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Abstract 

Background Tumour‑infiltrating lymphocytes (TILs), including T and B cells, have been demonstrated to be associ‑
ated with tumour progression. However, the different subpopulations of TILs and their roles in breast cancer remain 
poorly understood. Large‑scale analysis using multiomics data could uncover potential mechanisms and provide 
promising biomarkers for predicting immunotherapy response.

Methods Single‑cell transcriptome data for breast cancer samples were analysed to identify unique TIL subsets. 
Based on the expression profiles of marker genes in these subsets, a TIL‑related prognostic model was developed by 
univariate and multivariate Cox analyses and LASSO regression for the TCGA training cohort containing 1089 breast 
cancer patients. Multiplex immunohistochemistry was used to confirm the presence of TIL subsets in breast cancer 
samples. The model was validated with a large‑scale transcriptomic dataset for 3619 breast cancer patients, including 
the METABRIC cohort, six chemotherapy transcriptomic cohorts, and two immunotherapy transcriptomic cohorts.

Results We identified two TIL subsets with high expression of CD103 and LAG3  (CD103+LAG3+), including a  CD8+ 
T‑cell subset and a B‑cell subset. Based on the expression profiles of marker genes in these two subpopulations, we 
further developed a  CD103+LAG3+ TIL‑related prognostic model (CLTRP) based on CXCL13 and BIRC3 genes for pre‑
dicting the prognosis of breast cancer patients. CLTRP‑low patients had a better prognosis than CLTRP‑high patients. 
The comprehensive results showed that a low CLTRP score was associated with a high TP53 mutation rate, high infil‑
tration of CD8 T cells, helper T cells, and CD4 T cells, high sensitivity to chemotherapeutic drugs, and a good response 
to immunotherapy. In contrast, a high CLTRP score was correlated with a low TP53 mutation rate, high infiltration of 
M0 and M2 macrophages, low sensitivity to chemotherapeutic drugs, and a poor response to immunotherapy.

Conclusions Our present study showed that the CLTRP score is a promising biomarker for distinguishing prognosis, 
drug sensitivity, molecular and immune characteristics, and immunotherapy outcomes in breast cancer patients. The 
CLTRP could serve as a valuable tool for clinical decision making regarding immunotherapy.
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Background
Breast cancer is the most common cancer type world-
wide. In 2020, there were approximately 2.3 million 
newly diagnosed breast cancer cases and 680,000 related 
deaths worldwide [1]. Currently, surgical resection with 
adjuvant chemoradiotherapy or hormone therapy are 
the gold standard for treating breast cancer patients [2]. 
Immune checkpoint therapy (ICT), as a new therapeutic 
approach, has been used to treat breast cancer patients 
[3–5], but most patients do not respond to ICT [6], and 
there are no available biomarkers to predict the response. 
Recent studies have shown that breast cancer is an 
immunogenic cancer type and contains large quantities 
of tumour-infiltrating lymphocytes (TILs) [7, 8], suggest-
ing that TILs may be associated with the immunotherapy 
outcomes of breast cancer.

TILs are composed of T cells and B cells and have been 
demonstrated to be associated with the development of 
breast cancer [9]. CD103 is expressed on subsets of  CD8+ 
T cells and is essential for antitumour cytotoxic T-cell 
activity because it triggers lytic granule polarization and 
release at contact sites [10]. In addition, CD103 binds to 
its ligand, E-cadherin, on epithelial tumour cells, leading 
to the retention of antigen-specific lymphocytes within 
epithelial tumours [11]. Thus, CD103 is considered a 
crucial marker of tissue-resident memory T (TRM) cells. 
Patients with advanced-stage breast cancers with high 
levels of TRM cells have better response rates to anti-
PD-1 antibodies than those with low levels of TRM cells 
[7]. Lymphocyte activation gene 3 (LAG3), an immune 
checkpoint molecule, is expressed on multiple cell types, 
including  CD4+ and  CD8+ T cells [12]. Persistent anti-
gen stimulation in cancer leads to upregulation of LAG3 
expression, promoting T-cell exhaustion [12, 13]. Thus, 
an increasing number of studies have used LAG3 to mark 
exhausted T cells [14–19]. Single-cell RNA sequencing 
(scRNA-seq) is a powerful technique for dissecting the 
heterogeneity of solid tumours [20], which will pave the 
way for individualized treatment. ScRNA-seq analysis of 
the tumour microenvironment contributes to identify-
ing immune cell subsets associated with prognosis and 
understanding their molecular characteristics, which 
provides an effective way to predict the immunotherapy 
response and prognosis of cancer patients. Therefore, 
identification of potential prognostic markers associated 
with TIL subpopulations based on integrated analysis of 
scRNA and bulk RNA sequencing and machine learning 
algorithms might provide effective ICT outcome predic-
tion and therapeutic indicators for breast cancer patients.

In our present study, two  CD103+LAG3+ TIL subsets 
that were associated with antitumour immunity were 
identified by scRNA-seq analysis. Based on the expres-
sion profiles of marker genes in these two subsets, we 

constructed a  CD103+LAG3+ TIL-related risk score 
prognostic model (CLTRP) by performing least absolute 
shrinkage and selection operator (LASSO) regression and 
Cox analysis. We used the model to predict overall sur-
vival and explored the molecular characteristics, immune 
infiltration, and chemotherapeutic sensitivity of different 
CLTRP subgroups. Furthermore, the ability of this risk 
score prognostic model to predict patient response to 
chemotherapy and immunotherapy was assessed.

Methods
Data sources and study design
Open breast cancer gene expression datasets with com-
plete prognostic and clinicopathological information 
annotation were downloaded from The Cancer Genome 
Atlas (TCGA) (n = 1089) and Molecular Taxonomy of 
Breast Cancer International Consortium (METABRIC) 
(n = 1904) databases. Single-cell RNA-sequencing data 
(accession number GEO: GSE161529 [21]) of breast 
cancer samples from the initial publication were ana-
lysed to identify  CD103+LAG3+ TILs. The GSE18728 
[22], GSE20181 [23], GSE41998 [24], GSE140494 [25], 
GSE22226 [26], and pRRophetic [27] datasets were used 
to analyse the chemotherapy response of CLTRP sub-
groups. Two cohorts of breast cancer patients treated 
with PD-1/PD-L1 antibodies (GSE177043 [28] and 
EGAD00001006608 [29]) were obtained to evaluate the 
predictive performance of CLTRP. Gene mutation infor-
mation was obtained from the cBioPortal database. The 
workflow of the present study is shown in Fig. 1.

Multiplex immunohistochemistry
We performed multiplex immunohistochemistry using 
the OPAL serial immunostaining protocol as previously 
described [30]. Briefly, FFPE sections were incubated 
for 30 min at room temperature with rabbit anti-human 
CD8 (ZSGB-BIO, catalogue no. ZA-0508), anti-human 
integrin alpha E (CD103) (ZSGB-BIO, catalogue no. 
ZA-0667), anti-human CD79A (ZSGB-BIO, catalogue 
no. ZA-0293), and anti-human LAG3 (1:200, Sigma, 
catalogue no. HPA013967). The sections were washed 
three times in PBS buffer. After the addition of secondary 
horseradish peroxidase–conjugated antibody provided 
by PerkinElmer, the sections were incubated for 10 min 
at room temperature. Then, the sections were incubated 
for 10 min at room temperature with TSA Plus working 
solution as specified by the manufacturer. Multispectral 
imaging was performed using a Vectra 3.0 instrument 
(PerkinElmer) at 20 × magnification.

Quality control and cell type recognition
An analysis of scRNA-seq data from breast can-
cer samples (GSE161529) was performed using the 
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Fig. 1 Workflow of the present study
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Seurat R package (version 4.0.4) [31]. According to pre-
viously reported quality control criteria [21], single cells 
with < 200 genes or UMI count < 1000 or the percent of 
mitochondrial genes over 20% of total expressed genes 
were screened as low-quality cells and eliminated. There-
after, the major cell types were recognized based on 
previously reported markers [32]. After preprocessing, 
normalization, and batch correction, T cells and B cells 
were reclustered separately to identify  CD103+LAG3+ 
TILs. The signature genes were selected according 
to the criteria of absolute value of log2FC > 0.5 and 
p_value < 0.05.

Development of a  CD103+LAG3+ TIL‑related prognostic 
model
Firstly, we obtained differentially expressed genes 
(DEGs) with an absolute value of log2FC > 0.5 from 
 CD103+LAG3+TIL subpopulations when compared with 
other T or B-cell subpopulations. Afterward, we screened 
TIL-specific genes based on the expression of DEGs in 
non-lymphocyte populations, and the GSE177043 data-
set was used to identify TIL-specific genes significantly 
associated with ICT outcomes. These TIL-specific genes 
associated with ICT outcomes were subjected to uni-
variate Cox analysis. Subsequently, least absolute shrink-
age and selection operator (LASSO) Cox repression [33] 
was used to determine the most powerful prognostic 
genes. Finally, two genes (CXCL13 and BIRC3) and their 
correlative coefficients were obtained to construct the 
 CD103+LAG3+ tumour-infiltrating lymphocyte-related 
gene prognostic model (CLTRP). Based on the median 
CLTRP score, the 1089 breast cancer samples from the 
TCGA dataset were divided into low and high CLTRP 
score subgroups. Then, survival analysis was performed 
for the two groups using the survival R package (version 
3.2.13), and the results are shown using Kaplan‒Meier 
plots. Finally, receiver operating characteristic (ROC) 
curve analysis was performed using the survivalROC R 
package to obtain the area under the curve (AUC) value 
and evaluate the predictive performance of the signature. 
Moreover, the METABRIC database was used to validate 
the predictive ability of the CLTRP model.

Comprehensive analysis of immune characteristics 
in different CLTRP subgroups
To identify the immune characteristics of breast cancer 
patients in the TCGA cohort, their expression data were 
imported into the CIBERSORT function, and analysis 
with 1000 resamples was performed to estimate the rel-
ative proportion of 22 types of immune cells. Then, we 
compared the relative proportions of 22 types of immune 
cells between the two CLTRP subtypes, and the results 
are presented in a landscape map. The stromal score, 

immune score, ESTIMATE score, and tumour purity 
were analysed using the estimate R package. Tumour 
Immune Dysfunction and Exclusion (TIDE) analysis 
(http:// tide. dfci. harva rd. edu/) was performed to predict 
immunotherapeutic response. The T-cell cytolytic index 
was evaluated by the expression levels of GZMA and 
PRF1 as previously described [34].

Functional and pathway enrichment analysis
DEGs between the high- and low-CLTRP score groups 
were identified by the limma R package. To further 
explore the potential functions of DEGs, gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analyses were performed on the 
DEGs using the clusterProfiler R package (version 4.0.5) 
[35]. Moreover, to determine the different pathways for 
analysing the differences in biological function between 
high- and low-score groups, the gene set variation analy-
sis (GSVA) package (version 1.40.1) was applied for cal-
culating GSVA scores of hallmark gene sets from the 
Molecular Signatures Database (MSigDB) [36]. P values 
less than 0.05 were considered to indicate significant 
differences.

Mutation and drug sensitivity analysis
To reveal relevant genetic alterations, the somatic muta-
tions of CLTRP subgroups were analysed. The mutation 
annotation format (MAF) from the TCGA database was 
generated using the “maftools” R package. To investigate 
the differences in the therapeutic effects of chemothera-
peutic drugs in breast cancer patients between the two 
subgroups, we calculated the half-maximal inhibitory 
concentration (IC50) values of chemotherapeutic drugs 
commonly used to treat breast cancer using the “pRRo-
phetic” package.

Identification of cohorts with immune checkpoint 
blockade treatment
Two cohorts of breast cancer patients (GSE177043 and 
EGAD00001006608) treated with PD-1/PD-L1 antibod-
ies had relatively complete clinical information, including 
follow-up information and immunotherapy effect infor-
mation. Samples with incomplete clinical information 
were eliminated from the follow-up analysis. We used 
the surv_cutpoint function in the survminer R package 
to calculate the optimal cut-off value for survival analy-
sis. The AUC values were calculated to evaluate the pre-
dictive performance of immunotherapy using the pROC 
package.

Statistical analysis
Statistical analyses were performed using R software 
(version 4.1.1). Additional file  1: Table  S1 shows the 

http://tide.dfci.harvard.edu/
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corresponding R codes. All p values less than 0.05 
(p < 0.05) were considered statistically significant.

Results
Identification of the  CD8+CD103+LAG3+ T‑cell subset 
and  CD103+LAG3+ B‑cell subset in breast cancer 
by scRNA‑seq
To identify potential TIL subsets that were associated 
with antitumour immunity, we reanalyzed scRNA-seq 
data derived from breast cancer samples [21]. First, 
these original single cells were divided into immune cells 
 (CD45+) and nonimmune cells  (CD45−) and were visu-
alized by t-distributed stochastic neighbour embedding 
(t-SNE) (Additional file  2: Fig. S1A). The immune cells 
were reclustered separately (Additional file  2: Fig. S1B). 
Expression of genes defining T and B cells is shown for 
humans in Additional file 2: Fig. S1C, D.

T-cell clusters were observed using t-SNE and showed 
high heterogeneity among patients (Fig.  2A and Addi-
tional file  2: Fig. S2A). A total of 12 unique clusters 
were identified based on their gene expression profiles 
(Additional file  2: Fig. S2B). Additional file  1: Table  S2 
presents significant marker genes of each T-cell subset. 
The subsets included eight distinct  CD8+ T-cell subsets, 
one  CD4−CD8− T-cell subset, one NKT subset, and two 
 CD4+ T-cell subsets (Fig. 2A).

When focusing on the different  CD8+ clusters, we 
noted that one cluster had an expression profile sugges-
tive of a TRM cell phenotype. This  CD8+ TRM-like sub-
set expressed CD103 at high levels and SELL and KLF2 
at low levels (Fig.  2B and Additional file  2: Fig. S2C), 
similar to TRM cells described in humans. Interestingly, 
we also observed that this subset had high expression of 
the immune checkpoint molecule LAG3 (Fig.  2B), sug-
gesting that this subset is in an exhausted state. There-
fore, this  CD8+ TRM-like subset was further named 
the  CD8+CD103+LAG3+ T cell cluster. In addition to 
CD103 and LAG3, this subset exhibited upregulation of 
effector genes, including granzyme B (GZMB) and per-
forin (PRF1) (Fig. 2B). Multiplex immunohistochemistry 
showed the presence of  CD8+CD103+LAD3+ T cells in 
breast cancer (Fig. 2C).

To explore the heterogeneity of B cells, 4180 B cells 
were individually reclustered (Fig.  2D). The top five 
markers of the main cell lineages were visualized in a 
bubble chart (Additional file  2: Fig. S2D). Additional 
file  1: Table  S3 shows the significant marker genes of 

each B-cell subset. We noted that a B-cell subset spe-
cifically expressed CD103 and LAG3 (Fig.  2E). Inter-
estingly, we observed that this cluster also highly 
expressed effector B-cell marker genes, including CD38 
and CXCR4, and memory B-cell marker genes, such as 
CD20 (MS4A1), IgG, and IgA (Fig.  2E and Additional 
file  2: Fig. S2E). Thus, this cluster was defined as the 
 CD103+LAG3+ B-cell subset. These results suggest that 
the  CD103+LAG3+ B-cell subset may have an antitumour 
function in breast cancer. Multiplex immunohistochem-
istry showed the presence of  CD103+LAG3+ B cells in 
breast cancer (Fig. 2F).

Identification of TIL‑specific genes associated with ICT 
outcomes
In scRNA-seq analysis, we selected the DEGs with an 
absolute value of log2FC > 0.5 from  CD103+LAG3+CD8+ 
T-cell and  CD103+LAG3+ B-cell subsets when compared 
with other T or B-cell subsets. Afterward, 813 DEGs from 
both  CD103+LAG3+CD8+ T-cell and  CD103+LAG3+ 
B-cell signatures (Additional file  1: Table  S4 and S5) 
were obtained. Based on bulk RNA-sequencing data 
of patients with ICT outcomes (GSE177043), 131 out 
of 813 DEGs were identified to be significantly associ-
ated with ICT outcomes (Fig.  3A and Additional file  1: 
Table  S6). Meanwhile, 813 DEGs were screened based 
on their expression in non-lymphocyte populations, 
and 58 of them were found to be uniquely expressed in 
TILs (Fig.  3B and Additional file  1: Table  S7). Among 
the 131 and 58 genes, 31 overlapping genes were identi-
fied as TIL-specific genes associated with ICT outcomes 
(Fig. 3C).

CLTRP score for breast cancer prognosis prediction
Among 31 genes, 18 genes associated with prognosis 
were found (Fig. 4A) and screened using univariate Cox 
regression analysis (Fig.  4B). LASSO Cox regression 
was used to further analyse the 18 candidate genes and 
screen out the most appropriate gene group (CXCL13 
and BIRC3) to construct a  CD103+LAG3+ TIL-related 
risk score prognostic model (CLTRP) (Additional 
file  2: Fig. S3A, B). The formula is as follows: CLTRP 
score = -0.0877 × CXCL13 expression – 0.2125 × BIRC3 
expression. The distribution plot of the risk score revealed 
that the survival times of breast cancer patients increased 
with a decrease in CLTRP score (Additional file  2: Fig. 
S3C). Univariate Cox regression analysis showed that 

(See figure on next page.)
Fig. 2 Classification of T and B cells in breast cancer into different subpopulations. A The t‑SNE plot of T cells. B Feature plots showing the 
expression of key genes in T cells. The colour scale represents the SAVER imputed gene expression value (log10 scale) for each cell. C Representative 
images of breast cancer sections stained by fluorescent multiplex immunohistochemistry showing the expression of CD103, LAG3, and CD8 in T 
cells. D The t‑SNE plot of B cells. E The t‑SNE plots showing the average expression of BRM marker genes. F Representative images of breast cancer 
sections stained by fluorescent multiplex immunohistochemistry showing the expression of CD103, LAG3, and CD79A in B cells. Scale bar, 50 μm
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Fig. 2 (See legend on previous page.)
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Fig. 3 Identification of genes both associated with immunotherapy outcomes and uniquely expressed in TILs. A Heatmap exhibiting the 
expression of ICT‑outcome‑associated genes in breast cancer cohort receiving anti‑PD1 therapy. B Volcano plot showing TIL‑specific genes from 
813 DEGs. C Venn diagram showing overlapping of ICT‑outcome‑associated and TIL‑specific genes
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Fig. 4 Development and validation of the CLTRP score in breast cancer cohorts. A Screening workflow of 31 genes from Fig. 3C. B Univariate Cox 
analysis of 18 candidate genes associated with prognosis. C Forest plot of univariate Cox analysis for clinicopathological factors and the CLTRP score. 
D Forest plot of multivariate Cox analysis of the factors significant in the univariate Cox analysis (p < 0.05). E, F Kaplan–Meier survival curve of overall 
survival between the high and low CLTRP score groups in the TCGA cohort and METABRIC cohort
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age, stage, and CLTRP score were significantly associated 
with the prognosis of breast cancer (Fig. 4C). Multivari-
ate Cox regression analysis confirmed that the CLTRP 
score was an independent prognostic factor after adjust-
ing for other clinicopathologic factors (Fig. 4D).

Taking the median CLTRP as the cut-off value, CLTRP-
low patients had better overall survival than CLTRP-high 
patients in the TCGA cohort (Fig.  4E). Then, the role 
of the CLTRP was further validated in the METABRIC 
cohort. As shown in Fig. 4F, the patients in the CLTRP-
low subgroup had a significantly better prognosis than 
those in the CLTRP-high subgroup, consistent with the 
results of the TCGA dataset. In addition, based on the 
nomogram developed in this study (Additional file  2: 
Fig. S3D), the score of breast cancer patients can be cal-
culated to predict the 1-year, 3-year and 8-year overall 
survival for individuals. The ability of the CLTRP score to 
predict 1-, 3-, and 8-year survival was indicated by AUC 
values of 0.616, 0.623, and 0.659, respectively (Additional 
file 2: Fig. S3E).

The molecular characteristics of distinct CLTRP subgroups
DEGs were identified between the two CLTRP sub-
groups and displayed in a volcano plot (Fig. 5A), and the 
DEGs were selected for further KEGG and GO analyses. 
GSVA showed that the CLTRP-low subgroup was sig-
nificantly enriched in many immune-related pathways, 
such as IL-17 signalling pathway, Th1 and Th2 cell dif-
ferentiation, the B-cell signalling pathway, the T-cell 
signalling pathway, and natural killer cell-mediated cyto-
toxicity (Fig. 5B). We noticed that PD-L1 expression and 
the PD-1 checkpoint pathway were significantly enriched 
in the CLTRP-low subgroup (Fig.  5B), implying that a 
low CLTRP score was associated with a greater benefit 
from immunotherapy. In addition, we found that in the 
GO analysis, these DEGs were enriched in immune-
related terms, such as immune response-activating signal 
transduction, lymphocyte mediated immunity, adaptive 
immune response, humoral immune response, positive 
regulation of B cell activation, positive regulation of lym-
phocyte activation, B-cell mediated immunity, and com-
plement activation in the biological process (BP) category 
(Fig. 5C and Additional file 2: Fig. S4A); antigen binding, 
immunoglobulin receptor binding, and immune receptor 
activity in the molecular function (MF) category (Fig. 5D 
and Additional file  2: Fig. S4B); and immunoglobulin 
complex, T-cell receptor complex, and plasma mem-
brane signalling receptor complex in the cellular compo-
nent (CC) category (Additional file 2: Fig. S4C, D). These 
results preliminarily showed the functional differences 
between the two CLTRP subgroups of breast cancer 
patients, and these differential terms may be promising 
targets for intervention to improve prognosis.

To gain further biological insight into the immuno-
logical nature of the CLTRP subgroups, gene mutations 
were compared in breast cancer patients with high and 
low scores. We found that missense mutations were the 
most common mutation type, followed by nonsense 
and frameshift deletions (Fig. 5E, F). We then identified 
the top 20 genes with the highest mutation rates in the 
CLTRP subgroups. The mutation rates of TP53, PIK3CA, 
TTN, CDH1, MLL3, MUC16, MUC12, and GATA3 were 
higher than 5% in both CLTRP subgroups (Fig.  5E, F). 
Mutations in GATA3 and MAP3K1 were more common 
in the CLTRP-high subgroup (Fig. 5E, F), while mutations 
in TP53 and TTN were more common in the CLTRP-low 
subgroup (Fig. 5E, F).

The immune characteristics of distinct CLTRP subgroups
To explore the composition of immune cells in differ-
ent CLTRP subgroups, we used the CIBERSORT algo-
rithm to elucidate the relationship between the two 
subgroups and 22 human immune cell subsets. We found 
that M0 and M2 macrophages were more abundant in 
the CLTRP-high subgroup, while CD4 T cells, CD8 T 
cells, naïve B cells, and dendritic cells were more abun-
dant in the CLTRP-low subgroup (Fig.  6A). Character-
istics related to the immune landscape, including the 
clinicopathological characteristics of different CLTRP 
subgroups, are displayed in Fig. 6B. We also assessed the 
tumour microenvironment (TME) score (immune score, 
ESTIMATE score and stromal score) of the different sub-
groups using the ESTIMATE package and noted that the 
stromal score, immune score and ESTIMATE score were 
significantly higher in the CLTRP-low subgroup (Fig. 6C-
E), while tumour purity was significantly higher in the 
CLTRP-high subgroup (Fig. 6F). These results suggested 
that the immune infiltration of breast cancer patients 
was associated with the CLTRP score, suggesting that 
patients with a low CLTRP score may benefit more from 
immunotherapy.

The prediction of chemotherapeutic benefit based 
on the CLTRP value
Chemotherapy is one of the first-line treatments for 
breast cancer. To explore the relationship between 
CLTRP score and chemotherapy, the CLTRP value in 
breast cancer patients who received adjuvant chemo-
therapy was investigated in two cohorts: GSE18728 and 
GSE20181. These two breast cancer cohorts included 
gene expression data of patients before and after adjuvant 
chemotherapy. Pairwise comparisons for the CLTRP val-
ues in these two cohorts showed statistically significant 
differences between patients before and after adjuvant 
chemotherapy (Fig.  7A). Breast cancer patient samples 
after adjuvant chemotherapy displayed a statistically 
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Fig. 5 Molecular characteristics of different CLTRP subgroups. A Volcano plot showing differentially expressed genes (DEGs) between the high and 
low CLTRP subgroups. B GSVA of biological pathways between two different CLTRP subgroups. C, D GO enrichment analyses of DEGs among two 
subtypes. E, F The waterfall plot showing significantly mutated genes in the breast cancer samples of different CLTRP subgroups
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Fig. 6 The landscape of immune cell infiltration and immune characteristics of different CLTRP subgroups. A The landscape of immune cell 
infiltration between different CLTRP subgroups. B CLTRP grouping and proportions of immune cells in breast cancer patients in the TCGA cohort. 
Age and tumour stage are shown as patient annotations. C‑F Stromal score, immune score, ESTIMATE score, and tumour purity between the two 
CLTRP subgroups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, measured by unpaired t test
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significant reduction in CLTRP values when compared 
with the paired prechemotherapy samples (Fig.  7A). 
According to the patient response to neoadjuvant chem-
otherapy, the breast cancer patients in the GSE41998 
and GSE14094 cohorts were divided into two groups: 
the nonresponse (NR) group and the response (R) group. 
Figure  7B, C  demonstrates that in the GSE41998 and 
GSE14094 datasets, the CLTRP values of the breast can-
cer patients in the R group were significantly lower than 
those of the breast cancer patients in the NR group. We 
also verified the effectiveness of the CLTRP value in pre-
dicting the response to chemotherapy in breast cancer 
patients. The distributions of NR and R across the differ-
ent CLTRP subtypes were assessed. We found that breast 
cancer patients in the low CLTRP subgroup had a better 
response to chemotherapy than breast cancer patients in 
the high CLTRP subgroup (Fig. 7B, C). Furthermore, we 
evaluated the relationship between CLTRP subgroups 
and prognosis in breast cancer patients receiving chemo-
therapy. The results showed that breast cancer patients 
with a low CLTRP score had an improved prognosis 
(Fig. 7D).

We next selected first-line chemotherapy drugs cur-
rently used for the treatment of breast cancer to evalu-
ate the sensitivity of distinct CLTRP subgroups to these 
drugs. The IC50 values of eight common chemotherapy 
drugs for each breast cancer patient were calculated by 
the pRRophetic package. By comparing the difference 
in IC50 values between the two subgroups, we found 
that the CLTRP-low subgroup was sensitive to all drugs, 
including paclitaxel, 5-fluorouracil, doxorubicin, gem-
citabine, methotrexate, camptothecin, etoposide, and 
tamoxifen (Fig. 7E).

The benefit of immune checkpoint therapy in different 
CLTRP subgroups
As shown in Fig.  8A, differential expression of 33 
immune checkpoints, including PD-1, CTLA4, LAG3, 
and TIGIT, was observed between two distinct CLTRP 
subgroups. The patients in the CLTRP-low subgroup 
highly expressed PD-1 (PDCD1), LAG3, and CTLA4 
(Fig.  8A). This suggests that patients in the CLTRP-low 
subgroup are more likely to benefit from ICT.

We then used tumour immune dysfunction and exclu-
sion (TIDE) score to assess the potential clinical efficacy 
of immunotherapy [37] in different CLTRP subgroups. 
A lower TIDE score represented a higher potential for 

immune surveillance, which suggested that the patients 
were more likely to benefit from ICT. In our results, 
the CLTRP-low subgroup had a lower TIDE score than 
the CLTRP-high subgroup, implying that CLTRP-low 
patients could benefit more from ICT than CLTRP-high 
patients (Fig. 8B). In addition, we found that the CLTRP-
low subgroup had a lower myeloid-derived suppressor 
cell (MDSC) score and a higher T-cell dysfunction score 
between the two subgroups (Fig.  8B). We also analysed 
the T-cell cytolytic index [34] in different CLTRP sub-
groups. We found that the CLTRP-low subgroup had 
a higher T-cell cytolytic index than the CLTRP-high 
subgroup (Fig.  8C). In addition, we observed a nega-
tive correlation between the T-cell cytolytic index and 
CLTRP score in the TCGA cohort (Fig. 8D). These results 
showed that a low CLTRP score was associated with an 
immunocompetent microenvironment and thus contrib-
uted to increased efficacy of immunotherapy.

Currently, most patients with breast cancer do not 
respond to immunotherapy, and there are no validated 
biomarkers for predicting the response [38]. In this study, 
we further explored whether the CLTRP value could 
predict the outcomes of immunotherapy for breast can-
cer patients. The breast cancer cohorts (GSE177043 and 
EGAD00001006608) receiving anti-PD-1/PD-L1 therapy 
were enrolled and divided into high and low CLTRP sub-
groups. We assessed the prognostic value of the CLTRP 
score in the GSE177043 cohort treated with anti-PD-L1 
therapy (the EGAD00001006608 cohort lacked survival 
information). Kaplan–Meier curves showed a low CLTRP 
score was associated with improved overall survival in 
breast cancer patients (Fig.  8E). The boxplots further 
showed that responders had lower CLTRP scores than 
nonresponders (Fig. 8F). A low CLTRP score was associ-
ated with a better response rate (Fig. 8G). We also evalu-
ated the performance of the CLTRP score in predicting 
immunotherapy outcomes of breast cancer patients using 
these two cohorts. For the GSE177043 cohort, the pre-
dictive performance of the CLTRP score was indicated 
by an AUC = 0.77 (95% CI, 61–93%) (Fig.  8H). For the 
EGAD00001006608 cohort, the CLTRP score also accu-
rately predicted ICT outcomes with an AUC = 0.71 (95% 
CI, 51–91%) (Fig.  8I). These results suggest that breast 
cancer patients with a low CLTRP score are more likely 
to benefit from ICT. Moreover, our present study sug-
gests that CLTRP is a promising marker for predicting 
the immunotherapy response.

Fig. 7 The ability of the CLTRP score to predict chemotherapeutic benefit. A Pairwise comparison of the CLTRP score in patients before and after 
chemotherapy. B, C Boxplot exhibiting the distribution of the CLTRP score for breast cancer patients with different chemotherapy responses. 
Right panel: Bar graph displaying the numbers of clinical responses to chemotherapy in the high and low CLTRP subgroups. D The CLTRP‑low 
subgroup receiving chemotherapy is associated with improved prognosis. E The IC50 values of chemotherapeutic drugs in the high and low CLTRP 
subgroups. **p < 0.01, ***p < 0.001, ****p < 0.0001, measured by unpaired t test

(See figure on next page.)
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Discussion
As one of the most powerful techniques for analysing the 
complexity of solid tumours [20], scRNA-seq analysis of 
primary tumours has enabled the discovery of novel, clin-
ically relevant cell subsets defined by a unique signature 
of gene expression [39–41]. In primary human tumours, 
transcriptome analysis based on scRNA-seq not only 
reveals the heterogeneity of T cells and B cells but also 
has begun to clarify dynamic relationships between T-cell 
subpopulations [42–44]. These strategies can be used to 
assess the conditional relationships between T-cell sub-
sets or B-cell subsets and the clinical features of cancer. 
For example, Peter and colleagues used scRNA-seq anal-
ysis to uncover that breast cancer tissues contain large 
quantities of TILs [30]. Their work led to the discovery of 
an intratumoural  CD8+ tissue-resident memory T (TRM) 
cell subset associated with improved prognosis [30]. In 
the present work, based on integrated analysis of scRNA 
and bulk RNA sequencing data and machine learning 
algorithms, we identified  CD8+ T-cell and B-cell subsets 
with high expression of CD103 and LAG3 and developed 
a CLTRP scoring system based on signature genes from 
the above subsets as a predictive model for immunother-
apy outcomes of breast cancer patients.

CD103, a marker expressed on  CD8+ T cells, triggers 
lytic granule polarization and release at contact areas, 
leading to the killing of tumour cells [10, 45]. Thus, 
CD103 is essential for antitumour cytotoxic T-cell activ-
ity. Moreover, CD103 binds to its ligand E-cadherin on 
epithelial tumour cells, leading to the retention of anti-
gen-specific lymphocytes within epithelial tumours [46]. 
Therefore, CD103 functions as a marker of TRM cells. 
CD103-positive TILs have been reported to be associated 
with improved prognosis in patients with triple-negative 
breast cancer [47]. In this study, we found that CD103 
alone could not predict breast cancer survival. This may 
be attributed to tumour heterogeneity. LAG3, an immune 
checkpoint molecule, is used to mark exhausted T cells in 
an increasing number of studies [14–19].

In the present work, we identified two tumour-infil-
trating lymphocyte subsets with high expression of 
CD103 and LAG3, including a  CD8+ T-cell and a B-cell 
subset. These two subsets were named  CD103+LAG3+ 
lymphocytes for convenience of description. The 
 CD103+LAG3+CD8+ T-cell subset is similar to TRM 

cells, and this subset highly expressed cytotoxic genes, 
such as PRF1 and GZMB. This molecular phenotype sug-
gests a relationship between the  CD103+LAG3+CD8+ 
T-cell subset and improved prognosis of breast can-
cer patients. In addition, effector memory B cells have 
recently emerged as crucial targets for immunotherapy 
that could be clinically beneficial for patients with solid 
tumours [48–50]. Furthermore, our present work showed 
that the  CD103+LAG3+ B-cell subset highly expressed 
marker genes of effector memory B cells, suggesting that 
this subset is associated with improved prognosis. Based 
on TCGA datasets, we screened two genes (CXCL13 
and BIRC3) from the above two subset signatures by a 
machine learning algorithm called LASSO Cox regres-
sion and developed a CLTRP scoring system. In mela-
noma, lung cancer, and colorectal cancers, CXCL13, 
along with CCR5, has been identified as a T-cell-intrinsic 
marker of ICT sensitivity [51]. In high-grade serous ovar-
ian cancer, CXCL13 increases infiltration of TILs and is 
helpful to enhance efficacy of ICT [52]. In present study, 
integrated analysis of scRNA-sequencing data derived 
from primary breast cancer and bulk RNA-sequencing 
data from patients receiving ICT identified CXCL13 and 
BIRC3 as TIL-related markers of ICT sensitivity in breast 
cancer.

In this study, there are some limitations. First, all prog-
nostic analyses were performed solely on data from 
public databases. Therefore, larger preclinical studies 
and retrospective clinical trial analyses are required to 
confirm our findings. Second, given that breast cancer 
cohorts in our study were from different public datasets, 
intratumor or interpatient heterogeneity was unavoid-
able. It has been reported that tumour heterogeneity is 
closely associated with the efficacy of immunotherapy 
or chemotherapy. Despite these limitations, the present 
study suggests that CLTRP is a promising biomarker for 
determining prognosis, chemotherapeutic drug sensi-
tivity and immune benefit from ICT in breast cancer 
patients and may be helpful for clinical decision-making 
in breast cancer patients.

Conclusions
In the present study, we identified two TIL subsets with 
high expression of CD103 and LAG3 via scRNA-seq 
analysis. Based on The Cancer Genome Atlas (TCGA) 

(See figure on next page.)
Fig. 8 The prognostic value of the CLTRP score in breast cancer patients with anti‑PD‑1/PD‑L1 therapy. A The expression of immune checkpoints 
in the high and low CLTRP subgroups. B TIDE, MDSC infiltration, and dysfunction score in the high and low CLTRP subgroups. C The T‑cell cytolytic 
index in the high and low CLTRP subgroups. D Correlation curves between the CLTRP score and T‑cell cytolytic index. E Kaplan‒Meier curves of 
overall survival according to CLTRP subgroups in the GSE177043 cohort. F Boxplot showing the distribution of the CLTRP score between responders 
and nonresponders. G Bar graph displaying the numbers of patients with clinical responses to anti‑PD‑1 immunotherapy in the high and low CLTRP 
subgroups. H and I CLTRP accurately predicted immunotherapy outcomes in the GSE177043 (H) and EGAD00001006608 (I) cohorts. *p < 0.05, 
**p < 0.01, ***p < 0.001, ****p < 0.0001, measured by unpaired t test
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dataset, we constructed a  CD103+LAG3+ TIL-related 
risk score prognostic model (CLTRP) for patients with 
breast cancer. This CLTRP signature could accurately 
predict the prognosis, drug sensitivity, molecular and 
immune characteristics, chemotherapy benefit and 
immunotherapy outcomes of breast cancer patients. 
CLTRP could therefore serve as a predictor of both prog-
nosis and treatment response for breast cancer.
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