 
fMRI study on the amplitude of low frequency fluctuations in schizophre-
nia. Front Neurosci-Switz. 2013;7:137.

 15. Chen X, Jiang YC, Chen L, He H, Dong L, Hou CY, Duan MJ, Yang M, Yao 
DZ, Luo C. Altered hippocampo-cerebello-cortical circuit in schizophre-
nia by a spatiotemporal consistency and causal connectivity analysis. 
Front Neurosci-Switz. 2017;11:25.

 16. Liu CX, Zhang W, Chen GD, Tian HJ, Li J, Qu HR, Cheng LL, Zhu JJ, Zhuo CJ. 
Aberrant patterns of local and long-range functional connectivity densi-
ties in schizophrenia. Oncotarget. 2017;8(29):48196–203.

 17. Fang XY, Zhang RR, Bao CX, Zhou M, Yan W, Lu SP, Xie SP, Zhang XR. 
Abnormal regional homogeneity (ReHo) and fractional amplitude of 
low frequency fluctuations (fALFF) in first-episode drug-naive schizo-
phrenia patients comorbid with depression. Brain Imaging Behav. 
2021;15(5):2627–36.

 18. Morgan SE, Seidlitz J, Whitaker KJ, Romero-Garcia R, Clifton NE, Scarpazza 
C, van Amelsvoort T, Marcelis M, van Os J, Donohoe G, et al. Cortical pat-
terning of abnormal morphometric similarity in psychosis is associated 
with brain expression of schizophrenia-related genes. P Natl Acad Sci 
USA. 2019;116(19):9604–9.

 19. Li J, Seidlitz J, Suckling J, Fan FY, Ji GJ, Meng Y, Yang SQ, Wang K, Qiu J, 
Chen HF, et al. Cortical structural differences in major depressive disorder 
correlate with cell type-specific transcriptional signatures. Nat Commun. 
2021;12(1):1647.

 20. Stauffer EM, Bethlehem RAI, Warrier V, Murray GK, Romero-Garcia R, 
Seidlitz J, Bullmore ET. Grey and white matter microstructure is associated 
with polygenic risk for schizophrenia. Mol Psychiatr. 2021;26(12):7709–18.

 21. Luo N, Sui J, Chen JY, Zhang FQ, Tian L, Lin DD, Song M, Calhoun VD, Cui Y, 
Vergara VM, et al. A schizophrenia-related genetic-brain-cognition pathway 
revealed in a large Chinese population. EBioMedicine. 2018;37:471–82.

 22. Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes 
and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci. 
2006;7(10):818–27.

 23. Shen EH, Overly CC, Jones AR. The Allen Human Brain Atlas: compre-
hensive gene expression mapping of the human brain. Trends Neurosci. 
2012;35(12):711–4.

 24. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, 
Benner C, Chanda SK. Metascape provides a biologist-oriented resource 
for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

 25. Woods SW. Chlorpromazine equivalent doses for the newer atypical 
antipsychotics. J Clin Psychiat. 2003;64(6):663–7.

 26. Dong L, Luo C, Liu X, Jiang S, Li F, Feng H, Li J, Gong D, Yao D. Neurosci-
ence Information Toolbox: an open source toolbox for EEG-fMRI multi-
modal fusion analysis. Front Neuroinform. 2018;12:56.

 27. Allen EA, Damaraju E, Plis SM, Erhardt EB, Eichele T, Calhoun VD. Tracking 
whole-brain connectivity dynamics in the resting state. Cereb Cortex. 
2014;24(3):663–76.

 28. Hindriks R, Adhikari MH, Murayama Y, Ganzetti M, Mantini D, Logothetis 
NK, Deco G. Can sliding-window correlations reveal dynamic functional 
connectivity in resting-state fMRI? Neuroimage. 2016;127:242–56.

 29. Frey BJ, Dueck D. Clustering by passing messages between data points. 
Science. 2007;315(5814):972–6.

 30. Ren T, Zeng W, Wang N, Chen L, Wang C. A novel approach for fMRI data 
analysis based on the combination of sparse approximation and affinity 
propagation clustering. Magn Reson Imaging. 2014;32(6):736–46.

 31. Salman MS, Du YH, Calhoun VD: Identifying FMRI dynamic connectiv-
ity states using affinity propagation clustering method: application to 
schizophrenia. Int Conf Acoust Spee 2017:904–908.

 32. Cheng W, Rolls ET, Qiu J, Liu W, Tang Y, Huang CC, Wang X, Zhang J, Lin 
W, Zheng L, et al. Medial reward and lateral non-reward orbitofrontal 
cortex circuits change in opposite directions in depression. Brain. 
2016;139(Pt 12):3296–309.

 33. Won S, Morris N, Lu Q, Elston RC. Choosing an optimal method to 
combine P-values. Stat Med. 2009;28(11):1537–53.

 34. Xia M, Si T, Sun X, Ma Q, Liu B, Wang L, Meng J, Chang M, Huang X, 
Chen Z, et al. Reproducibility of functional brain alterations in major 
depressive disorder: Evidence from a multisite resting-state functional 
MRI study with 1,434 individuals. Neuroimage. 2019;189:700–14.

 35. Li HC, Jiang SS, Dong DB, Hu J, He C, Hou CY, He H, Huang H, Shen D, 
Pei HN, et al. Vascular feature as a modulator of the aging brain. Cereb 
Cortex. 2022;32(24):5609–21.

 36. Fan L, Li H, Zhuo J, Zhang Y, Wang J, Chen L, Yang Z, Chu C, Xie S, Laird 
AR, et al. The human brainnetome atlas: a new brain atlas based on 
connectional architecture. Cereb Cortex. 2016;26(8):3508–26.

 37. Arnatkeviciute A, Fulcher BD, Fornito A. A practical guide to linking 
brain-wide gene expression and neuroimaging data. Neuroimage. 
2019;189:353–67.

 38. Fulcher BD, Arnatkeviciute A, Fornito A. Overcoming false-positive 
gene-category enrichment in the analysis of spatially resolved tran-
scriptomic brain atlas data. Nat Commun. 2021;12(1):2669.

 39. Vasa F, Seidlitz J, Romero-Garcia R, Whitaker KJ, Rosenthal G, Vertes 
PE, Shinn M, Alexander-Bloch A, Fonagy P, Dolan RJ, et al. Adolescent 
tuning of association cortex in human structural brain networks. Cereb 
Cortex. 2018;28(1):281–94.

 40. Rizzo G, Veronese M, Expert P, Turkheimer FE, Bertoldo A. MENGA: 
a new comprehensive tool for the integration of neuroimaging 
data and the Allen Human Brain Transcriptome Atlas. Plos One. 
2016;11(2):e0148744.

 41. Gorgolewski KJ, Durnez J, Poldrack RA. Preprocessed consortium for 
neuropsychiatric phenomics dataset. F1000Res. 2017;6:1262.

 42. Goutte C, Toft P, Rostrup E, Nielsen FA, Hansen LK. On clustering fMRI 
time series. Neuroimage. 1999;9(3):298–310.

 43. Addington J, Cadenhead KS, Cannon TD, Cornblatt B, McGlashan TH, 
Perkins DO, Seidman LJ, Tsuang M, Walker EF, Woods SW, et al. North 
American prodrome longitudinal study: a collaborative multisite 
approach to prodromal schizophrenia research. Schizophr Bull. 
2007;33(3):665–72.

 44. Wada M, Noda Y, Iwata Y, Tsugawa S, Yoshida K, Tani H, Hirano Y, Koike S, 
Sasabayashi D, Katayama H, et al. Dopaminergic dysfunction and excita-
tory/inhibitory imbalance in treatment-resistant schizophrenia and novel 
neuromodulatory treatment. Mol Psychiatry. 2022;27(7):2950–67.

 45. Zhao M, Yan W, Luo N, Zhi D, Fu Z, Du Y, Yu S, Jiang T, Calhoun VD, Sui J. 
An attention-based hybrid deep learning framework integrating brain 
connectivity and activity of resting-state functional MRI data. Med Image 
Anal. 2022;78: 102413.

 46. Bighelli I, Salanti G, Huhn M, Schneider-Thoma J, Krause M, Reitmeir C, 
Wallis S, Schwermann F, Pitschel-Walz G, Barbui C, et al. Psychological 
interventions to reduce positive symptoms in schizophrenia: systematic 
review and network meta-analysis. World Psychiatry. 2018;17(3):316–29.

 47. Correll CU, Schooler NR. Negative symptoms in schizophrenia: a review 
and clinical guide for recognition, assessment, and treatment. Neu-
ropsych Dis Treat. 2020;16:519–34.

 48. Yang Y, Liu Y, Wang GD, Hei GR, Wang XY, Li RR, Li L, Wu RR, Zhao JP. Brain-
derived neurotrophic factor is associated with cognitive impairments in 
first-episode and chronic schizophrenia. Psychiat Res. 2019;273:528–36.

 49. Gong J, Wang J, Luo X, Chen G, Huang H, Huang R, Huang L, Wang Y. 
Abnormalities of intrinsic regional brain activity in first-episode and 
chronic schizophrenia: a meta-analysis of resting-state functional MRI. J 
Psychiatry Neurosci. 2020;45(1):55–68.

 50. Kaufmann T, Skatun KC, Alnaes D, Doan NT, Duff EP, Tonnesen S, Roussos 
E, Ueland T, Aminoff SR, Lagerberg TV, et al. Disintegration of sensorimo-
tor brain networks in schizophrenia. Schizophr Bull. 2015;41(6):1326–35.

 51. Chen X, Duan M, Xie Q, Lai Y, Dong L, Cao W, Yao D, Luo C. Functional 
disconnection between the visual cortex and the sensorimotor cortex 
suggests a potential mechanism for self-disorder in schizophrenia. 
Schizophr Res. 2015;166(1–3):151–7.

 52. Fletcher PC, Frith CD. Perceiving is believing: a Bayesian approach to 
explaining the positive symptoms of schizophrenia. Nat Rev Neurosci. 
2009;10(1):48–58.

 53. McCutcheon R, Beck K, Jauhar S, Howes OD. Defining the locus of dopa-
minergic dysfunction in schizophrenia: a meta-analysis and test of the 
mesolimbic hypothesis. Schizophrenia Bull. 2018;44(6):1301–11.



Page 16 of 16Jiang et al. BMC Medicine          (2023) 21:237 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 54. Howes OD, Kambeitz J, Kim E, Stahl D, Slifstein M, Abi-Dargham A, Kapur 
S. The nature of dopamine dysfunction in schizophrenia and what this 
means for treatment. Arch Gen Psychiat. 2012;69(8):776–86.

 55. Abi-Dargham A, van de Giessen E, Slifstein M, Kegeles LS, Laruelle M. 
Baseline and amphetamine-stimulated dopamine activity are related in 
drug-naive schizophrenic subjects. Biol Psychiat. 2009;65(12):1091–3.

 56. McCutcheon RA, Abi-Dargham A, Howes OD. Schizophrenia, dopa-
mine and the striatum: from biology to symptoms. Trends Neurosci. 
2019;42(3):205–20.

 57. Brockhaus-Dumke A, Schultze-Lutter F, Mueller R, Tendolkar I, Bechdolf A, 
Pukrop R, Klosterkoetter J, Ruhrmann S. Sensory gating in schizophrenia: 
P50 and N100 gating in antipsychotic-free subjects at risk, first-episode, 
and chronic patients. Biol Psychiatry. 2008;64(5):376–84.

 58. Winton-Brown TT, Fusar-Poli P, Ungless MA, Howes OD. Dopamin-
ergic basis of salience dysregulation in psychosis. Trends Neurosci. 
2014;37(2):85–94.

 59. Kapur S. Psychosis as a state of aberrant salience: a framework linking 
biology, phenomenology, and pharmacology in schizophrenia. Am J 
Psychiat. 2003;160(1):13–23.

 60. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. 
Aberrant “default mode” functional connectivity in schizophrenia. Am J 
Psychiatry. 2007;164(3):450–7.

 61. Menon V. Large-scale brain networks and psychopathology: a unifying 
triple network model. Trends Cogn Sci. 2011;15(10):483–506.

 62. Sendi MSE, Zendehrouh E, Ellis CA, Liang ZJ, Fu ZN, Mathalon DH, Ford 
JM, Preda A, van Erp TGM, Miller RL, et al. Aberrant dynamic functional 
connectivity of default mode network in schizophrenia and links to 
symptom severity. Front Neural Circuit. 2021;15:649417.

 63. Garrity AG, Pearlson GD, McKiernan K, Lloyd D, Kiehl KA, Calhoun VD. 
Aberrant “default mode” functional connectivity in schizophrenia. Am J 
Psychiat. 2007;164(3):450–7.

 64. Harvey PO, Pruessner J, Czechowska Y, Lepage M. Individual differences in 
trait anhedonia: a structural and functional magnetic resonance imaging 
study in non-clinical subjects. Mol Psychiatr. 2007;12(8):767–75.

 65. Pergola G, Selvaggi P, Trizio S, Bertolino A, Blasi G. The role of the thalamus 
in schizophrenia from a neuroimaging perspective. Neurosci Biobehav R. 
2015;54:57–75.

 66. Heckers S. Neuroimaging studies of the hippocampus in schizophrenia. 
Hippocampus. 2001;11(5):520–8.

 67. Grace AA. Dysregulation of the dopamine system in the pathophysiology 
of schizophrenia and depression. Nat Rev Neurosci. 2016;17(8):524-+.

 68. Gong JN, Luo C, Li XK, Jiang SS, Khundrakpam BS, Duan MJ, Chen X, Yao 
DZ. Evaluation of functional connectivity in subdivisions of the thalamus 
in schizophrenia. Brit J Psychiat. 2019;214(5):288–96.

 69. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuro-
science of cerebellar cognition. Annu Rev Neurosci. 2019;42(42):337–64.

 70. Andreasen NC, Paradiso S, O’Leary DS. “Cognitive dysmetria” as an 
integrative theory of schizophrenia: a dysfunction in cortical subcortical-
cerebellar circuitry? Schizophrenia Bull. 1998;24(2):203–18.

 71. Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury 
MJ, Tanzi RE, Bertram L. Systematic meta-analyses and field synopsis of 
genetic association studies in schizophrenia: the SzGene database. Nat 
Genet. 2008;40(7):827–34.

 72. Mirnics K, Middleton FA, Lewis DA, Levitt P. Analysis of complex brain 
disorders with gene expression microarrays: schizophrenia as a disease of 
the synapse. Trends Neurosci. 2001;24(8):479–86.

 73. Howes OD, McCutcheon R, Owen MJ, Murray RM. The role of genes, 
stress, and dopamine in the development of schizophrenia. Biol Psychiat. 
2017;81(1):9–20.

 74. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version 
III - the final common pathway. Schizophrenia Bull. 2009;35(3):549–62.

 75. Pocklington AJ, Rees E, Walters JTR, Han J, Kavanagh DH, Chambert KD, 
Holmans P, Moran JL, McCarroll SA, Kirov G, et al. Novel findings from 
CNVs implicate inhibitory and excitatory signaling complexes in schizo-
phrenia. Neuron. 2015;86(5):1203–14.

 76. Hall J, Trent S, Thomas KL, O’Donovan MC, Owen MJ. Genetic risk for 
schizophrenia: convergence on synaptic pathways involved in plasticity. 
Biol Psychiat. 2015;77(1):52–8.

 77. Glimcher PW. Understanding dopamine and reinforcement learning: 
the dopamine reward prediction error hypothesis. P Natl Acad Sci USA. 
2011;108:15647–54.

 78. Kochunov P, Hong LE. Neurodevelopmental and neurodegenerative 
models of schizophrenia: white matter at the center stage. Schizophrenia 
Bull. 2014;40(4):721–8.

 79. Harrison PJ. Postmortem studies in schizophrenia. Dialogues Clin Neuro-
sci. 2000;2(4):349–57.

 80. Pasternak O, Westin CF, Bouix S, Seidman LJ, Goldstein JM, Woo TU, 
Petryshen TL, Mesholam-Gately RI, McCarley RW, Kikinis R, et al. Excessive 
extracellular volume reveals a neurodegenerative pattern in schizophre-
nia onset. J Neurosci. 2012;32(48):17365–72.

 81. Helmer M, Warrington S, Mohammadi-Nejad A-R, Ji JL, Howell A, 
Rosand B, et al. On stability of canonical correlation analysis and partial 
least squares with application to brain-behavior associations. BioRxiv. 
2020;2020-08.

 82. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: data processing & analysis for 
(resting-state) brain imaging. Neuroinformatics. 2016;14(3):339–51.

 83. Lariviere S, Paquola C, Park BY, Royer J, Wang YZ, Benkarim O, de Wael 
RV, Valk SL, Thomopoulos SI, Kirschner M, et al. The ENIGMA Toolbox: 
multiscale neural contextualization of multisite neuroimaging datasets. 
Nat Methods. 2021;18(7):698–700.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	Progressive trajectories of schizophrenia across symptoms, genes, and the brain
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Participants
	Data acquisition
	Dysfunction in association with disease progression
	Associations between dysfunction and behavior
	Genome expression data
	Dysfunction-associated genes
	Enrichment analysis
	Association between dopamine and dysfunction
	Non-progressive analysis
	Validation analysis
	Control analysis

	Results
	Symptom trajectory across stages
	Dysfunction trajectories across stages
	Progressive association between dysfunction and symptoms
	Dysfunction-related genetic factors
	Enrichment networks related to dysfunction
	Non-progressive findings

	Discussion
	Limitations

	Conclusions
	Anchor 30
	Acknowledgements
	References


