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Abstract 

Background Cholangiocarcinoma (CCA) is a highly aggressive malignant tumor, and its diagnosis is still a challenge. 
This study aimed to identify a novel bile marker for CCA diagnosis based on proteomics and establish a diagnostic 
model with deep learning.

Methods A total of 644 subjects (236 CCA and 408 non-CCA) from two independent centers were divided into dis-
covery, cross-validation, and external validation sets for the study. Candidate bile markers were identified by three pro-
teomics data and validated on 635 clinical humoral specimens and 121 tissue specimens. A diagnostic multi-analyte 
model containing bile and serum biomarkers was established in cross-validation set by deep learning and validated 
in an independent external cohort.

Results The results of proteomics analysis and clinical specimen verification showed that bile clusterin (CLU) was sig-
nificantly higher in CCA body fluids. Based on 376 subjects in the cross-validation set, ROC analysis indicated that bile 
CLU had a satisfactory diagnostic power (AUC: 0.852, sensitivity: 73.6%, specificity: 90.1%). Building on bile CLU 
and 63 serum markers, deep learning established a diagnostic model incorporating seven factors (CLU, CA19-9, IBIL, 
GGT, LDL-C, TG, and TBA), which showed a high diagnostic utility (AUC: 0.947, sensitivity: 90.3%, specificity: 84.9%). 
External validation in an independent cohort (n = 259) resulted in a similar accuracy for the detection of CCA. Finally, 
for the convenience of operation, a user-friendly prediction platform was built online for CCA.

Conclusions This is the largest and most comprehensive study combining bile and serum biomarkers to differentiate 
CCA. This diagnostic model may potentially be used to detect CCA.
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Background
Cholangiocarcinoma (CCA) is known as a highly aggres-
sive malignancy. According to the anatomical site of 
the lesion, CCA can be divided into intrahepatic chol-
angiocarcinoma (iCCA), perihilar cholangiocarcinoma 
(pCCA), and distal cholangiocarcinoma (dCCA). As the 
second most common malignant tumor in the hepatobil-
iary system, CCA accounts for about ~ 3% of all gastro-
intestinal tumors [1] and has a poor prognosis with low 
5-year survival (7 to 20%) and high fatality rate (account-
ing for about 2% of the global annual cancer-related 
deaths), all of which boils down to its difficulty in early 
diagnosis [2, 3].

Diagnosing CCA is difficult because of its silent clini-
cal character and anatomic location. Currently, CCA 
is mainly detected by imaging methods, such as com-
puted tomography (CT), magnetic resonance imaging 
(MRI), and endoscopy, but their diagnostic powers are 
disappointing with a modest accuracy and an estimated 
sensitivity of only 6 to 71.9% [4, 5]. Serum CA19-9 is com-
monly used for CCA diagnosis, but its sensitivity and 
specificity are frustrating at best [6, 7]. Surprisingly, post-
operative pathology results report that 10–25% of patients 
who underwent surgical management for suspected CCA 
are ultimately free of cancer cells, highlighting an urgent 
need for more accurate diagnostic tools [5, 8, 9].

Bile is the direct microenvironment for the growth of 
bile duct tumor cells, and cancer-related proteins in CCA 
can be secreted into the bile and may potentially be used 
as biomarkers for diagnosis [10, 11]. In addition, many 
serum markers also change in CCA [7, 12]. The differen-
tially expressed proteins in the bile mainly reflect local 
changes while the serum markers mainly reflect system-
atic changes in CCA progression [4]. Thus, combining 
markers in the bile and blood could improve the accuracy 
in distinguishing CCA from other biliary diseases.

In this study, we identified and evaluated the power of a 
novel bile biomarker for the diagnosis of CCA. Based on 
this, a deep learning model was established by combining 
other serum markers. Finally, the diagnostic performance 
of the model was validated by another independent 
group.

Methods
Patient populations
This study was approved by the Human Research Ethics 
Committee of the First Hospital of Lanzhou University 
(LDYYLL2022-381) with an exemption of informed con-
sent and was conducted in accordance with the Declara-
tion of Helsinki principles. Clinical specimens came from 
two centers.

A total of 644 patients were divided into a discovery 
set, cross-validation set, and external validation set for 
the study (Additional file  1: Fig. S1). In the discovery 
set, the bile from 5 CCA patients and 4 patients with 
bile duct stones in the First Hospital of Lanzhou Univer-
sity was collected for proteomics analysis. In the cross-
validation set, 376 patients (193 males and 183 females) 
were recruited from the Department of General Surgery 
of the First Hospital of Lanzhou University, including 144 
CCA patients and 232 non-CCA patients from Septem-
ber 2018 to May 2022. The non-CCA group mainly con-
sisted of benign biliary diseases and non-CCA cancers; 
benign biliary diseases included chronic biliary tract dis-
eases and non-chronic biliary tract diseases. The chronic 
biliary tract diseases included bile duct stones (common 
bile duct (CBD) stones and intrahepatic bile duct (IBD) 
stones), cholangitic stenosis, choledochal cyst, and chole-
cystolithiasis, while the non-chronic biliary tract diseases 
included pancreatic duct stones and gallbladder polyps, 
and non-CCA cancers included pancreatic carcinoma 
(PC) and duodenal papilla carcinoma (Table  1). The 
included patients with CCA were mainly diagnosed by 
pathology from surgically resected specimens or biopsy 
specimens (open or laparoscopic surgical resection or 
ERCP-obtained biliary biopsy). Benign biliary diseases 
were diagnosed by imaging methods and laboratory tests 
and confirmed by endoscopy with a clinical follow-up of 
at least 1 year. During the 1-year clinical follow-up, spe-
cial attention was paid to ensure that none of the patients 
with non-CCA diseases showed clinical or imaging signs 
of CCA. Patients with both CCA and bile duct stones 
were excluded.

In the external validation set, 259 patients were 
recruited from the Cancer Hospital of the Chinese Acad-
emy of Medical Sciences from January 2020 to May 2022, 
including 87 CCA patients (53 males and 34 females). 
There was no statistical difference in age between the 
CCA group and the non-CCA group (Table  1). Data of 
63 features in the blood used for machine learning were 
collected from clinical information, including 37 blood 
biochemical features, 24 routine blood features, and two 
tumor biomarkers. General data of the 635 patients in 
the cross-validation set and external validation set was 
shown in Table 1, and the detailed information was listed 
in Additional file 2: Table S1.

Clinical specimens
The bile collected from the bile duct was mainly 
obtained during ERCP, PTC, or surgery. None of the 
cancer patients received chemotherapy prior to cholan-
giography intervention or surgical treatment. Approxi-
mately 1 to 6  mL of bile (average 3  mL) was collected 
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and transferred to a sterile tube each time. Bile and 
serum samples were shipped on ice immediately after 
being obtained, followed by centrifugation at 3000 × g 
for 15min at 4°C, and the supernatants were harvested 
and stored at − 80°C until the test.

LC–MS/MS analysis and proteomic data analysis
Briefly, proteins in the bile and cell supernatant were 
extracted and quantified with the Brandford test, fol-
lowed by alkylation and enzymatic digestion. The tryp-
tic-digested peptides of the bile were then labeled by 
the iTRAQ reagent kit according to the manufacturer’s 

Table 1 Patients characteristics

CCA  Cholangiocarcinoma, N TNM stage, ERCP biopsy with no TNM stage, CBD Common bile duct stones, IBD Intrahepatic bile duct stones, TBIL Total bilirubin, GGT  
Gamma-glutamyl transferase, TBA Total bile acid, CA19-9 Carbohydrate antigen 19–9

Characteristics Cross-validation set External validation set

CCA Non-CCA CCA Non-CCA 

Total number, n (%) 144 (38.3) 232 (61.7) 87 (33.6) 172 (66.4)

Age (years)

 Mean ± SD (range) 64.7 ± 9.3 (37–82) 60.8 ± 14.7 (18–89) 62.9 ± 10.4 (39–86) 59.3 ± 15.2 (22–85)

Gender, n (%)

 Male 92 (63.9) 101 (43.5) 53 (60.9) 99 (57.6)

 Female 52 (36.1) 131 (56.5) 34 (39.1) 73 (42.4)

Tumor location, n (%)

 iCCA 6 (4.2) – 4 (4.6) –

 pCCA 50 (34.7) – 23 (26.4) –

 eCCA 88 (61.1) – 60 (69.0) –

TNM stage, n (%)

 I 25 (17.4) – 9 (10.3) –

 II 63 (43.7) – 16 (18.4) –

 III 22 (15.3) – 29 (33.3) –

 IV 8 (5.6) – 20 (23.0) –

 N 26 (18.0) – 13 (14.9) –

Non-CCA group, n (%)

 CBD – 113 (48.7) – 116 (67.4)

 IBD – 8 (3.4) – 2 (1.2)

 CBD and IBD – 26 (11.2) – 5 (2.9)

 Pancreatic carcinoma – 17 (7.3) – 11 (6.4)

 Pancreatic duct stones – 14 (6.0) – 8 (4.7)

 Duodenal papilla carcinoma – 4 (1.8) – 2 (1.2)

 Cholangitic stenosis – 12 (5.2) – 7 (4.1)

 Cholecystolithiasis – 26 (11.2) – 15 (8.7)

 Gallbladder polyps – 6 (2.6) – 3 (1.7)

 Choledochal cyst – 6 (2.6) – 3 (1.7)

TBIL (μmol/L), n (%)

 ≥ 23 128 (88.9) 131 (56.5) 72 (82.8) 101 (58.7)

 < 23 16 (11.1) 101 (43.5) 15 (17.2) 71 (41.3)

GGT (U/L), n (%)

 ≥ 60 136 (94.4) 166 (71.6) 82 (94.3) 110 (64.0)

 < 60 8 (5.6) 66 (28.4) 5 (5.7) 62 (36.0)

TBA (μmol/L), n (%)

 ≥ 10 114 (79.2) 96 (41.4) 62 (71.3) 69 (40.1)

 < 10 30 (20.8) 136 (58.6) 25 (28.7) 103 (59.9)

CA19-9 (U/mL), n (%)

 ≥ 34 117 (81.3) 73 (31.5) 75 (86.2) 64 (37.2)

 < 34 27 (18.7) 159 (68.5) 12 (13.8) 108 (62.8)
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protocol but not with tryptic-digested peptides of cell 
supernatant. Then, the processed peptides of the bile 
and cell supernatant were performed by off-gel separa-
tion and nano-LC–MS/MS analysis. An EASY-Nlc 1000 
nanoflow LC instrument coupled to a high-resolution 
mass spectrometer (Q Exactive Plus, Thermo Fisher 
Scientific) was used for LC–MS/MS analysis, the sam-
ple was injected into a tunnel-frit trap column and the 
trapped analytes were then separated by an analytical 
column, and the separated peptides were then identified 
and selected for data-dependent acquisition due to their 
electrical charge. After getting these experiment data, the 
raw files were analyzed by MaxQuant (version 1.6) and 
then were identified as corresponding proteins compared 
to those in the Swiss-Prot human protein sequence data-
base (updated on 02/2019, 20,413 protein sequences). 
The false discovery rate of proteins was less than 1% 
(FDR < 1%) at both protein and peptide levels, and at least 
two peptides were identified for further data processing.

Western blotting and quantitative real-time PCR (qRT-PCR)
The proteins in the bile were extracted by acetone precip-
itation. The protein solution was then separated by SDS/
PAGE, transferred onto a PVDF membrane, and incu-
bated overnight at 4°C with rabbit anti-CLU antibodies 
(1:1000, Cell Signaling) or mouse anti-GAPDH (1:2000, 
Proteintech). The membrane was later incubated with a 
secondary antibody of goat anti-mouse or anti-rabbit IgG 
(1:2000, Cell Signaling) and then visualized with chemi-
luminescence detection. RT-PCR was performed accord-
ing to the instructions provided by the manufacturer 
using the qRT-PCR Kit (Thermo, USA). The forward and 
reverse PCR primers for CLU were 5′-GAG CAG CTG 
AAC GAG CAG TTT-3′ and 5′-CTT CGC CTT GCG TGA 
GGT -3′ respectively; whereas for GAPDH, the forward 
primer was 5′-CCA TCA CCAT CTT CCA GG-3′, and 
reverse was 5′-ATG AGT CCT TCC ACG ATA C-3′. The 
relative expression levels of CLU mRNA were compared 
with GAPDH using the  2−ΔΔCt value. Each experiment 
was repeated three times.

Immunohistochemistry (IHC) staining
A cholangiocarcinoma TMA slide (containing 90 CCA 
tissues and 31 interlobular bile duct tissues) was pur-
chased from Shanghai Outdo Biotech Co. Ltd. (Shanghai, 
China). Immunochemical Staining Kit (MXB, KIT-5002) 
and rabbit anti-CLU antibodies (1:400, Cell Signaling) 
were used for IHC staining. The images were analyzed 
by the Image pro plus 6.0 software. The expression inten-
sity of CLU was judged by two senior pathologists inde-
pendently without knowing any clinical and pathological 
data. Its staining intensity was divided into 4 grades: 0 
represented negative expression (negative), 1 represented 

weak expression (weak), 2 was moderate expression 
(moderate), and 3 was strong expression (strong). Finally, 
negative, moderate, and weak expressions (0–2 points) 
were defined as low expression, and strong expression (3 
points) was defined as high expression.

Enzyme-linked immunosorbent assay-ELISA
The ELISA kits were used to detect the level of CLU 
(E-TSEL-H0014, Elabscience) and CA19-9 (E-EL-
H0637c, Elabscience) in the bile or serum. First, the 
Reference Standard working solution and the samples 
are added to the Micro ELISA Plate, and then, the Bioti-
nylated Detection Ab working solution is added imme-
diately and incubated at 37°C for 90  min. Then aspirate 
or decant the solution from each well, add wash buffer 
to each well, and add HRP conjugate working solution to 
each well, then incubate for 30 min at 37°C. After wash-
ing again, add substrate reagent to each well and incu-
bate for about 15–20  min at 37°C. Finally, add a Stop 
Solution to each well and determine the optical density 
(OD value) of each well at once with a micro-plate reader 
set to 450 nm. The bile and serum needed to be diluted 
before the test, and to measure the level of CLU, the bile 
and serum were diluted 100- and 5000-fold, respectively; 
to measure the level of CA199, the bile and serum were 
diluted 10,000- and fivefold, respectively.

Deep learning method
Our deep learning method was mainly divided into three 
steps: feature selection, training for establishing the best 
diagnostic panel, and external validation. Firstly, a clas-
sification prediction model was built using the random 
forest (RF) method in the cross-validation set. Based on 
the tenfold cross-validation classification method, the 
data of 64 features from 376 patients were divided into 
ten parts, two of them were used for the testing cohort 
and eight of them were used for the training cohort. 
Then, the Least Absolute Shrinkage and Selection Opera-
tor (LASSO) method was used to select the best diagnos-
tic panel based on the criteria that the prediction value 
of minimum top-ranking features number was the same 
with the entire features, and the prediction value was 
mainly evaluated by some popular metrics, such as AUC 
value, accuracy (ACC), specificity, and sensitivity. Finally, 
the deep learning panel was evaluated by an external vali-
dation set to obtain a robust classification performance. 
Random forest and LASSO were carried out in glmnet 
version 4.1–3.

Statistical analysis
Continuous variables were expressed as median (inter-
quartile range) or mean ± SD (standard deviation) and 
compared using the Mann–Whitney U test or Student’s 
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t-test. Categorical variables were expressed as rate and 
compared with each other by the chi-square test. The 
expression of the same protein in different body fluids 
was compared by party rank sum test. Receiver operat-
ing characteristic (ROC) curves were used to evaluate 
the diagnostic performance of markers or panels and to 
establish cutoff levels, using the Youden index. The area 
under the curve (AUC) was calculated by the trapezoidal 
method, sensitivity, specificity, and accuracy (ACC) were 
calculated by standard 2 × 2 contingency tables, and a 
larger value represented better diagnostic performance. 
Decision curve analysis (DCA) was used to compare the 
diagnostic value of different clinical diagnostic models 
or markers. t-distributed stochastic neighbor embed-
ding (tSNE) algorithm was used to visually evaluate the 
effects of the diagnostic model. p-values less than 0.05 
were considered statistically significant. All analyses were 
performed with SPSS Statistics 20, GraphPad Prism ver-
sion 7.0, and R version 4.1.0 (R Foundation for Statistical 
Computing; http:// www.R- proje ct. org).

Results
Proteomic profiles of bile and cell supernatant of CCA 
Bile and cell supernatant proteomics were used to screen 
CCA candidate biomarkers (Fig. 1A). In the bile proteom-
ics, 1585 proteins were identified, and 167 differentially 
expressed proteins were screened based on the standard 
of fold change ≥ 5.0 or ≤ 0.2 in comparison between CCA 
and benign biliary diseases, including 130 upregulated 
proteins and 37 downregulated proteins (Fig. 1A, B and 
Additional file  2: Table  S2). The annotation analysis by 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) showed that these differentially 
expressed proteins were mainly related to tumorigenesis 
and cell-to-cell interactions, including chemokine signal-
ing pathway, regulation of apoptotic signaling pathway, 
and endocytosis (Fig. 1C and Additional file 1: Fig. S2A).

Cell supernatant collected from four CCA cell lines 
(TFK-1, HuCCT-1, RBE, and HCCC-9810) and one 
human intrahepatic biliary epithelial cell line (HIBEpiC) 
were used for label-free quantitative analysis, and a total 
of 932 proteins differently expressed were found, includ-
ing 273 upregulated proteins and 659 downregulated 
proteins (Fig. 1A, D and Additional file 2: Table S3). The 
GO and KEGG analysis indicated that these differentially 
expressed proteins were associated with signal transduc-
tion and immune regulation during tumor progression, 
including ECM-receptor interaction, endocytic vesicles, 
and endocytosis (Fig. 1E and Additional file 1: Fig. S2B).

There were 54 proteins elevated in CCA cell lines when 
compared with the HIBEpiC cell line (Fig. 1F). Five pro-
teins were screened out when intersecting the upregu-
lated proteins in the bile and supernatant (Fig.  1G), 

including CLU, COL6A1, GOLM1, QSOX1, and IGFBP1. 
Considering the limited number of our bile specimens, 
another bile proteomic dataset from the study by Marut 
Laohaviroj et  al. (external bile 1) [13] was added. Based 
on the standard of fold change ≥ 1.5 in comparison 
between CCA and non-CCA, 63 upregulated proteins 
were identified in external bile 1, but only CLU was found 
elevated in external bile 1 among the five candidate pro-
teins (Fig.  1H). Finally, CLU was selected for further 
studies.

The overexpression of CLU in CCA 
The level of CLU in CCA was verified in clinical speci-
mens and cells. Sixteen bile samples (8 from CCA and 8 
from benign biliary diseases) were collected for verifying 
the protein level of CLU. As shown in Fig. 2A, the level 
of CLU protein in CCA was higher, and there was little 
or no expression in the bile of benign biliary diseases. A 
tissue microarray (TMA) containing 121 surgical tissue 
specimens was used for immunohistochemistry stain-
ing, including 90 CCA tissues and 31 interlobular bile 
duct tissues (Additional file 1: Fig. S3). CLU was mainly 
located in the cytoplasm (Fig.  2B). Among the 90 CCA 
tissues, 89 were CLU-positive (98.9%). The positive 
tumor staining cases were then divided into weak, mod-
erate, and strong expression, resulting in 4 (4.5%) cases, 
36 (40.4%) cases, and 49 (55.1%) cases, respectively. 
In the 31 interlobular bile duct tissues, there were 12 
(38.7%) negative staining cases. Analysis of immunohis-
tochemistry images showed that the level of CLU in CCA 
was significantly higher (p < 0.001) (Fig. 2B). The Kaplan–
Meier survival analysis indicated that CCA patients with 
high CLU level had shorter overall survival (OS) time 
(p < 0.0001) and shorter relapse-free survival (RFS) time 
(p < 0.001) (Fig.  2C, D). However, there was no associa-
tion between CLU levels in CCA tumors and TNM stage, 
vascular invasion, lymph node affection, and metastasis 
(p > 0.05). Taken together, high expression of CLU could 
promote the progression of CCA.

As shown in Fig. 2E–G, the levels of CLU protein and 
mRNA were both highly expressed in four CCA cell lines 
(p < 0.05). We have successfully extracted five primary 
CCA cells from postoperative tissues, and CLU was also 
overexpressed in them (Fig. 2H–J).

The diagnostic value of bile CLU and serum CA19-9 in CCA 
To verify potential markers between bile CLU and serum 
CLU, 40 cases of bile and blood from patients with CCA 
or benign biliary diseases and 40 cases of blood from 
healthy donors were collected for pilot studies (Fig. 3A). 
As shown in Fig.  3B, C, the abundance of CLU in the 
serum and bile was higher in CCA when compared to 
the control group. The abundance of CLU in the serum 

http://www.R-project.org
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was particularly high, with a median level even in healthy 
donors of 94,251.6 (83,887.5, 107,707.6) ng/mL. How-
ever, the median of bile CLU even in CCA was only 154.6 
(73.7, 5945.9) ng/mL (Additional file 2: Table S4), signifi-
cantly lower than levels in the blood (p < 0.001). High-
abundant proteins are not suitable as diagnostic markers 
due to their low sensitivity [4]. Therefore, bile CLU was 
identified as a satisfactory diagnostic biomarker for CCA.

CA19-9 is found in both the serum and bile (Fig. 3D). 
As shown in Fig.  3E, F, the level of CA19-9 in the bile 
or serum was higher in CCA. In the CCA and benign 
biliary disease group, its median in bile was 280,276.9 

(130,513.2, 906,704.6) IU/mL and 177,343.8 (65,142.4, 
476,812.0) IU/mL, respectively, but in the serum, it was 
81.1 (37.0, 389.0) IU/mL and 23.4 (9.0, 59.9) IU/mL, 
respectively (Additional file  2: Table  S4), significantly 
lower than levels in bile (p < 0.001). In the same way, 
CA19-9 in the serum was more suitable as a diagnostic 
biomarker for CCA.

After that, a total of 376 patients were brought into 
the cross-validation set for further study (Fig.  3G). 
As shown in Fig.  3H, J, the abundance of bile CLU in 
CCA was higher, and ROC analysis showed a sat-
isfactory diagnostic capacity with an AUC of 0.852 

Fig. 1 Identification of differentially expressed proteins in bile and cell supernatant. A The flow chart of screening CCA candidate markers by bile 
and cell supernatant proteomics. B The heatmap of differentially expressed proteins in bile of CCA and benign biliary diseases by using LC–MS/
MS analysis; N1–N4 represented bile from four patients with benign biliary diseases, and T1–T5 represented bile from five CCA patients. C A chord 
dendrogram of the clustering of the differentially expressed proteins in bile by KEGG analysis. D The heatmap of differentially expressed proteins 
in cell supernatant. E A chord dendrogram of the differentially expressed proteins in supernatant by KEGG analysis. F A Venn diagram of 54 
co-upregulated proteins in supernatant from four CCA cell lines by using LC–MS/MS analysis. G The five co-upregulated proteins both in bile 
and cell supernatant, their gene names were listed on the right. H A Venn diagram showing CLU protein was also upregulated in the proteomics 
data from another external bile group
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(95%CI 0.806 to 0.899) (sensitivity of 73.6%, specific-
ity of 90.1%). Bile CLU in CCA was significantly higher 
than in benign biliary diseases and non-CCA cancers, 
and there was also no statistical difference in bile CLU 
concentration between malignant controls and non-
malignant controls (p = 0.23) (Additional file  1: Fig. 
S4A), and there was no correlation between bile CLU 
level and age (p = 0.60) or tumor stages in patients 
with CCA (rs =  − 0.104, p = 0.260) (Additional file  1: 
Fig. S4B). Comparing bile CLU levels between patients 
with chronic biliary tract diseases and those with non-
chronic biliary tract diseases, no statistical difference 
was found between them (Additional file  1: Fig. S4C). 
In addition, there was no difference in bile CLU level 
between lithiasis-associated CCA patients (n = 20) and 
single CCA patients (p = 0.26), but a significant dif-
ference was found between lithiasis-associated CCA 

patients and cholangiolithiasis patients (p < 0.001)( 
Additional file 1: Fig. S4D). The above results indicated 
that there was no association between bile CLU con-
centrations and chronic biliary tract conditions.

The abundance of serum CA19-9 was higher in CCA, 
and its AUC value was 0.783 (95%CI 0.735 to 0.830) (sen-
sitivity of 84.7%, specificity of 66.8%) (Fig. 3I, J). Due to 
the fact that bile CLU had a high specificity and a low 
sensitivity, while CA19-9 was just the opposite, we con-
sider establishing a model containing bile CLU and serum 
CA19-9 for better accuracy. As shown in Fig. 3J, the diag-
nostic value increased significantly in the CLU&CA19-9 
model with an AUC of 0.891 (95%CI 0.855 to 0.928), 
much higher than its two individual members. Its sen-
sitivity and specificity were both improved to 84.0% and 
81.9%, respectively (Fig. 3K) (Additional file 3: Table S5), 
indicating a better diagnostic performance.

Fig. 2 The overexpression of CLU in CCA. A Immunoblotting analysis of CLU in bile from 8 CCA patients and 8 benign biliary diseases patients. B 
Representative immunohistochemistry images and the level of CLU expression in CCA tissues and interlobular bile duct tissues (normal); the red 
arrow points to the interlobular bile duct. C, D The overall survival (OS) and relapse-free survival (RFS) curves of CLU in CCA; the blue represents 
low expression, and the orange represents high expression. E, F Immunoblotting analysis of CLU in cell and cell supernatant from four CCA cell 
lines and HIBEpiC cell line. G The mRNA level of CLU in four CCA cell lines and HIBEpiC cell line. H, I Immunoblotting analysis of CLU in cell and cell 
supernatant from five primary CCA cells and HIBEpiC cell. J The mRNA level of CLU in five primary CCA cells and HIBEpiC cell. *p < 0.05, **p < 0.01, 
***p < 0.001
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Biomarker panel development by deep learning
The diagnostic performance of a biomarker can be 
improved by combining it with different types of circu-
lating biomarkers. Data of each patient used for machine 

learning contained bile CLU and 63 serum features. 
In the cross-validation set, the top 30 features were 
screened out according to their accuracy (the left) and 
Gini index (the right) by random forest (RF) (Fig.  4A), 

Fig. 3 ELISA assay and ROC analysis of CLU or CA19-9 in the bile and serum. A A summary of the patient cohort used for pilot study of CLU. B ELISA 
analysis of CLU in serum from 40 CCA patients, 40 benign biliary diseases patients, and 40 healthy donors. C ELISA analysis of CLU in bile from 40 
CCA patients and 40 benign biliary diseases patients. D A summary of the patient cohort used for the pilot study of CA19-9. E, F ELISA analysis 
of CA19-9 in the serum and bile from 40 CCA patients and 40 benign biliary diseases patients. G A summary of the patient cohort in cross-validation 
set. H, I ELISA analysis of bile CLU and serum CA19-9 from 144 CCA patients and 232 non-CCA patients. J The ROC curves of bile CLU, serum CA19-9, 
and CLU&CA19-9; the blue curve represents CLU, the green curve represents CA19-9, and the red curve represents CLU&CA19-9; the data means 
AUC (95%CI). K The accuracy (ACC), sensitivity, and specificity of bile CLU, serum CA19-9, and CLU&CA19-9. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 4 The diagnostic panel development by machine learning. A The 30 top-ranked features were screened by random forest model, and they 
were ranked by accuracy (left) and Gini index (right); the features closer to the upper right were more important. B The correlation matrix 
between the top 10 features, including CLU, CA19-9, DBIL, IBIL, ALP, TBIL, GGT, TG, LDLC, and TBA; the numbers represent the correlation coefficient 
(r) between the two features. C ROC curves of the seven-panel and its members; the data means AUC (95%CI). D tSNE analysis of the seven-panel; 
the blue represents CCA, and the pink represents non-tumor. E The DCA analysis of the seven-panel, CLU and CA19-9; the green represents CA19-9, 
blue represents CLU, and red represents the seven-panel. F ROC curve of the seven-panel in the external validation set; the data means AUC 
(95%CI). AUC is the area under the curve. r ≥ 0.8 represents high correlation, 0.5 ≤ r < 0.8 represents strong correlation, 0.3 ≤ r < 0.5 represents weak 
correlation, and r < 0.3 represents no correlation
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and CLU, CA19-9, and bilirubin contributed most to 
the RF model. Their diagnostic values were identified by 
ROC analysis (Additional file  3: Table  S6), and only the 
top 10 features had satisfactory AUC values, including 
CLU, CA19-9, DBIL, IBIL, ALP, TBIL, GGT, TG, LDLC, 
and TBA. A low correlation between different bio-
markers could enhance the content of the message and 
improve the diagnostic performance [14]. The correlation 
matrix between the 10 markers showed that there was a 
high correlation between TBIL, DBIL, and IBIL (r > 0.5, 
p < 0.001), which could be explained by their clinical rela-
tionship, similar to the same principle applied to the high 
correlation between GGT and ALP (r > 0.5, p < 0.001) 
(Fig.  4B). The other markers had low correlations with 
each other (p < 0.05).

An optimal selection about the number of features 
is critical in establishing a classification model. Based 
on the top 10 selected markers, the LASSO method 
was applied to establish an optimal classification model 
(Additional file 1: Fig. S5A). Finally, the seven-panel was 
identified to be the optimal diagnostic model, includ-
ing CLU, CA19-9, IBIL, GGT, TG, LDLC, and TBA, 
and there was little or no correlation (r < 0.5) between 
the seven biomarkers (Fig. 4B). As shown in Fig. 4C, the 
seven-panel model had a much higher AUC value (AUC: 
0.947, 95%CI: 0.925 to 0.968), and its sensitivity and spec-
ificity were both improved to 90.3% and 84.9%, indicating 
a great diagnostic accuracy (ACC of 87.0%) (Additional 
file 3: Table S5), and the seven-panel model had no cor-
relation with TNM stage (p = 0.410), lymph node metas-
tasis (p = 0.537), and distant metastasis (p = 0.537).

tSNE algorithm was used to simplify the complex con-
fusion matrix, which can help us visualize and intuitively 
understand the distribution of diseases. The tSNE result 
of the seven-panel showed that the CCA group and con-
trol group formed different clusters (Fig. 4D), indicating 
that even under visualization conditions, the seven-panel 
could also distinguish CCA well. Decision curve analy-
sis (DCA) was used to observe the clinical performance 
of CLU, CA19-9, and the seven-panel, and the result 
showed that the seven-panel boosted more clinical over-
all benefits in differentiating CCA (Fig. 4E).

External validation for the seven-panel model
In order to further evaluate the stability and reliability 
of the seven-panel model, we applied it to an independ-
ent external validation set of 259 patients, including 87 
patients with CCA and 172 patients with non-CCA dis-
eases (Table 1). In the external validation set, the seven-
panel performed a satisfactory prediction ability with an 
AUC of 0.925 (Fig.  4F), achieving a sensitivity of 87.4% 
and specificity of 83.7% (Additional file 3: Table S5). The 
tSNE and DCA analysis also showed a perfect diagnostic 

power (Additional file 1: Fig. S5B and 5C). In summary, 
these results suggested that the seven-panel could accu-
rately diagnose CCA and meet the actual needs of clinical 
decision-making.

Web server of CCA diagnosis according to the panel
To facilitate the use of this model in clinical practice, we 
established a user-friendly online model on the China 
Prediction Platform of Digital Disease (CPPDD) (availa-
ble at: http:// cppdd. cn/ CCA/). Users need only input the 
specific values of the seven biomarkers, and then click 
the “Submit” button (Fig. 5). After calculation, the model 
would show a conclusion that whether this patient has 
CCA or not with a percentage probability. Users should 
double-check the units to ensure correct results.

Discussion
In this study, we innovatively discovered a novel diagnos-
tic biomarker CLU for CCA by proteomics. To improve 
its diagnostic accuracy, deep learning algorithms were 
used to develop a diagnostic model comprised of bile 
and serum biomarkers (Fig. 6). Until now, this is the larg-
est and most comprehensive study combining bile and 
serum biomarkers to differentiate CCA.

Accurately diagnosing CCA has always been a huge 
pain, and searching for new diagnostic methods is urgent. 
The high heterogeneity of CCA can lead to inaccurate 
results from primary tumor-based proteomic, but body 
fluids reflecting global changes in pathophysiological 
status are a great source for searching novel and reliable 
diagnostic markers [15]. Moreover, proteins in bile are 
abundant and relatively easy to detect, so identifying the 
differently expressed proteins in bile turned out to be a 
good strategy for searching novel diagnostic biomarkers.

During the discovery stage, a total of 1585 proteins 
were identified in bile proteomic, much higher than 
previous studies [16–18]. These differently expressed 
proteins were mainly associated with tumorigenesis, 
indicating specificity for CCA. In order to confirm that 
the differential proteins in bile were indeed secreted by 
tumor cells rather than inflammatory cells or other cells, 
we performed proteomics of supernatant from CCA cells 
and HIBEpiC, and considering the limitations of single-
center studies, we have cited bile proteomics data from 
another study [13]. Finally, the analysis of three prot-
eomic data showed that protein CLU was the most suit-
able biomarker for CCA.

Clusterin (CLU) is a stress-activated, ATP-inde-
pendent molecular chaperone, normally secreted from 
cells, and can promote cancer development by regulat-
ing cell proliferation, apoptosis, and cycle. It is highly 
expressed in several cancers, including esophagus, pros-
tate, and breast [19, 20]. Although Li et al. performed the 

http://cppdd.cn/CCA/
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immunohistochemistry of CLU in 13 cases of CCA tis-
sues, they did not conduct further studies [21], and this 
study was the first to deeply and comprehensively explore 
its diagnostic ability in CCA. In this study, the overex-
pression of CLU in CCA was identified in cell lines, pri-
mary cells, and clinical specimens. We also found a close 
correlation between CLU and CCA prognosis. Currently, 
the most commonly used diagnostic marker for cholan-
giocarcinoma in clinical practice is CA19-9, although its 
diagnostic effect is moderate [22].

Previous studies have pointed out that serum CLU can 
be used for cancer diagnosis [23, 24]. Before verifying the 
diagnostic utility of CLU for CCA, pilot studies were per-
formed to identify its expression level in different types 
of specimens. The results showed that CLU in the serum 
was particularly noteworthy, while its abundance in bile 
was relatively low. The main probable reason is that in 
addition to being secreted in cholangiocytes, CLU is also 
secreted into the serum from other organs, such as the 
brain, heart, liver, lung, and prostate [25, 26]. However, 
high-abundance proteins are less sensitive for diagnosis, 
and low-abundance proteins are just the opposite [4]. 
Therefore, bile CLU was selected as a potential diagnostic 

marker for CCA. CLU is a secreted protein that can be 
secreted by tissues into body fluids [27], and this study 
indicates that CLU is overexpressed in CCA tissues; in 
addition, bile is the body fluid adjacent to CCA tissues, 
so the elevated bile CLU concentrations in CCA patients 
may be secreted from the cancer tissues. Several stud-
ies using proteomics found a number of differentially 
expressed proteins specific for CCA in the bile, such as 
Mac-2BP, SSP411, and AAT, but due to their small vali-
dation cohort size (26 to 54 CCA subjects) and only uti-
lizing a single marker, their diagnostic ability was limited 
[13, 28, 29]. In our study, a total of 644 subjects were 
enrolled to identify the diagnostic value of bile CLU and 
serum CA19-9, and ROC analysis showed that bile CLU 
was significantly superior to the diagnostic capacity of 
CA19.9 (DeLong test, p < 0.05). CLU had a good speci-
ficity but lacked sensitivity, while CA19-9 was just the 
opposite due to its high expression in some benign bil-
iary diseases. But combining them into a panel improved 
the diagnostic value for CCA, and there were 33 CCA 
patients with Lewis-antigen negative (CA19-9 < 40  IU/
mL), of which 81.8% (27 patients) had elevated bile fluid 
CLU. In conclusion, the diagnostic value of two mutually 

Fig. 5 The diagnostic website of CCA. A Patients with biliary tract diseases seeking medical help. B Simple web interface to input the value 
of the seven markers. C The result page of the online website; the risk of CCA was expressed as percentages probabilities
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compensating indicators can be significantly improved by 
combining them.

During the development of CCA, various indicators 
in the blood changed, such as transaminases and biliru-
bin, but they lack CCA specificity and are also similarly 
changed in other biliary diseases [30]. Each biomarker 
in the blood and bile reflects the unique characteristics 
of the patient, and we suspected that combining several 
different types of biomarkers may result in a better diag-
nostic tool. Deep learning is always used to learn logical 
patterns by analyzing mass data with mathematical algo-
rithms and to make prediction models. In recent years, 
deep learning has been widely used in cancer diagnosis 
and prognosis prediction models and has been identi-
fied to improve the accuracy of cancer recurrence and 
survival prediction [31]. In this work, deep learning was 
used to build a diagnostic model consisting of bile CLU 
and other serum markers.

To establish a multi-markers diagnostic panel, each 
marker should have diagnostic power and should 
not correlate with each other, so as to make sure that 
each marker possesses unique information about the 
stage of the patient [32]. Based on the above criteria, 
a seven-panel model was established from 64 mark-
ers in the cross-validation set by random forest and the 
LASSO method. Compared with its individual compo-
nents, the diagnostic capacity of the generated model 

was significantly improved (DeLong test, p < 0.05), and 
when compared to the combination of CLU and CA19-
9, the seven-panel had a better prediction power with 
AUC increasing from 0.891 to 0.947 (Additional file  3: 
Table  S5). As the best dimension reduction visualiza-
tion available at this time, tSNE can help us visualize and 
intuitively understand the distribution of the disease [14]. 
The tSNE algorithm showed that the seven-panel could 
visually distinguish CCA effectively, indicating that the 
tSNE algorithm can be applied to the visualization output 
of the diagnostic model of CCA. The prediction power of 
the seven-panel model was then validated in an external 
validation set, which was completely independent from 
the modeling process.

The prediction model contained seven markers, includ-
ing bile CLU, CA19-9, indirect bilirubin (IBIL), gamma-
glutamyl transferase (GGT), low-density lipoprotein 
cholesterol (LDL-C), triglyceride (TG), and total bile 
acid (TBA). Serum bilirubin mainly includes direct bili-
rubin (DBIL), indirect bilirubin (IBIL), and total bilirubin 
(TBIL), and they are often elevated due to liver function 
impairment or biliary obstruction [33]. Gamma-gluta-
myl transferase (GGT) is an enzyme of glutathione and 
cysteine metabolism and is the standard liver enzyme 
test reflecting cholestasis and bile duct obstruction [34]. 
Total bile acids (TBA) are the end product of cholesterol 
metabolism in the liver, and it always increases during 

Fig. 6 The overall workflow of establishing a seven-panel model and an online prediction platform for CCA 
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hepatocellular lesions or biliary obstruction [35]. In sum-
mary, GGT, IBIL, and TBA reflected biliary strictures, 
and they always increase during CCA development [36, 
37]. LDL-C was mainly related with cardiovascular dis-
eases, but in a prospective cohort study, LDL-C levels 
were found to be closely associated with cancer mortal-
ity, which may be due to cholesterol levels [38]. Choles-
terol and its metabolites play an important role in tumor 
biology, especially in oncogenic signaling pathways, 
ferroptosis, and tumor microenvironment [39]. Lipid 
accumulation can aggravate tumor progression via AMP-
kinase and mTOR signaling, and TG plays an irreplace-
able role in this pathway [40, 41]. In summary, the seven 
biomarkers are closely related to cancer development.

There are many methods to distinguish CCA from 
benign biliary strictures, but their results are frustrating 
(Additional file 3: Table S7). Endoscopic retrograde chol-
angiopancreatography (ERCP) fluoroscopy with brush 
cytology (ERCP-BC) (and/or forceps biopsy) or fine nee-
dle aspiration (FNA) is the primary sampling technique 
for identifying CCA, but their poor predictive values 
(pooled sensitivity of 6–65%) are often challenged by 
insufficient amount of tissue specimens and location and 
size of the lesion [5, 42]. Serum proteins were also used 
for CCA diagnosis, such as fucosylated fetuin-A, CA50, 
and MMP-7 (pooled sensitivity of 55.3–75%, specificity 
of 78–90%) [43–45]. The extracellular vesicles in the bile 
and serum also were used for CCA diagnosis albeit with 
poor AUC value (0.696–0.759) [46, 47]. Lately, proteins 
and nucleic acids in bile were used for CCA diagnosis as 
well, such as decreased total bile acids, protein CMA1, 
and MCM-5, but their sensitivity or specificity was low 
[48, 49]. In the non-invasive methods, proteins and 
exosomes in urine also could be used to distinguish CCA 
with an AUC value of 0.68–0.82 [50, 51]. In contrast, our 
method could distinguish CCA better, providing a diag-
nostic option for patients who might not be keen on sur-
gery, while also adding to the current CCA evaluation 
tool available.

CCA is a rapidly developing tumor and the technique 
of bile collection is highly demanding, and many stud-
ies only managed to enroll a small cohort size, while we 
collected a large number of bile samples from two cent-
ers. In addition, this is the first study to use deep learning 
to combine bile and serum markers for CCA diagnosis. 
Finally, for further application, a user-friendly prediction 
platform for CCA was established online.

There were also some limitations in our study. This 
study population is entirely Chinese, and a larger 
cohort study involving patients with CCA or benign 
biliary diseases from multiple medical centers will be 
conducted to fully verify the diagnostic ability of this 
diagnostic model and strive for early application in 

clinical diagnosis. Another limitation is that it is dif-
ficult to collect bile because ERCP and other related 
surgical procedures are not available in all medi-
cal facilities, but fortunately, these techniques have 
become more widely known in recent years. In addi-
tion, the oncogenic mechanism of CLU in CCA has not 
been elucidated; thus, cell and animal experiments are 
needed to explore it in the later stage.

Conclusions
To the best of our knowledge, this is the largest and 
most comprehensive study using different body fluid 
biomarkers to efficiently distinguish CCA. This study 
established a multi-markers diagnostic panel for CCA 
utilizing a discovery-verification-validation pipeline. 
Our findings suggest that the seven-panel model would 
be a promising method to predict the occurrence of 
CCA.
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