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Abstract 

Background Aging is a dynamic and heterogeneous process that may better be captured by trajectories of aging 
biomarkers. Biological age has been advocated as a better biomarker of aging than chronological age, and plant‑
based dietary patterns have been found to be linked to aging. However, the associations of biological age trajectories 
with mortality and plant‑based dietary patterns remained unclear.

Methods Using group‑based trajectory modeling approach, we identified distinctive aging trajectory groups 
among 12,784 participants based on a recently developed biological aging measure acquired at four‑time points 
within an 8‑year period. We then examined associations between aging trajectories and quintiles of plant‑based 
dietary patterns assessed by overall plant‑based diet index (PDI), healthful PDI (hPDI), and unhealthful PDI (uPDI) 
among 10,191 participants who had complete data on dietary intake, using multivariable multinomial logistics regres‑
sion adjusting for sociodemographic and lifestyles factors. Cox proportional hazards regression models were applied 
to investigate the association between aging trajectories and all‑cause mortality.

Results We identified three latent classes of accelerated aging trajectories: slow aging, medium‑degree, and high‑
degree accelerated aging trajectories. Participants who had higher PDI or hPDI had lower odds of being in medium‑
degree (OR = 0.75, 95% CI: 0.65, 0.86 for PDI; OR = 0.73, 95% CI: 0.62, 0.85 for hPDI) or high‑degree (OR = 0.63, 95% CI: 
0.46, 0.86 for PDI; OR = 0.62, 95% CI: 0.44, 0.88 for hPDI) accelerated aging trajectories. Participants in the highest quin‑
tile of uPDI were more likely to be in medium‑degree (OR = 1.72, 95% CI: 1.48, 1.99) or high‑degree (OR = 1.70, 95% CI: 
1.21, 2.38) accelerated aging trajectories. With a mean follow‑up time of 8.40 years and 803 (6.28%) participants died 
by the end of follow‑up, we found that participants in medium‑degree (HR = 1.56, 95% CI: 1.29, 1.89) or high‑degree 
(HR = 3.72, 95% CI: 2.73, 5.08) accelerated aging trajectory groups had higher risks of death than those in the slow 
aging trajectory.

Conclusions We identified three distinctive aging trajectories in a large Asian cohort and found that adopting 
a plant‑based dietary pattern, especially when rich in healthful plant foods, was associated with substantially lowered 
pace of aging.
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Background
The number of individuals aged 65  years and older is 
increasing at an unprecedented pace, and it is expected 
to reach 1.6 billion by 2050 [1]. Human life expectancy 
has significantly increased in the past decades, poten-
tially through advances in public health and healthcare 
services [2, 3]. However, population aging has been asso-
ciated with increased risks of chronic diseases, resulting 
from physical or cognitive disability and mortality. Aging 
and age-related diseases present great challenges to cur-
rent medical care, economy, and society as a whole and 
have become a global public health priority [4]. There is a 
critical need to identify modifiable risk factors that could 
help preserve overall health and good quality of life dur-
ing aging.

Since aging is a dynamic and heterogeneous process 
of complex biological system, it may better be captured 
by repeated measures of aging biomarkers along the 
years. Recently, biological age has been advocated as a 
more accurate indicator of aging than chronological age, 
which integrates multiple objective biomarkers relevant 
to physical functions and provides information about 
overall health status [5], and it has been linked to both 
aging-related morbidity and mortality [6, 7]. It is there-
fore reasonable to believe that trajectories of biological 
age are associated with mortality, and identifying bio-
logical age trajectories that are linked to higher mortality 
will provide valuable insights and supportive evidence for 
early intervention and risk stratification. However, few 
studies have examined the longitudinal pattern of biolog-
ical age as well as its associations with mortality.

Nutrition and diet have been advocated as major deter-
minants of health [8]. Particularly, plant-based foods 
have been demonstrated as one of the major modifiable 
lifestyle factors for the prevention of age-related diseases 
and the preservation of overall good health status [9–11]. 
Accumulating evidence from epidemiological studies has 
shown that a plant-based dietary pattern is associated 
with decreased risk of mortality [12–15] and improved 
age-related neurological health including lower risks of 
dementia [16] and cognitive impairment [17]. Several 
studies have reported that plant-based foods were posi-
tively associated with successful or healthy aging [18–
21]. For example, adherence to the “fruit” pattern was 
positively associated with successful aging which were 
absence of major chronic diseases while maintaining 
good mental health [18], but limited evidence is available 
with respect to an overall plant-based dietary recom-
mendations. The studies on plant-based diet and aging 

generally measured aging by the presence of selected dis-
eases or health status at one time point [18–21]. The time 
course of one’s aging process with respect to plant-based 
diet is less known. Consequently, evidence on the rela-
tionship between plant-based dietary patterns and aging 
trajectory is limited, especially in an Asian population.

Therefore, in the large prospective MJ cohort, we first 
established aging trajectories based on a newly devel-
oped biological aging index and assessed the associations 
between the aging trajectories with all-cause mortality; 
then, we evaluated the impacts of plant-based dietary 
patterns on these aging trajectories.

Methods
Study population
The study population was obtained from a standard 
medical screening program with the same models of 
instruments conducted by the MJ Health Management 
Institution. Recruitment happened at four geographically 
representative clinics located in the northern, northwest, 
central, and southern parts of Taiwan. Detailed informa-
tion on the study design, methods, and rationale of the 
MJ prospective cohort has been reported previously 
[22–24]. Upon enrollment, every participant completed 
a self-administered questionnaire on demographic infor-
mation, lifestyle, and medical history and underwent a 
series of anthropometric measurements, physical exam-
inations, and blood and urinary tests at the time of the 
health check-ups.

In order to establish aging trajectories, we included 
12,784 participants who were enrolled between 1996 and 
2011, aged 50 years or older, and had completed data on 
the multi-dimensional aging measure (MDAge) at four 
times within an 8-year period after initial enrollment. To 
examine the associations between plant-based dietary 
patterns and aging trajectories, we further excluded 2593 
(20.34%) participants who had incomplete data on food 
intake, leaving 10,191 participants for the analysis.

Data collection
Data for sociodemographic characteristics (age, sex, 
education, and marital status), lifestyle factors (smoking 
status, alcohol consumption), food intake frequency, and 
personal and family medical history (e.g., stroke, cancer, 
and COPD) were collected by a self-administered ques-
tionnaire at baseline, and trained staffs provided detailed 
information if needed. Physical examinations were con-
ducted by trained staffs with calibrated instruments 
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following standard protocols, and height, weight, blood 
pressure, and lung function were measured. A 10-mL 
fasting blood sample from each participant was collected 
for laboratory tests at every physical examination. A 
timeline of data collection was shown in Additional file 1: 
Fig. S1.

Education (middle school or below, high school, jun-
ior college, college or above), marital status (unmarried, 
married), smoking status (never, ever), and drinking sta-
tus (never, ever) were modeled as categorical variables. 
Body mass index (BMI) was calculated by dividing weight 
in kilograms by height in meters squared. Diabetes sta-
tus was defined as having fasting blood glucose ≥ 126 mg/
dL, having been diagnosed with diabetes by a doctor, or 
reported receiving anti-diabetic medication treatment. 
Hypertension was similarly defined as having systolic 
pressure ≥ 140  mm Hg, having been diagnosed with 
hypertension, or reported receiving anti-hypertensive 
medication treatment.

Aging trajectory assessment
We calculated multi-dimensional aging measure (MDAge) 
in accordance with the method described previously [6]. 
Briefly, MDAge was calculated based on a linear com-
bination of chronological age and 13 clinical chemistry 
biomarkers (lactate dehydrogenase, alkaline phosphatase, 
platelet count, forced expiratory volume in 1  s (FEV1), 
creatinine, systolic blood pressure, fasting blood glucose, 
BMI, gamma-glutamyl transpeptidase, albumin, leukocyte 
count, glutamic oxaloacetic transaminase and urea nitro-
gen) that were selected using random forest. The 14 bio-
markers were then combined in a MDAge estimate using 
the Levine method. We then estimated MDAge accelera-
tion (MDAgeAccel), calculated as the residuals resulting 
from a linear model regressing MDAge on chronologi-
cal age. Therefore, MDAgeAccel represents MDAge after 
accounting for chronological age. A positive MDAgeAccel 
value indicates that the person is physiologically older than 
expected while a negative value refers to being younger 
than expected, based on one’s chronological age. Both 
MDAge and MDAgeAccel were calculated at four time 
points.

Distinct aging trajectories were then identified by 
group-based trajectory modeling (GBTM) approach 
based on MDAgeAccel at the four time points. The 
GBTM approach assumes that study population is com-
prised of a mixture of distinct groups defined by indi-
vidual developmental trajectories [25]. The procedure 
was implemented in SAS PROC TRAJ [26]. Model selec-
tion is the critical procedure for GBTM analysis, and we 
followed suggestions from early studies to complete the 
task [27–30]. We first fit models with different numbers 
(from one to four) of trajectory groups and identified the 

optimal number of trajectory groups based on the log 
Bayes factor  (2loge(B10)), calculated as 2(△BIC). This 
factor can be interpreted as the strength of evidence 
favoring the alternative model. Then, we determined the 
trajectory shapes that best describe the observed trajec-
tories, and linear, quadratic, and cubic functions were 
all tried. The best-fitting trajectory models were selected 
based on the log Bayes factor, appropriate average pos-
terior probability (> 0.7), and a minimum sample size in 
each group that accounted for > 5.0% of the overall pop-
ulation. More details of the GBTM approach have been 
described previously [26–35]. These distinct aging trajec-
tories were comprised of individuals with similar aging 
acceleration patterns, displaying the dynamic and hetero-
geneous processes of aging.

Dietary assessment
We evaluated the plant-based dietary patterns by con-
structing the plant-based diet index (PDI), healthful 
plant-based diet index (hPDI), and unhealthful plant-
based diet index (uPDI), following an adapted approach 
used by Satija et al. [36].

Self-reported information on dietary intake was col-
lected at first examination using a standardized and 
validated semi-quantitative food frequency question-
naire (FFQ) [37, 38]. This simplified FFQ had a total of 
22 questions that asked about the frequency of intake 
of certain amount for 22 food items/groups at baseline. 
A total of 14 questions were asked corresponding to 14 
food groups and were used to assess the plant-based die-
tary patterns in the current study. These 14 food groups 
were then grouped into plant foods and animal foods: the 
plant foods included whole grains, fresh vegetables, fresh 
fruit, rhizomes, legume, sugar, refined grains, and salt-
preserved vegetable, and the animal foods included milk, 
dairy products, fish and aquatic products, eggs, meat, 
and pluck. Participants were asked how often on average 
during the previous year they had consumed each food 
of a standard portion size. We first defined intake fre-
quency scores for each food item. For most food groups, 
including whole grains, rhizomes, legume, sugar, refined 
grains, salt-preserved vegetable, milk, dairy products, 
fish and aquatic products, eggs, meat, and pluck, the 
intake frequency “ > 1 serving/day,” “1 serving/day,” “4–6 
servings/week,” “1–3 servings/week,” or “rarely or never” 
were assigned scores of 5, 4, 3, 2, and 1, respectively. For 
fruit and vegetables, average serving sizes per day were 
calculated firstly and then grouped into 5 categories after 
ranking from high to low and scored 5, 4, 3, 2, and 1, 
respectively. The 14 food group scores for each individual 
were summed to obtain the three indices, with a theoreti-
cal range of 14 to 70.
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To calculate PDI, we assigned scores for each food 
group according to the intake frequency: a score of 5 
was assigned for the highest frequency and 1 for the 
lowest frequency regarding the intake of plant food 
(positive scores); a score of 1 was assigned for the high-
est frequency and 5 for the lowest frequency regarding 
the intake of animal food (reverse scores). Therefore, the 
higher the frequency of eating plant foods and the lower 
the frequency of eating animal food, the higher the PDI.

However, not all plant-based foods are beneficial to 
aging in the long term. The healthy PDI (hPDI) and 
unhealthy PDI (uPDI) were created to represent healthy 
and unhealthy versions of a plant-based diet. Based on 
the most recent evidence [12, 36], we further classified 
the abovementioned plant foods into two categories: 
healthy plant foods (whole grains, fruits, vegetables, 
rhizomes, legumes) and less healthy plant foods (sugar, 
refined grains, and salt-preserved vegetable). To calculate 
hPDI, we assigned positive scores to healthy plant food 
groups and reverse scores to less healthy plant and ani-
mal food groups. To calculate uPDI, we assigned posi-
tive scores to less healthy plant food groups and reverse 
scores to healthy plant and animal food groups. In this 
way, hPDI and uPDI accounted for the quality of plant 
foods in calculating PDI. More details on constructing 
PDI, hPDI, and uPDI can be found in Additional file  1: 
Table S1. Considering that animal food group might devi-
ate from the dimension as for the healthy or unhealthy 
plant foods, we reconstructed hPDI and uPDI by exclud-
ing animal food scores.

Mortality and morbidity ascertainment
We calculated the follow-up time from the date of the 
fourth physical examination to the date of death or 
December 31, 2011, whichever came first. Mortality data 
were obtained by linking study participants to the Taiwan 
death file through 2011 using the unique identification 
numbers assigned to the residents.

Data on chronic disease conditions including stroke, 
cancer, COPD, osteoarthritis, diabetes mellitus, hyper-
tension, and myocardial infarction were collected by self-
reported questionnaires at the first physical examination. 
A chronic disease count variable ranging from 0 to 7 was 
created with 4 categories: 0, 1, 2, and 3 or more.

Statistical analysis
The baseline characteristics of participants at the first 
physical examination were summarized using descriptive 
statistics. Spearman correlation analysis was conducted 
for food groups and dietary indices.

We applied multivariable multinomial logistics regres-
sion to estimate the associations between quintiles of 

PDI, hPDI, or uPDI and aging trajectories, with the low-
est quintile as the reference for the exposure and slow 
aging as the reference category for the outcome. Odds 
ratios (ORs) and 95% confidence intervals (CIs) were 
estimated. Trend tests were conducted by assigning the 
median value to each quintile of an index and enter-
ing as a continuous variable in the model. In addition, 
we treated these indexes as continuous variables (per 
10-unit increment) in our analyses. We also conducted 
sex- and age-stratified analyses to evaluate the associa-
tions between PDI, hPDI, or uPDI and aging trajectories. 
We used multinomial logistics regression models adjust-
ing for age, gender, education level, marital status, smok-
ing status, drinking status, and disease count at baseline. 
ORs and 95% CIs were reported. Moreover, we investi-
gated the associations of 14 individual food items with 
aging trajectories using multinomial logistics regression 
models adjusting for age and gender.

Cox proportional hazards models were used to esti-
mate the hazard ratios (HRs) and 95% CIs for the 
associations between aging trajectories and all-cause 
mortality. For this analysis, the follow-up started at the 
fourth physical examination. A three-stage modeling 
process was adopted. Model 1 adjusted for age, gen-
der, and MDAgeAccel (continuous) at baseline. Model 
2 additionally adjusted for education level, marital sta-
tus, smoking status, and drinking status. Model 3 fur-
ther adjusted for disease count at baseline. We then 
used Kaplan–Meier survival curves and log-rank tests 
to estimate the incidence of mortality by aging trajecto-
ries in all participants and gender-stratified groups. We 
conducted complete case analyses, and participants with 
missing covariates data were excluded from correspond-
ing analysis.

All analyses were performed using SAS 9.3 (SAS Insti-
tute, Cary, NC), and plots were created using R 3.5.3. 
A two-sided p-value < 0.05 was considered statistically 
significant.

Results
Sample characteristics
Table  1 presents the baseline characteristics of the 
12,784 enrolled participants. Their mean (± SD) age 
was 58.60 ± 6.51  years and 52.61% were women. About 
73.48% and 73.31% were never smokers and never 
drinkers, and 47.70% of the participants were free of 
chronic disease at baseline. The mean duration of the 
follow-up was 8.40  years (SD = 3.58), and 803 partici-
pants died by the end of follow-up. The pairwise Spear-
man correlation coefficients between different 14 food 
groups and 3 constructed food indices were shown in 
Additional file 1: Fig. S2.
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Aging trajectories and all‑cause mortality
Three latent classes of accelerated aging trajectories were 
identified by GBTM and were illustrated in Fig.  1. The 
model selection criteria of trajectory groups were shown in 
Additional file 1: Table S2. About 47.18% of the study par-
ticipants were grouped in the slow aging trajectory, all had 
negative MDAgeAccel values, and these individuals had 
generally smaller biological age than their chronological 
age over the four measurements. About 47.63% of the study 
participants were grouped in the medium-degree acceler-
ated aging trajectory, and these individuals had displayed a 
medium level of aging acceleration in the beginning, along 
with almost no change throughout the whole period. Indi-
viduals in the medium-degree accelerated aging group 
had moderate morbidity (61.08%) at baseline and moder-
ate mortality (7.70%) during the follow-up time (Table 1). 

The rest of the study participants (5.19%) were in the high-
degree accelerated aging group, displaying a consistently 
high level of accelerated aging over the four measurements. 
Moreover, 22.17% of the individuals in the high-degree 
accelerated aging group died during the follow-up time 
(Table  1). In general, the trajectories are homogeneous 
across key subgroups (Additional file 1: Fig. S3).

Based on the Kaplan–Meier curve, differential risks 
of mortality were observed for each aging trajectory 
(Fig.  2A), and the association pattern was consistently 
seen in both sexes (Fig.  2B, C). Figure  3 illustrated the 
results from Cox proportional-hazards models. Partici-
pants in medium-degree accelerated aging trajectory had 
1.56-fold (HR = 1.56, 95% CI: 1.29, 1.89) higher risk and 
those in high-degree accelerated aging trajectory had 3.72-
fold (HR = 3.72, 95% CI: 2.73, 5.08) higher risk of all-cause 

Table 1 Baseline characteristics of all participants

Slow aging: slow aging trajectory, Medium-degree: medium-degree accelerated aging trajectory, High-degree: high-degree accelerated aging trajectory

Data were presented as No. (%). There were missing data on education (n = 391), marital status (n = 513), smoking status (n = 1139), drinking status (n = 1177), PDI or 
hPDI or uPDI (n = 2593). aMean (SD) was reported

Characteristics Aging trajectory Total
12,784 (100%)

Slow aging
6031 (47.18%)

Medium‑degree
6090 (47.63%)

High‑degree
663 (5.19%)

Age,  yearsa 58.00 (6.43) 59.08 (6.52) 59.61 (6.67) 58.60 (6.51)

MDAgeAccel,  yearsa  − 1.32 (2.28) 2.46 (2.46) 8.34 (4.56) 0.98 (3.57)

Gender

 Male 2873 (47.64) 2880 (47.29) 305 (46.00) 6058 (47.39)

 Female 3158 (52.36) 3210 (52.71) 358 (54.00) 6726 (52.61)

Education

 Middle school or below 3200 (54.64) 4008 (67.93) 489 (76.77) 7697 (62.11)

 High school 1111 (18.97) 912 (15.46) 78 (12.24) 2101 (16.95)

 Junior college 624 (10.66) 455 (7.71) 36 (5.65) 1115 (9.00)

 College or above 921 (15.73) 525 (8.90) 34 (5.34) 1480 (11.94)

Marital status

 Unmarried 880 (15.21) 877 (14.97) 124 (19.81) 1881 (15.33)

 Married 4906 (84.79) 4982 (85.03) 502 (80.19) 10,390 (84.67)

Smoking

 Never 4254 (76.10) 3910 (71.64) 393 (65.83) 8557 (73.48)

 Ever 1336 (23.90) 1548 (28.36) 204 (34.17) 3088 (26.52)

Drinking

 Never 4099 (74.26) 3993 (72.68) 417 (70.32) 8509 (73.31)

 Ever 1421 (25.74) 1501 (27.32) 176 (29.68) 3098 (26.69)

Disease count

 0 3623 (60.07) 2370 (38.92) 105 (15.84) 6098 (47.70)

 1 1965 (32.58) 2741 (45.01) 301 (45.40) 5007 (39.17)

 2 389 (6.45) 836 (13.73) 220 (33.18) 1445 (11.30)

 3 or more 54 (0.90) 143 (2.34) 37 (5.58) 234 (1.83)

Death 187 (3.10) 469 (7.70) 147 (22.17) 803 (6.28)

PDIa 40.93 (3.59) 40.42 (3.72) 40.30 (3.66) 40.66 (3.66)

hPDIa 50.21 (3.67) 49.78 (3.79) 49.70 (3.97) 49.99 (3.75)

uPDIa 46.80 (4.47) 47.66 (4.49) 47.60 (4.75) 47.24 (4.51)
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Fig. 1 Aging trajectories in MJ cohort. Three trajectory classes identified: Slow aging, medium‑degree accelerated aging trajectory, 
and high‑degree accelerated aging trajectory. The different colors of points represent raw data points of participants in different aging trajectories. 
The Y‑axis represents aging acceleration, and x‑axis is for chronological age

Fig. 2 Kaplan–Meier estimates of the cumulative incidence of mortality by aging trajectory groups. a Total participants, b male, and c female. Slow 
aging trajectory, Medium‑degree: medium‑degree accelerated aging trajectory, High‑degree: high‑degree accelerated aging trajectory
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mortality than participants in the slow aging trajectory 
over the follow-up. The associations attenuated slightly 
after additionally adjusting for education, marital status, 
and health behaviors.

Overall plant‑based dietary patterns and long‑term aging 
trajectory
PDI score was slightly higher among the participants in the 
slow aging trajectory (Table  1). Table  2 shows the results 
of multivariate multinomial logistic regression models 
examining the relations between plant-based dietary pat-
terns and accelerated aging trajectories. Participants in the 
highest quintile of PDI had 25% lower odds of being in the 
medium-degree accelerated aging trajectory (OR = 0.75, 
95% CI: 0.65, 0.86) and 37% lower odds of being in the 
high-degree accelerated aging trajectory (OR = 0.63, 95% 
CI: 0.46, 0.86) compared to participants in the lowest quin-
tile. Linear regression analysis showed that a 10-unit incre-
ment in PDI was associated with lower odds of being in the 
medium-degree accelerated trajectory (OR = 0.74, 95% CI: 
0.66, 0.84) or lower odds of being in the high-degree accel-
erated trajectory (OR = 0.70, 95% CI: 0.53, 0.92).

Associations of hPDI and uPDI with long‑term aging 
trajectory
The hPDI score was slightly higher while uPDI score was 
lower among the participants in the slow aging trajectory, 
and the details were shown in Table 1.

The results of the associations of hPDI and uPDI with 
accelerated aging trajectories were shown in Table  2. 
Those in the highest quintile of hPDI had 27% lower 
odds of belonging to the medium-degree accelerated 
aging trajectory (OR = 0.73, 95% CI: 0.62, 0.85) and 38% 
lower odds of being in the high-degree accelerated aging 
trajectory (OR = 0.62, 95% CI: 0.44, 0.88) (Table  2). In 
contrast, the highest quintile of uPDI was associated 
with 72% higher odds of belonging to medium-degree 
accelerated aging trajectory (OR = 1.72, 95% CI: 1.48, 
1.99) and 70% higher odds of being in high-degree accel-
erated aging trajectory (OR = 1.70, 95% CI: 1.21, 2.38) 
(Table 2).

Linear regression analysis indicated that a 10-unit 
increment in hPDI was associated with lower odds of 
being in the medium-degree accelerated trajectory 
(OR = 0.73, 95% CI: 0.65, 0.82) or of being in the high-
degree accelerated trajectory (OR = 0.65, 95% CI: 0.50, 
0.85). Whereas a 10-unit increment in uPDI was asso-
ciated with 43% higher odds of being in the medium-
degree accelerated trajectory (OR = 1.43, 95% CI: 1.30, 
1.58) or 39% higher odds of being in the high-degree 
accelerated trajectory (OR = 1.39, 95% CI: 1.11, 1.75). 
Detailed results were listed in Table 2.

We generated reconstructed hPDI (rhPDI) and recon-
structed uPDI (ruPDI) by excluding animal food scores 
and investigated the associations of rhPDI and ruPDI 
with the trajectory groups. The correlation matrix 

Fig. 3 Multivariable‑adjusted HRs and 95% CIs of all‑cause mortality according to aging trajectories. Slow aging trajectory was as a reference group. 
Slow aging: slow aging trajectory. Medium‑degree: medium‑degree accelerated aging trajectory. High‑degree: high‑degree accelerated aging 
trajectory. Model 1 adjusted for MDAgeAccel at baseline, age, and gender; model 2 additionally adjusted for education level, marital status, smoking 
status, and drinking status; model 3 further adjusted for disease count based on model 2
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among plant-based food groups and reconstructed food 
indices was provided in Additional file 1: Figure S4. We 
found that those in the highest quintile of rhPDI still 
had 46% lower odds of being to the medium-degree 
accelerated aging trajectory (OR = 0.54, 95% CI: 0.47, 
0.63) and 50% lower odds of being in the high-degree 
accelerated aging trajectory (OR = 0.50, 95% CI: 0.36, 
0.68) (Additional file  1: Table  S3). In contrast, the 
highest ruPDI was associated with 86% higher odds 
of being to medium-degree accelerated aging trajec-
tory (OR = 1.86, 95% CI: 1.60, 2.15) and a 101% higher 
odds of being in high-degree accelerated aging trajec-
tory (OR = 2.01, 95% CI: 1.46, 2.76) (Additional file  1: 
Table S3).

We further conducted sex- and age-stratified analyses 
(Table 3). Overall, the associations were consistent with 
our primary findings: adopting an overall (higher PDI) 
and healthy plant-based dietary pattern (higher hPDI) 
were associated with substantially lower odds of being 
in higher accelerated aging trajectories, and adopt-
ing an unhealthful plant-based dietary pattern (higher 
uPDI score) was associated with substantially higher 
odds of being in higher accelerated aging trajectories.

Individual food items and aging trajectory
In terms of each food group, higher intake frequency of 
fresh fruits  (OR≥2 servings/day vs <0.5 servings/day = 0.70; 95% 
CI, 0.60, 0.82), fresh vegetables  (OR>4 servings/day vs <2 serv-

ings/day = 0.48; 95% CI, 0.42, 0.54), and legumes  (OR>1 serv-

ing/day vs never = 0.56; 95% CI, 0.39, 0.80) were potentially 
the main contributors to the beneficial associations of 
PDI and hPDI with aging; and higher intake frequency 
of refined grain  (OR>1 serving/day vs never = 1.57; 95% CI, 
1.25, 1.97), salt-preserved vegetable (OR 1 serving/day vs 

never = 1.61, 95% CI, 1.21, 2.16), dairy products (OR 1 serv-

ing/day vs never = 1.33, 95% CI, 1.14, 1.56), and pluck (OR 1 

serving/day vs never = 1.77; 95% CI, 1.43, 2.18) were primary 
contributors to the detrimental association of uPDI with 
aging (Additional file 1: Table S4).

Discussion
In this prospective cohort study, we identified three 
aging trajectories where participants in medium-degree 
or high-degree accelerated aging trajectory groups had 
higher risks of death than those in the slow aging tra-
jectory. We then found that adopting an overall plant-
based dietary pattern was associated with lower odds 

Table 2 Associations between quintiles of PDI, hPDI, and uPDI and aging trajectories based on multinomial logistic regression model

Slow aging: slow aging trajectory, Medium-degree: medium-degree accelerated aging trajectory, High-degree: high-degree accelerated aging trajectory. Na: Number 
of participants in medium-degree accelerated aging trajectory or high-degree accelerated aging trajectory. Model adjusted for age, gender, education level, marital 
status, smoking status, drinking status, and chronic disease count

Diet index Median of diet 
index

Medium‑degree vs slow aging High‑degree vs slow aging

Na OR (95% CI) p‑trend Na OR (95% CI) p‑trend

Quintile of PDI (N)
 Q1 (2402) 36 1241 Ref  < 0.0001 145 Ref 0.0050

 Q2 (2038) 39 969 0.89 (0.77, 1.03) 96 0.67 (0.49, 0.92)

 Q3 (2072) 40 938 0.78 (0.68, 0.90) 93 0.67 (0.50, 0.91)

 Q4 (1753) 42 723 0.69 (0.59, 0.79) 71 0.62 (0.45, 0.86)

 Q5 (1926) 45 822 0.75 (0.65, 0.86) 89 0.63 (0.46, 0.86)

Per 10, unit increment of PDI 0.74 (0.66, 0.84) 0.70 (0.53, 0.92)

Quintile of hPDI (N)
 Q1 (2080) 45 1053 Ref  < 0.0001 118 Ref 0.0004

 Q2 (1787) 48 869 0.88 (0.77, 1.01) 92 0.79 (0.59, 1.06)

 Q3 (2144) 49 956 0.76 (0.64, 0.90) 99 0.62 (0.42, 0.91)

 Q4 (1981) 51 874 0.71 (0.62, 0.81) 85 0.58 (0.43, 0.78)

 Q5 (2199) 54 941 0.73 (0.62, 0.85) 100 0.62 (0.44, 0.88)

Per 10, unit increment of hPDI 0.73 (0.65, 0.82) 0.65 (0.50, 0.85)

Quintile of uPDI (N)
 Q1 (1851) 41 733 Ref  < 0.0001 78 Ref 0.0114

 Q2 (2059) 45 888 1.11 (0.97, 1.28) 109 1.27 (0.92, 1.74)

 Q3 (1809) 47 824 1.18 (1.02, 1.36) 72 0.93 (0.65, 1.31)

 Q4 (2316) 50 1095 1.27 (1.11, 1.45) 114 1.24 (0.90, 1.70)

 Q5 (2156) 53 1153 1.72 (1.48, 1.99) 121 1.70 (1.21, 2.38)

Per 10, unit increment of uPDI 1.43 (1.30, 1.58) 1.39 (1.11, 1.75)
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of being in medium-degree or high-degree accelerated 
aging trajectories. Our study demonstrated a differen-
tial impact of plant-based foods on accelerated aging 
trajectory, i.e., a healthful plant-based diet was more 
beneficial to aging than an unhealthful plant-based 
diet. Fresh fruits, fresh vegetables, and legumes were 
major contributors found in our healthful plant-based 
diet analysis, whereas refined grain, salt-preserved veg-
etable, dairy products, and pluck were major contribu-
tors from unhealthful plant-based diet analysis.

Using the MDAge, a newly developed biological age 
biomarker, we successfully established three distinct 
aging trajectories in our study sample. It also allowed 
us to evaluate the pace of aging over the years. This bio-
logical age is arguably a more accurate measure of aging 
than chronological age [6], because it integrates multiple 
biomarkers relevant to physical functions and provides 
information about overall health. MDAge (AUC = 0.891, 
95% CI: 0.888, 0.894) outperformed the model with 
chronological age (AUC = 0.868, 95% CI: 0.865, 0.872) in 
predicting all-cause mortality [6]. Several earlier studies 
[39–45] have identified different patterns of aging tra-
jectories in older adults by measuring frailty index [39], 
health and functioning items [40, 41], physical ability and 
mental health items [42, 43], or other subjective indica-
tors [44, 45]. For example, a study identified three types 
of healthy aging trajectories (stable-good aging well, ini-
tially aging well then deteriorating, and stable-poor) from 
a prospective 16-year longitudinal study of 1000 older 
Australians, in which “aging well” was defined based on 
self-rated health, psychological wellbeing, and independ-
ence in daily living [45]. Compared to previous studies, 
our current study demonstrated the feasibility of estimat-
ing pace of aging over a long period of time in this Asian 
population. Better than measuring aging at a single time 
point, establishing aging trajectories based on aging bio-
markers measured over a longer time period may cap-
ture the dynamic and heterogeneous nature of aging and, 
expectedly, identify precisely different population with 
varying risks of age-related diseases or mortality. Fig-
ure 1 showed a gradual decrease of the trajectory curves 
in both high-degree and slow aging trajectory groups 
after 80  years old. However, this decreasing trend was 
statistically insignificant. A possible explanation was that 
among older age groups, only those who were biologi-
cally younger could survive, which lowered the average 
level of MDAge and MDAgeAccel in these groups. Addi-
tional file 1: Fig. S3 also indicated potential heterogeneity 
in trajectories between different subgroups. However, the 
small number of participants in each trajectory at age 80 
or above restricted us from further analyses.

Diet is one of the primary modifiable lifestyle factors, 
and plant-based dietary patterns prevent the development 

of chronic diseases [46–48] and promote better age-
related neurological health, such as a lower risk of demen-
tia [16] and cognitive impairment [17]. The plant-based 
dietary pattern is generally defined as a higher intake of 
various plant foods (such as fruits and vegetables, whole 
grains, and legume) and lower consumption of animal 
foods. Individual plant-based food group has been linked 
to slower biological aging [18–20]. Among 6308 older 
adults from the Melbourne Collaborative Cohort Study, 
adherence to the “fruit” pattern was positively associated 
with absence of major chronic diseases and major limita-
tions of physical function while maintaining good mental 
health (i.e., successful aging), and adherence to the “meat/
fatty” pattern was inversely associated with successful 
aging over a mean of 11.7-year of follow-up [18]. Quach 
et al. examined cross-sectional data from 4575 individuals 
and showed that the levels of blood biomarkers for fruit/
vegetable consumption specifically were significantly cor-
related with slower epigenetic aging [19]. However, most 
of the published studies lacked comprehensive assessment 
of plant-based dietary patterns, limiting the strength of 
the evidence and the feasibility of converting their find-
ings into intervention or policy making. In this study, we 
included 14 food groups (whole grains, fresh vegetables, 
fresh fruit, rhizomes, legume, sugar, refined grains, salt-
preserved vegetable, milk, dairy products, fish and aquatic 
products, eggs, meat, and pluck) for the assessment plant-
based dietary patterns. In addition, plant-based dietary 
indices were more optimal in several aspects. For exam-
ple, they primarily focus on the source of food rather than 
prior knowledge of the relationship between food and 
health by negatively weighing all animal foods and posi-
tively weighing all plant foods.

Moreover, as not all plant-based foods are necessar-
ily beneficial, we adapted hPDI and uPDI scores [12, 36] 
to represent healthful and unhealthful versions of a plant-
based diet. The hPDI emphasized on plant-based foods 
known to be associated with improved health outcomes 
whereas uPDI emphasized on less healthy plant-based 
foods. Zhou et al. found that an overall and healthful plant-
based dietary pattern was associated with 34% and 45% 
higher likelihood of healthy aging (defined as the absence of 
10 chronic diseases by self-reported and the absence of age-
related dysfunction), among individuals aged 45–74 years 
in Singapore [21]. While our analysis confirmed these pre-
vious findings, we further provided evidence regarding the 
associations between PDI and aging trajectories and dem-
onstrated that both overall and healthy plant-based dietary 
patterns may de-accelerate one’s aging process. As plant-
based dietary pattern is increasingly recommended for its 
contribution to environmental and source sustainability, 
its relation to aging has attracted a lot of attention. We 
observed that not all plant foods are necessarily beneficial 
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to slow aging, and our findings supported the notion for 
recommending healthful, but not unhealthful, plant-based 
dietary patterns from a public health perspective. Further-
more, we investigated the associations of reconstructed 
hPDI and uPDI with aging trajectory. The results remained 
similar to the original findings.

We further showed that fresh fruits, fresh vegetables, 
and legumes were the primary drivers of this protective 
effect, which is aligned with previous studies. Higher 
intake of fruits and vegetables has been associated with 
lower mortality from all causes, cardiovascular disease 
and cancer [49], and with greater intrinsic capacity [50] 
or slower biological aging [51]. Along with fruits and 
vegetables, legumes also have been linked with healthy 
aging and longevity. A cross-cultural study conducted by 
International Union of Nutritional Sciences (IUNS) and 
the World Health Organization (WHO) revealed that 
for every 20 g increase in daily legumes intake, there was 
an 8% reduction in the risk of death (RR = 0.92, 95% CI 
0.85, 0.99). The potential explanations for the health ben-
efits may include the anti-inflammatory and antioxidant 
effects of dietary fibers and polyphenols [52–54].

Several epidemiological studies have reported the 
relationships between biological aging and well-known 
dietary patterns, such as Mediterranean diet [55–57], 
Dietary Approaches to Stop Hypertension (DASH) [55–
57], Healthy Eating Index [55, 58], and Prudent dietary 
pattern [58]. In those studies, biological aging was meas-
ured by epigenetic aging clock [56], telomere length [55, 
58], and blood biomarkers [57]. Their findings supported 
the hypothesis that high quality diet may slow aging. For 
example, Mediterranean diet, a dietary pattern that was 
associated with lower cardiovascular risk and longer sur-
vival [59, 60], was found to be inversely associated with 
epigenetic aging [57]. Mediterranean diet was character-
ized by high intake of plant foods, olive oil as the main 
source of added fat, moderate intake of fish and seafood, 
moderate consumption of poultry, dairy products and 
wine, and low consumption of red meat [61]. This dietary 
pattern is rich in plant-based foods, while not distin-
guishing the quality of the food items. Our study reported 
additional evidence regarding a significantly higher odds 
of accelerated aging associated with more frequent con-
sumption of unhealthy plant-based foods. Quantitatively 
differentiated healthy plant-based foods versus unhealthy 
plant-based foods has significant impact on healthy aging 
in general. Furthermore, most of the published studies 
were cross-sectional studies in populations from West-
ern countries. Prospective studies on dietary patterns 
and biological age at multiple time points are therefore in 
demand, especially in Asian populations.

A few limitations of the current study should be 
noted. First, our dietary assessment was based on a 

standardized and validated semi-quantitative food fre-
quency questionnaire that was self-reported by the 
participants [37, 38], which may result in measurement 
errors. However, since dietary data was assessed before 
the assessment of aging trajectories, the measurement 
errors were likely non-differential, which may bias the 
findings towards null, and we still observed statisti-
cally significant associations between dietary patterns 
and aging trajectories. Second, plant-based dietary pat-
terns were estimated primarily based on intake fre-
quency. Given our food frequency questionnaire may 
not be able to comprehensively cover the food items/
groups that were consumed in our study population, we 
may underestimate intakes of total energy and nutri-
ents. Therefore, we did not estimate total energy intake 
or perform energy-adjustment. Nevertheless, the using 
food frequency questionnaire to assess dietary patterns 
have been demonstrated to be reliable and valid meas-
ures in several studies [36, 62–65]. Third, although we 
controlled for several lifestyle factors, the possibility 
of residual confounding cannot be excluded due to the 
observational nature of the study. Fourth, participants 
included in the current analysis were mainly middle-
aged or elderly Asians, and both dietary patterns and 
MDAge were identified among this population. There-
fore, our results may not be generalized to populations 
of other ethnicities.

There were also several strengths of the present 
study. First, we utilized a prospective design with a rel-
atively large sample size and a long follow-up period. 
Second, instead of focusing on the presence of selected 
diseases or impairments, we conceptualized aging 
acceleration using multiple multi-dimensional indica-
tors which were based on 14 routinely examined bio-
markers representing multiple organ systems. Third, 
compared to a single time-point evaluation, we used 
the GBTM to trace aging acceleration at four-time 
points, which might be more appropriate in evaluat-
ing the aging process. The GBTM model accounts for 
the variations in time to distinguish changes in aging 
acceleration over time and is able to identify the het-
erogeneity of aging.

Conclusions
In summary, we identified three distinct aging trajecto-
ries and showed that adopting healthy plant-based die-
tary patterns was associated with slow aging trajectory 
and that unhealthful plant-based diet led to an accel-
erated aging trajectory. Our findings suggested that 
increasing the intake of healthy plant-based foods while 
reducing the intake of unhealthy plant-based foods and 
certain animal foods slows down the aging process in 
an Asian population.
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