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Abstract 

Background  The introduction of multiparameter MRI and novel biomarkers has greatly improved the prediction 
of clinically significant prostate cancer (csPCa). However, decision-making regarding prostate biopsy and prebiopsy 
examinations is still difficult. We aimed to establish a quick and economic tool to improve the detection of csPCa 
based on routinely performed clinical examinations through an automated machine learning platform (AutoML).

Methods  This study included a multicenter retrospective cohort and two prospective cohorts with 4747 cases 
from 9 hospitals across China. The multimodal data, including demographics, clinical characteristics, laboratory 
tests, and ultrasound reports, of consecutive participants were retrieved using extract-transform-load tools. AutoML 
was applied to explore potential data processing patterns and the most suitable algorithm to build the Prostate 
Cancer Artificial Intelligence Diagnostic System (PCAIDS). The diagnostic performance was determined by the receiver 
operating characteristic curve (ROC) for discriminating csPCa from insignificant prostate cancer (PCa) and benign 
disease. The clinical utility was evaluated by decision curve analysis (DCA) and waterfall plots.

Results  The random forest algorithm was applied in the feature selection, and the AutoML algorithm was applied 
for model establishment. The area under the curve (AUC) value in identifying csPCa was 0.853 in the training cohort, 
0.820 in the validation cohort, 0.807 in the Changhai prospective cohort, and 0.850 in the Zhongda prospective 
cohort. DCA showed that the PCAIDS was superior to PSA or fPSA/tPSA for diagnosing csPCa with a higher net 
benefit for all threshold probabilities in all cohorts. Setting a fixed sensitivity of 95%, a total of 32.2%, 17.6%, and 26.3% 
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of unnecessary biopsies could be avoided with less than 5% of csPCa missed in the validation cohort, Changhai 
and Zhongda prospective cohorts, respectively.

Conclusions  The PCAIDS was an effective tool to inform decision-making regarding the need for prostate biopsy 
and prebiopsy examinations such as mpMRI. Further prospective and international studies are warranted to validate 
the findings of this study.

Trial registration  Chinese Clinical Trial Registry ChiCTR2100048428. Registered on 06 July 2021.

Keywords  Prostate cancer, PCAIDS, Artificial intelligence, Machine learning, Diagnosis

Background
Prostate cancer (PCa) is a malignancy with the second 
highest incidence and the fifth highest mortality among 
tumors affecting males worldwide [1]. The early detection 
of PCa is particularly imperative for PCa patients. When 
the tumor spreads beyond the capsule or distant metas-
tasis, therapeutic effectiveness remains limited, and the 
patient’s prognosis is devastatingly dismal [1–4]. Despite 
the widespread applications of prostate-specific antigen 
(PSA), the current detection modality of PCa has yielded 
huge overdiagnosis, overtreatment of indolent cases, and 
missing clinically significant cases [5]. Although multipa-
rameter MRI (mp-MRI) has gained great importance in 
predicting the risk of PCa before biopsy, it is not possi-
ble for every man with elevated PSA levels to undergo 
mpMRI due to the limited recourses of MRI facilities 
and the high cost of mpMRI. The need for prebiopsy and 
prempMRI screening and selection is very urgent.

Artificial intelligence (AI) has the potential to revolu-
tionize current clinical practice, such as diagnosis, iden-
tification of previously unrecognized images or genomic 
paradigms associated with disease phenotypes, adjuvant 
or incorporated singly surgical intervention [6, 7]. As 
reported, AI systems that integrate electronic case infor-
mation present outstanding performance in diagnosing 
lung cancer compared with existing clinical diagnos-
tic criteria and can reduce the missed diagnosis rate of 
lung cancer by 30.7% [8]. Therefore, AI, with its powerful 
capacity for information processing, can largely integrate 
clinical multimodal and multidimensional informa-
tion resources and is expected to become a revolution-
ary milestone in the field of early detection and accurate 
diagnosis for PCa. Here, we established a prostate cancer 
artificial intelligence diagnostic system (PCAIDS) based 
on AutoML through processing, modeling, and verifica-
tion of multimodal data, which might aid in the surveil-
lance and early detection of PCa.

Methods
Study population
This is a multicenter, retrospective, diagnostic study that 
included consecutive clinical patients in nine tertiary 
medical centers in different regions of China. The study 

was approved by the local ethics committee (CHEC2021-
092), registered in the Chinese Clinical Trial Registry 
(ChiCTR2100048428), and undertaken according to the 
Declaration of Helsinki. Informed consent from patients 
with PCa and controls was acquired in the prospec-
tive cohorts. All patients with PCa and controls were 
confirmed by pathological examination. Histological 
classification was established according to the WHO 
classification.

We extracted various features from the subjects, 
including demographics (height, weight, gender, etc.), 
imaging reports (abdominal B-ultrasound), and clini-
cal laboratory tests (PSA, routine blood tests, routine 
urine tests, blood lipids, hepatic function, blood glucose, 
etc.). Inclusion criteria were (1) the subject scheduled 
to undergo the initial prostate biopsy; (2) PSA 4–20 ng/
mL; (3) ultrasound examinations were completed and 
associated reports were processed by Natural Language 
Processing (NLP), with detailed information of upper 
and lower diameter and left and right diameters; and (4) 
patients with complete clinical information.

Study design
A summary of the workflow and an overview of the 
cohorts are shown in Fig. 1 according to the statement for 
transparent reporting of a multivariable prediction model 
for individual prognosis or diagnosis (TRIPOD) (http://​
www.​equat​or-​netwo​rk.​org/​repor​tingg​uidel​ines/​tripod-​
state​ment/). Specifically, we performed feature selection 
using data from 4312 biopsy-positive PCa patients and 
biopsy-negative control patients who underwent pros-
tate biopsy at five clinical sites between May 2008 and 
December 2019. A total of 435 patients underwent pros-
tate biopsy from January 2016 to December 2021 for sub-
sequent analysis in the other 4 centers.

First, the retrospective data were divided into a train-
ing cohort (3230 patients, 80%) and an internal valida-
tion cohort (808 cases, 20%). The prospective cohorts 
included the Shanghai Changhai Hospital prospective 
cohort (519 cases) and Zhongda Hospital cohort (190 
cases). The data of the training cohort were applied 
to construct models using four algorithms, including 
AutoML, logistic regression (LR), random forest (RF), 

http://www.equator-network.org/reportingguidelines/tripod-statement/
http://www.equator-network.org/reportingguidelines/tripod-statement/
http://www.equator-network.org/reportingguidelines/tripod-statement/
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and XGBoost. Then, the four models were evaluated, 
and the classifiers with the best prediction performances 
were chosen to establish the final diagnostic model. The 
parameters of the diagnostic model from the training 
cohort were applied to validate the diagnostic perfor-
mance of the selected model. The discriminative power 
of the selected model with PCa was evaluated by the area 
under the curve (AUC) of the receiver operating charac-
teristic curve (ROC). Then, the clinical value of the model 
was further evaluated.

Data preprocessing
First, demographics, imaging reports, and clinical labo-
ratory tests of eligible participants were extracted from 
Shanghai Changhai Hospital, the First Affiliated Hospital 
of Soochow University, Zhongda Hospital Southeast Uni-
versity, West China Hospital of Sichuan University, and 
the First Affiliated Hospital of Xi’an Jiaotong University 
using extract-transform-load (ETL) tools. The NLP mod-
ule was used to extract the “upper and lower diameters 
and left and right diameters” reported by ultrasound. 
Then, all the laboratory tests were subjected to qual-
ity control steps for further feature selection. The RF 

model-based method was used to select candidate fea-
tures for modeling [9].

Furthermore, we collected the selected features of 
patients in the Ninth People’s Hospital Affiliated to 
Shanghai Jiaotong University School of Medicine, the 
Second Affiliated Hospital of Fujian Medical University, 
the First People Hospital of Yulin, and Nanjing Univer-
sity Jinling Hospital. All subjects in the abovementioned 
centers were randomly divided into the training cohort 
and internal validation cohort at a ratio of 8:2. Patients 
prospectively collected from Shanghai Changhai Hospital 
and Zhongda Hospital were used for independent pro-
spective validation.

Feature transformation
For enumerated or categorical features, the missing val-
ues were filled with “NA”; some niche categories, such 
as “++, +++”, were classified and merged into one cat-
egory; then, a one-hot encoding method was used to con-
vert to a numeric vector. For continuous indicators, the 
mean was used to replace missing values, and then the 
MinMaxScaler method was used for regularization con-
version [10]. The conversion formula is x′ = x−xmin

xmax−xmin
 , x′ 

Fig. 1  Study design. AutoML, automated machine learning; LR, logistic regression; RF, random forest; ROC, receiver operating characteristic curve; 
DCA, decision curve analysis
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is the conversion result, and xmax and xmin are the maxi-
mum and minimum values of x, respectively.

AI‑based feature selection
The random forest algorithm, a renowned machine learn-
ing method, was employed for feature selection. The 
dataset comprised 4312 biopsy cases, each character-
ized by 108 different features. This cohort was randomly 
partitioned into distinct training and validation subsets 
(8:2) to facilitate robust model training and subsequent 
performance evaluation. Utilizing the random forest 
algorithm, the importance of each feature was computed 
within the training subset. A cumulative contribution 
threshold of 95% was set to identify the most influential 
features. Finally, 36 features were selected. The selected 
features and corresponding contributions are summa-
rized in Additional file 1: Table S1.

Model training and evaluation
The PCAIDS, an AutoML model, was redeveloped and 
trained based on Autogluon, one of the AutoML frame-
works. We selected three commonly used algorithms 
in the field of machine learning: logistic regression 
(LR), random forest (RF), and extreme gradient boost-
ing (XGBoost). Logistic regression is a statistical model 
used for predicting binary outcomes. Random forest is an 
ensemble learning method that operates by constructing 
a multitude of decision trees. Extreme gradient boost-
ing, or XGBoost, is an ensemble tree method that uti-
lizes a gradient boosting framework [11]. We used these 
algorithms to compare results in the internal validation 
cohort and two independent prospective cohorts. After 
data preprocessing and feature transformation, we also 
compared the predictive performance of PCAIDS with 
PSA and free PSA/total PSA (fPSA/tPSA). The whole 
project was implemented in Python 3 (Python 3.7.11) and 
partly conducted via the packages Scikit-learn (Scikit-
learn 0.19.1) and autogluon (0.4.2).

Statistical analysis
All of the continuous features are presented as medians 
and interquartile ranges. Missing value cases and cat-
egorical variables are presented as numbers and percent-
ages. We used the ROC curve to show the predictive 
ability of PCAIDS, and we calculated 95% confidence 
intervals (CIs) for sensitivity and specificity with the 
bootstrap method [12]. Then, the clinical value was eval-
uated by decision curve analysis (DCA) and a waterfall 
plot. We employed the SHAP tool to parse and evaluate 
the contribution of each predictor [13].

Results
Characteristics of the participants
A total of 108 variables from 4747 patients who under-
went prostate biopsy were extracted from nine hospitals 
in China and randomly divided into a training cohort 
and a validation cohort at a ratio of 8:2. The demograph-
ics and clinical characteristics of patients in each center 
are shown in Additional file 2: Table S2. According to the 
feature selection results (Additional file  3: Table  S3), 36 
features were included in the study (Table 1).

The PCAIDS (AutoML based) showed the highest 
diagnostic efficacy compared to LR, RF, and XGBoost
In the internal validation cohort, our results (Fig.  2, 
Table  2.) showed that AutoML manifested the highest 
diagnostic accuracy with an AUC of 0.820 (95% CI: 0.79–
0.85) compared to LR of 0.816 (95% CI, 0.78–0.85), RF of 
0.779 (95% CI, 0.74–0.82), and XGBoost of 0.795 (95% 
CI, 0.76–0.83) when distinguishing clinically significant 
prostate cancer (csPCa) from benign disease and insignif-
icant PCa. Similarly, in two prospective cohorts, AutoML 
showed an ideal diagnostic performance. In the Chang-
hai prospective cohort, AutoML had the highest AUC 
of 0.807 (95% CI: 0.76–0.85) versus LR of 0.793 (95% CI: 
0.75–0.83), RF of 0.766 (95% CI: 0.72–0.81) and XGBoost 
of 0.763 (95% CI: 0.71–0.81). In the Zhongda prospective 
cohort, AutoML also had the highest AUC of 0.850 (95% 
CI: 0.80–0.89) versus LR of 0.848 (95% CI: 0.80–0.90), RF 
0.844 (95% CI: 0.79–0.90) and XGBoost of 0.817 (95% CI: 
0.76–0.87). Based upon the above results, AutoML was 
used to construct the final model.

Diagnostic efficacy of the PCAIDS
The PCAIDS had a higher diagnostic efficacy than PSA 
and fPSA/tPSA, with AUCs of 0.820 (95% CI: 0.79–0.85), 
0.616 (95% CI: 0.57–0.66) and 0.675 (95% CI: 0.63–0.71) 
in distinguishing csPCa, respectively (Fig. 3, Table 2). In 
the Changhai prospective cohort and the Zhongda pro-
spective cohort, the PCAIDS was superior to PSA and 
fPSA/tPSA, with higher AUC values (Fig. 3).

The clinical benefits of the PCAIDS
We also investigated the net clinical value of the PCAIDS 
using DCA by comparing PSA and fPSA/PSA over a 
range of probabilities. In this analysis, the PCAIDS had 
the highest net benefit in the validation cohort, and the 
Changhai prospective cohort and Zhongda prospective 
cohort demonstrated significant clinical utility when 
compared with PSA and fPSA/PSA (Fig. 4).

In the validation cohort, the distribution of biopsy 
results was depicted in a waterfall plot (Fig. 5). The cut-
off values were set according to the sensitivity of 90% 
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and 95%. When the cutoff value with 95% sensitivity was 
applied (23.8%), the PCAIDS indicated a negative predic-
tive value (NPV) of 96.15% and PPV of 35.58%, prevent-
ing 32.18% of unnecessary biopsies at risk and missing 
only 4.88% of cases of csPCa (Table 3).

In the Changhai prospective cohort, when the cut-
off value with 95% sensitivity was applied (21.5%), the 
PCAIDS showed an NPV of 89.9% and PPV of 45.3%, 
preventing 17.6% of unnecessary biopsies and missing 
4.5% of csPCa cases. In the Zhongda prospective cohort, 
the PCAIDS showed an NPV of 94.1% and PPV of 48.7% 
at the cutoff value of 95% sensitivity (24.3%), contributing 
to the reduction of 26.3% unnecessary biopsies with 4.1% 
csPCa missed.

Fig. 2  The results of the four algorithms for diagnostic model construction were compared in an internal validation cohort and two prospective 
cohorts, Chinghai and Zhongdu. AUC, area under the curve; AutoML, automated machine learning; LR, logistic regression; RF, random forest

Table 2  AUC results using 4 algorithms, PSA and fPSA/fPSA in 
the validation cohort

AUC​ Area under receiver operating characteristic, AutoML Automated machine 
learning, LR Logistic regression, RF Random forest

AUC(95%CI) Validation 
cohort

Changhai cohort Zhongda cohort

LR 0.816 (0.78–0.85) 0.793 (0.75–0.83) 0.848 (0.80–0.90)

RF 0.779 (0.74–0.81) 0.766 (0.72–0.81) 0.844 (0.79–0.90)

XGBoost 0.795 (0.76–0.83) 0.763 (0.71–0.81) 0.817 (0.76–0.87)

AutoML 0.820 (0.79–0.85) 0.807 (0.76–0.85) 0.850 (0.80–0.89)

PSA 0.616 (0.57–0.66) 0.593 (0.54–0.65) 0.583 (0.51–0.65)

fPSA/PSA 0.675 (0.63–0.72) 0.675 (0.62–0.73) 0.738 (0.67–0.80)

Fig. 3  The diagnostic performance AUC of AutoML outperformed PSA, fPSA/tPSA, and SOC in an internal validation cohort and two prospective 
cohorts, Chinghai and Zhongdu. AUC, area under the curve; AutoML, automated machine learning; PSA, prostate cancer-specific antigen; SOC, 
standard of care
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Discussion
We proposed the PCAIDS, an AutoML-based model, for 
the prediction of csPCa based on quick and economic 
routinely performed clinical examinations. The PCAIDS 
incorporated multimodal and multidimensional data, 
including laboratory tests, imaging tests, and demo-
graphic data, revealing encouraging discriminative power 
with AUCs of 0.820 in the validation cohort and 0.807 
and 0.850 in the two prospective test cohorts.

Compared with previous prediction models, such as 
the ERSPC-RC [14], PCPT-RC [15] and CPCC-RC [16], 
the PCAIDS, for the first time, evaluated over 100 mul-
timodal features with AI-based algorithms. These fea-
tures, including demographics, laboratory tests, and 
imaging examinations, were assessed by a series of 
AI algorithms. Among these AI algorithms, AutoML 
outperformed logistic regression, random forest, and 
XGBoost. AutoML has become a popular and efficient 
modeling tool for data science that uses k-fold cross-
validation through varying optimization algorithms, such 
as grid search, random search, and genetic algorithm 

(GA), to scan different feature combinations, feature 
transformations, supervised algorithms, and their corre-
sponding hyperparameter combinations implemented in 
AutoWEKA [17], Autogluon [18], AutoSklearn 2.0 [19], 
and TPOT, [20] thereby identifying the optimal machine 
learning pipeline.

Additionally, AI-based methods have the potential to 
analyze high-volume data and to discover nonlinear and 
interactive prediction information. For cancer diagno-
sis, there were huge possibilities that currently applied 
predictive models only included a proportion of effec-
tive predictors. Although the application of AI-based 
methods may not always outperform linear models, 
the advantage of involving more features could help the 
models to be more stable and more applicable for differ-
ent populations.

In this aspect, Jungyo Suh et al. proposed the possibil-
ity of applying AI-based algorithms in the prediction of 
prostate biopsy. They developed an AI-based prediction 
tool with PSA, total prostate volume, age, hypoechoic 
lesion on ultrasonography, transitional zone volume, 

Fig. 4  DCA for AutoML, PSA, fPSA/tPSA, and SOC in an internal validation cohort and two prospective cohorts, Chinghai and Zhongdu. a DCA 
shows that AutoML presented the highest net benefit across all threshold probabilities for PCa. The horizontal gray‒green lines parallel to the x-axis 
represent no patient undergoing a biopsy (Treat None). The red line indicates that all the patients will have PCa (Treat All). b AutoML outperformed 
PSA, fPSA/tPSA, and SOC in net reduction per 100 patient interventions at all thresholds. DCA, decision curve analysis; AutoML, automated machine 
learning; PSA, prostate cancer-specific antigen; fPSA/tPSA, free PSA/total PSA; SOC, standard of care
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Fig. 5  Waterfall plot of AutoML related to prostate biopsy results in an internal validation cohort and two prospective cohorts, Chinghai 
and Zhongdu. Each bar represents an individual. Red indicates ISUP grade ≥ two tumors (Gleason score ≥ 7); blue indicates ISUP grade of one 
tumor (Gleason score < 7). Two black horizontal lines represent the cutoff points of 26.4 at a sensitivity of 90% and 23.8 at a sensitivity of 95%. 
AutoML, automated machine learning; ISUP, International Society of Urological Pathology
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testosterone, and fPSA [21]. This study showed the prom-
ising future of using AI-based algorithms in predicting 
PCa; however, the investigated features were of limited 
number. To some extent, AI-based algorithms were not 
ideal for the analysis of limited features, which could 
have been done by traditional methods. In predicting 
colon cancer, researchers applied AI-based methods to 
data from health maintenance organizations by evaluat-
ing analytes from standard laboratory records, includ-
ing hematology, liver function, and metabolism [22]. In 
breast cancer, the notion of applying AI-based methods 
to diagnose breast cancer was validated, and age, body 
mass index (BMI), glucose, insulin, homeostasis model 
assessment (HOMA), leptin, adiponectin, resistin and 
chemokine monocyte chemoattractant protein 1 (MCP1) 
attributes were used in the prediction model [23]. Further 
studies validated that routine blood analysis features had 
a boosted performance for breast cancer diagnosis and 
supported the notion that this approach is of great poten-
tial to be used in a widespread manner to detect cancers 
[24]. These studies suggested the possibility of using rou-
tine health examinations to predict cancer based on AI 
algorithms.

The clinical scenario for the application of PCAIDS is 
between PSA-based screening and novel tests predicting 
PCa, including mpMRI, urinary PCA3 test, 4kScore, and 
Prostate Health Index. MpMRI, a potent modality in pre-
dicting biopsy results, is of great importance in patients 

who are at high risk of PCa. However, the application of 
mpMRI is limited by the accessibility of MRI machines 
and the professionalism of the radiologists who inter-
pret the images. Meanwhile, these biomarkers were only 
available for patients in some countries and regions. In 
addition, mpMRI and these novel biomarkers are associ-
ated with high costs in most countries. The application 
of PCAIDS, on the other hand, does not require special 
examination equipment. The features included in the 
model were common, routinely performed, quick, and 
economic tests, which were also needed for a general 
health check-up. The application of B-ultrasound in eval-
uating the size of the prostate is also accessible for almost 
every hospital. In general, this AI-based modality is not 
here to perfect the diagnostic modality with mpMRI and 
novel biomarkers, rather than replacing them.

AutoML has the flaw of interpretability, which is con-
sistently met with skepticism, similar to other complex 
models, especially in the medical field. To this end, we 
applied the SHAP [13] tool to explore the contribu-
tion of individual features to the model. To explore the 
rationality of this contribution, we also examined the 
interpretability of the LR compared to SHAP (Addi-
tional file  4: Figure S1). First, the contribution of the 
key variables (the cross-sectional area of the prostate 
(B_AREA), AGE, and fPSA) is basically the same in the 
two prediction modalities. This is similar to the previ-
ous conclusions obtained by the RF model (Additional 

Table 3  Performance of AutoML in the validation cohort, Changhai prospective cohorts, and Zhongda prospective cohorts at 95% 
sensitivity

nsPCa Non-significant prostate cancer, csPCa Clinically significant prostate cancer, AutoML Automated machine learning, LR Logistic regression, NLR Negative 
likelihood ratio, NPV Negative predictive value, PLR Positive likelihood ratio, PPV Positive predictive value

Cohort Biopsy result Total Performance, %

csPCa Benign+nsPCa

Validation internal cohort, cut-off value= 23.8%

  AutoML probability > cut point 195 353 548 Sensitivity= 95.1

  AutoML probability <= cut point 10 250 260 Specificity= 41.5

  Total 205 603 808 PPV= 35.6, NPV= 96.2

  csPCa biopsy prevalence % 25.4 Fraction predicted negative 32.2 Missing= 4.9

Changhai prospective cohort, cut-off value= 21.5%

  AutoML probability > cut point 168 203 371 Sensitivity= 95.5

  AutoML probability <= cut point 8 71 79 Specificity= 25.9

  Total 176 274 450 PPV=45.3, NPV=89.9

  csPCa biopsy prevalence % 39.1 Fraction predicted negative 17.6 Missing=4.5

Zhongda prospective cohort, cut-off value= 24.3%

  AutoML probability > cut point 93 98 191 Sensitivity=95.9

  AutoML probability <= cut point 4 64 68 Specificity=39.5

  Total 97 162 259 PPV=48.7, NPV=94.1

  csPCa biopsy prevalence % 37.5 Fraction predicted negative 26.3 Missing=4.1
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file 1: Table S1). Second, the SHAP value from AutoML 
is roughly the same as the importance of LR calcu-
lated by model coefficients. Third, B_AREA is the most 
important variable. Significantly, the risk of PCa did 
not increase with B_AREA, which may be due to the 
increased concertation of PSA produced by a larger 
prostate, misstating that the risk of PCa and fPSA/
tPSA are similar. In addition, age played the second 
most important role in the prediction model. Thereaf-
ter, the risk of PCa increases with age, which is intuitive, 
and the same holds true for other clinical indicators, 
although no direct cause can be inferred.

One of the limitations of this study is the lack of a 
head-to-head comparison with mpMRI or other novel 
biomarkers. However, the clinical scenario of this predic-
tion mode is not to replace novel diagnostic methods but 
to assist in decision-making for novel diagnostic meth-
ods. In addition, we introduced the dimensions of the 
prostate from the B ultrasound in the model, and there 
might be inter- and intrarater differences among differ-
ent centers in terms of ultrasound results. Furthermore, 
ultrasound images were not included in this study due to 
the lack of image storage in all centers. We believe that 
future studies may incorporate the images captured dur-
ing ultrasound examinations. The findings of this study 
are applicable primarily to Asian populations due to the 
vast discrepancy between Asian and Caucasian patients. 
In the future, we intend to collect data from various pop-
ulations to adapt our model to different ethnic groups. 
Finally, the performance of the PCAIDS is not better 
than that of the other algorithms, including LR. However, 
it is important to note that in the study, given the seri-
ous implications of missing a prostate cancer diagnosis, 
prioritizing sensitivity rather than specificity was cho-
sen. This decision was made understanding that it might 
increase the false positive rate, but it’s a reasonable trade-
off given the potential severity of a missed diagnosis, 
where high sensitivity can often lead to lower specificity. 
We consider that further validation studies may help us 
to show its wide applicability.

Conclusion
The AutoML-based PCAIDS was a real-time, nonin-
vasive, easy-to-use tool that could be applied for the 
prediction of csPCa in multimodal routine clinical 
examinations. The system presented greater diagnostic 
performance and clinical utility in detecting csPCa than 
traditional predictors. The PCAIDS was an effective tool 
for physicians to decide the need for prostate biopsy and 
prebiopsy examinations such as mpMRI. Further per-
spective and international studies are warranted to vali-
date the findings of this study.
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