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Abstract 

Background Major depressive disorder (MDD) has a significant impact on global burden of disease. Complications 
in clinical management can occur when response to pharmacological modalities is considered inadequate and symp-
toms persist (treatment-resistant depression (TRD)). We aim to investigate inflammation, proxied by C-reactive protein 
(CRP) levels, and body mass index (BMI) as putative causal risk factors for depression and subsequent treatment resist-
ance, leveraging genetic information to avoid confounding via Mendelian randomisation (MR).

Methods We used the European UK Biobank subcohort ( n = 451, 025 ), the mental health questionnaire (MHQ) 
and clinical records. For treatment resistance, a previously curated phenotype based on general practitioner (GP) 
records and prescription data was employed.

 We applied univariable and multivariable MR models to genetically predict the exposures and assess their causal 
contribution to a range of depression outcomes. We used a range of univariable, multivariable and mediation MR 
models techniques to address our research question with maximum rigour. In addition, we developed a novel statisti-
cal procedure to apply pleiotropy-robust multivariable MR to one sample data and employed a Bayesian bootstrap 
procedure to accurately quantify estimate uncertainty in mediation analysis which outperforms standard approaches 
in sparse binary outcomes. Given the flexibility of the one-sample design, we evaluated age and sex as moderators 
of the effects.

Results In univariable MR models, genetically predicted BMI was positively associated with depression outcomes, 
including MDD ( β ( 95% CI): 0.133(0.072, 0.205)) and TRD (0.347(0.002, 0.682)), with a larger magnitude in females 
and with age acting as a moderator of the effect of BMI on severity of depression (0.22(0.050, 0.389)). Multivariable MR 
analyses suggested an independent causal effect of BMI on TRD not through CRP (0.395(0.004, 0.732)). Our mediation 
analyses suggested that the effect of CRP on severity of depression was partly mediated by BMI. Individuals with TRD 
( n = 2199 ) observationally had higher CRP and BMI compared with individuals with MDD alone and healthy controls.

Discussion Our work supports the assertion that BMI exerts a causal effect on a range of clinical and questionnaire-
based depression phenotypes, with the effect being stronger in females and in younger individuals. We show that this 
effect is independent of inflammation proxied by CRP levels as the effects of CRP do not persist when jointly esti-
mated with BMI. This is consistent with previous evidence suggesting that overweight contributed to depression 
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even in the absence of any metabolic consequences. It appears that BMI exerts an effect on TRD that persists 
when we account for BMI influencing MDD.

Keywords Mendelian randomisation, Body mass index, Depression

Background
Effects of BMI and inflammation on depression 
and treatment resistance
Depression is a highly prevalent mental health disorder, 
consistently ranked among the top three leading causes 
of disability worldwide [1]. In people with a more severe 
presentation, prescription of an anti-depressant medica-
tion, coupled with psycho-social interventions, is rec-
ommended as first-line management [2]. For research 
purposes, response can be quantified as a meaning-
ful reduction in a symptom severity scale, such as the 
Composite International Diagnostic Interview (CIDI) or 
Patient Health Questionnaire-9 (PHQ9) and may differ 
among different antidepressant agents [3]. It is recom-
mended that, if a satisfactory symptom reduction cannot 
be achieved within the first 6 weeks, then treatment can 
be augmented with other agents, including other antide-
pressants, lithium and anti-psychotics [4].

An inadequate response to at least two successive anti-
depressant medications, each administered for at least 
6 weeks, is referred to as treatment resistant depression 
(TRD) and affects at least 7% of those initially diagnosed 
with depression [5]. Identifying contributors to treatment 
resistance early could potentially assist prompt manage-
ment and guide appropriate interventions targeting other 
pathways that may predispose to treatment resistance. 
Recent advances in electronic health record analysis have 
allowed for the definition of a TRD phenotype in very 
large databases of routinely collected healthcare data, 
allowing linkage with existing genetic databases [6].

Overweight and obesity have also been shown to pre-
dict the development of depression in multiple obser-
vational studies. This relationship could be explained by 
worsening physical health with obesity which may in turn 
affect mood. A meta-analysis of 15 prospective cohort 
studies estimated that being overweight was associated 
with a 27% increase in the odds of subsequently develop-
ing depression. There is also evidence for a dose-response 
relationship, with obese individuals having higher risk 
for depression [7]. This relationship could be partially 
explained by social stigma due to the negative perceptions 
of overweight/obesity in certain cultures [8]. Another 
dimension of the effect is its potential appearance later in 
life. A meta-analysis reported a positive association only 
in adults older than 20 years of age but not in children 
and adolescents [7]. Recent studies derived a binary clas-
sification of overweight (metabolically favourable and 

unfavourable adiposity) based on metabolic sequelae, 
namely hyperlipidemia, compromise in liver function, 
and sex hormone levels [9, 10]. Whilst individuals with 
favourable adiposity face much less of the commonly 
described adverse effects of high adiposity, both pheno-
types appeared to exert effects of similar magnitude on 
the risk of multiple depression outcomes [10]. This was 
interpreted as a predominantly social, rather than bio-
logical, effect. Multiple studies have investigated the 
effects of weight loss on depressive symptoms in people 
with overweight or obesity. In general, caloric restriction, 
behavioural training, or supplements were used as inter-
ventions to encourage weight loss, and weight loss was 
found to reduce depressive symptoms in most studies, as 
collated in a systematic review [11].

One aspect of the downstream metabolic conse-
quences of overweight that is not explicitly captured by 
the phenotype of unfavourable adiposity is inflamma-
tion. Furthermore, evidence from genome wide associa-
tion studies has suggested genetic variants important for 
cytokine and immune regulation predict major depres-
sive disorder (MDD) [12]. C-reactive protein (CRP) is 
a protein synthesised by the liver as part of the inflam-
matory response. Measurement of CRP in serum is a 
common part of investigations for inflammatory condi-
tions, e.g. microbial infections and auto-immune condi-
tions. Given a stable general medical status, CRP levels 
are largely stable and multiple observational studies have 
investigated its potential utility as a proxy for disease 
progression in infectious disease [13] and autoimmune 
conditions. Despite its predictive value, its potentially 
causative role in driving the pathophysiological course 
of a disease has been disputed in multiple settings such 
as coronary heart disease [14, 15]. In depression, recent 
work has indicated a higher CRP in 102 individuals with 
TRD compared with treatment-responsive patients and 
controls [16].

Despite the advantage of large sample sizes and exten-
sive phenotyping that UKB offers, additional care has 
to be taken to avoid the inherent limitations of obser-
vational data. As phenotypes may be correlated due to 
confounding rather than a true causal relationship, the 
measurement of observational associations alone may 
not reflect a causal mechanism [17]. Mendelian randomi-
sation (MR) is an epidemiological approach that employs 
genetic variants, most commonly single nucleotide poly-
morphisms (SNPs) as instrumental variables in order to 
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circumvent environmental confounding [18]. By geneti-
cally predicting the levels of an exposure such as CRP by 
a set of relevant SNPs, the proxied levels of CRP reflect a 
value of CRP that may not be affected by later-life influ-
ences that could distort the value (e.g. BMI, smoking, 
auto-immune conditions). Associations between geneti-
cally predicted CRP and an outcome of interest can then 
much more readily be interpreted as a causal effect [19].

Previous work investigating the causal role of CRP, 
interleukin-6 (IL-6, major moderator of CRP), BMI and 
specific symptom dimensions of depression (sleep, appe-
tite, suicidality) used LD score regression and a range of 
two-sample MR analyses. The results of this study did not 
find associations of CRP with any of the outcomes but 
report an association of IL-6 with suicidality [20]. MR 
has also been used to investigate how BMI and fat mass 
affects mood outcomes [12, 21–23].

The expansion of genome-wide association studies 
(GWAS) has lead to the discovery of multiple new signifi-
cant causal associations. However, it is likely that many 
are false positives due to pleiotropy, the phenomenon 
whereby a SNP is an invalid IV due to exerting an effect 
on the outcome not through the exposure of interest. 
[24]. Multivariable MR (MVMR) can be used to assess 
whether an exposure causally influences an outcome con-
ditional on a larger set of genetically instrumented expo-
sures [25, 26]. Incorporating additional exposures stops 
them from acting as pleiotropic pathways and because 
of this MVMR is seen to be more robust than univari-
able MR (UVMR). Indeed, a wealth of evidence exists 
CRP as a downstream consequence of high body mass. 
For example, a recent GWAS of serum CRP levels on 
204,402 individuals found that adjusting for BMI signifi-
cantly reduced the strength of association between CRP 
and well known obesity genes (FTO [27], TMEM18 [28], 
ABO, previously described genes for obesity) [29].

In this paper, we aim to estimate the causal contribu-
tions of CRP and BMI on TRD and other depression 
phenotypes using a combination of UVMR, MVMR 
and causal mediation analyses. We further investigate 
whether these highly correlated exposures exert an inde-
pendent effect on depression phenotypes or if their effect 
is mediated, and if these relationships are constant across 
age distributions.

Methods
Data sources
We used UK Biobank (UKB) as the primary data source 
for genetic and phenotypic information. UKB is a pro-
spective cohort study that recruited approximately 
500,000 individuals between the ages 37 and 73 from 
2006 to 2010 [30]. An extensive, validated questionnaire 
was completed by all participants gathering information 

on sociodemographic variables, environmental exposures 
and behaviours. All individuals were genotyped; specifi-
cally, single nucleotide polymorphisms (SNP) genotypes 
were obtained from the UKB AxiomTM Array (450,000 
individuals) and the UKBiLEVE array (50,000 individu-
als). These data have undergone rigorous quality checks 
[31]. Despite the public availability of better powered 
summary statistics, we restricted the analysis to UKB 
where access to individual-level data allowed for more 
flexibility in investigating a range of age- and sex-strati-
fied analyses.

Exposures
We used BMI measurements and serum levels of CRP. 
Both exposures are associated with depression or TRD in 
observational epidemiological studies [5, 16, 32, 33]. We 
hypothesised that low-grade inflammation could be cap-
tured by serum levels of CRP [14]. This biomarker is part 
of the blood biochemistry test performed in UKB and 
is available in 429,141 European participants. For BMI, 
we used the baseline measurement taken at study enrol-
ment. Data on 451,052 participants of European ances-
try was available. Inverse normalised CRP and BMI were 
used to provide a more symmetric distribution than their 
raw values and to simplify the interpretation of resulting 
causal estimates as the effect of a 1 standard deviation 
(SD) higher exposure on the outcome risk.

To assess the independent effects of adiposity and 
inflammation on depression outcomes beyond the tra-
ditional BMI measurement, we report a more granular 
approach where we examined two distinct gentically pre-
dicted phenotypes: unfavourable (UFA) and favourable 
adiposity (FA) [34]. The FA and UFA genetic sub-group-
ings were defined based on how SNPs that affect body fat 
percentage are associated with metabolic markers (high-
density lipoprotein, sex hormone binding globulin, tri-
glycerides, aspartate transaminase, alanine transaminase) 
[34]. These two disjoint sets of SNPs (FA = 36 SNPs, UFA 
= 38 SNPs) were used to separately instrument body fat 
percentage and to perform the MR analyses described 
in MR section. A previous study used MR to assess the 
causal relationship between FA, UFA and depression. 
It found a differentiation between the two, observing a 
significant causal effect of FA on depression, and only a 
modest effect of FA [10].

Outcomes
Multiple outcomes were derived in UKB participants 
based on both the mental health questionnaire (MHQ) 
and electronic health records. Previous works have 
described in detail the MHQ [35]), where questionnaires 
covering a range of psychological measurements (depres-
sion, anxiety, unusual experience, post-traumatic stress, 
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substance use) were emailed to a subset of UKB partici-
pants and were completed by n = 157, 366 individuals. 
An additional source of information is through linked 
electronic health records, including general practitioner 
(GP) visits. Here, we used a subset of n = 230, 000 UKB 
participants and used codes to classify participants as 
having been diagnosed with depression. We use five out-
comes: (1) GP diagnosis of any of the read codes describ-
ing depressive disorders [6]; (2) lifetime MDD defined 
by the MHQ measurement [35]; (3) PHQ-9 [36] and (4) 
CIDI [37] depression severity measures (MHQ [35]); 
and (5) TRD [6]. A previous work in UKB underlined the 
low accuracy of self-reported depression measures and 
marked dilution of GWAS signals compared with clini-
cal diagnostic phenotyping [Cai2020]. To guard against 
such potentially low resolution of the phenotype, we used 
both clinical diagnoses (GP diagnosis) and questionnaire 
data that was filled in by the participants, namely CIDI 
and PHQ9. These two continuous outcomes were filled 
in by MHQ participants irrespective of diagnosis both 
measure depression. A notable difference is that PHQ-9 
focuses on the current severity of depressive symptoms 
in the past 2 weeks, whereas the CIDI targets the dura-
tion and impact of symptoms.

TRD
Linkage of the GP electronic health records and prescrip-
tion data, enabled coding of TRD with information on 
antidepressants prescribed and TRD coded when indi-
viduals were prescribed at least two different antidepres-
sants for 6 weeks. For the purpose of this study, we define 
the treatment interval at 6 weeks, which is more conserv-
ative than the four-week change encouraged by prescrib-
ing guidelines [38]. This conservative threshold helps 
reduce the likelihood that drug switching was due to side 
effects, while still allowing for adequate efficacy.

Statistical analyses
Observational associations
As a baseline model, study outcomes were directly 
regressed on the observed values of the exposures. For 
continuous outcomes (CIDI, PHQ-9), multivariable lin-
ear models were used. For binary outcomes, we used 
logistic regression. All models were adjusted for age, 
assessment centre and sex.

MR
A series of one-sample MR analyses were conducted 
within the UKB cohort. Instrument Selection: To avoid 
winner’s curse bias (inflation of effect estimates due to 
random variation if the same dataset is used for selec-
tion and analysis [39]), external GWAS datasets were 
screened for genome wide significant SNPs (P<5×10−8). 

SNPs were identified that associated with CRP, BMI and 
MDD in publicly available GWAS studies not overlap-
ping with UKB [12, 40, 41]. For CRP, SNPs reported by 
the CHARGE study were extracted [29], whilst for BMI, 
the Locke et al. study was used [41] with a further speci-
fication of a European-focused instrument of 73 SNPs 
as described by Tyrrell and co-authors [22]. Of the 97 
reported SNPs in the Locke et  al. study [41], we follow 
Casanova et  al. [10] and limit this to European-specific 
76 SNPs. Three further SNPs are excluded due to known 
pleiotropic effects leading to the final 73 SNPs that con-
stitute the instrument. Specifically, the SNPs rs11030104 
(BDNF), rs13107325 (SLC39A8), are excluded because 
of associations with phenotypes that likely influence 
depression, respectively with regular smoking, with BP 
and HDL, and with many traits including alcohol, testos-
terone and cognitive domains. Clumping was performed 
with a window of 50kb and an r2 of 0.001 was used to 
exclude all SNPs in pairwise linkage disequilibrium 
(LD). This ensured our instrument set was comprised of 
approximately uncorrelated SNPs. For the analysis where 
all three CRP, BMI and MDD were genetically proxied, a 
genetic risk score from the 178 Levey et al. variants was 
used for MDD [42] in order to facilitate the computation-
ally expensive bootstrap procedure with a single instru-
ment that retains as much variance explained as possible.

After extraction of genotype dosages at the individual 
level, individual LD matrices were constructed. If any 
non-negligible amount of pairwise LD was observed 
( r2 > 0.05 ) for two SNPs on the same chromosome, the 
SNP with the largest p-value was retained.

MR designs
The different MR analyses reported are visually presented 
in Fig. 1. All analyses follow the one-sample MR frame-
work, where the exposure (in our case CRP and BMI), 
genetic variants and the outcomes (depression and TRD) 
are measured in the same individuals [43]. Within this 
one-sample framework, we further apply: (a) univariable 
MR (UMVR) to estimate total causal effects; (b,c) mul-
tivariable MR (MVMR) to estimate direct effects and to 
perform mediation analysis; (d) pleiotropy robust MVMR 
as a sensitivity analysis.

MR analysis summary
The following steps were taken in order to rigorously 
perform the MR analysis. Firstly, to measure instrument 
strength, we report the mean F statistic for UVMR analy-
ses and the conditional F-statistic [44] for multivariable 
MVMR analyses. This latter statistic provides a measure 
of how well a single exposure is instrumented condition-
ally on the other exposures. Low values indicate the pres-
ence of multi-collinearity in the genetically predicted 
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exposures, which leads to weak instrument bias. Secondly, 
individual-level data UVMR analyses in UKB were car-
ried out using two-stage least squares (TSLS) approach 
for continous outcomes. For binary outcomes, the sec-
ond stage linear regression was replaced with logistic 
regression (otherwise known as two stage predictor sub-
stitution). To implement the MVMR analysis, whilst 
protecting against bias due to weak instruments and 
pleiotropy, we employed a novel extension of the recently 
proposed technique of Collider-Correction [45] to the 
multivariable setting (Fig.  1d, see Appendix for further 
details). Thirdly, whilst MR methods are generally robust 
to traditional confounding, they are more susceptible to 
genetic confounding due to population stratification [46]. 
To address this, we adjust for the first five genetic prin-
cipal components in all analyses [47]. This way, we also 
aim to partly adjust for relatedness; a stricter approach of 
completely excluding individuals that are related would 
reduce sample size in an already moderately powered 
context (loss of 16% of TRD cases). We present the univar-
iable and multivariable analyses in this subset of unrelated 
individuals. We also use a subset of UKB that includes 
only individuals of European ancestry ( n = 451, 025 ). 
Finally, we assessed the extent of heterogeneity amongst 
causal estimates from different SNPs, a proxy of residual 
pleiotropy, using the Sargan test [48].

For continuous outcomes, causal estimates reflect the 
effect of a 1 SD change in the exposure on the outcome. For 
binary disease outcomes, causal estimates were obtained 
from a logistic regression and reflect the effect of a 1 SD 
change on the log-odds of disease.

Mediation analysis
Recent work has clarified how the results of UMVR 
and MVMR analyses can be used to assess whether the 
effect of a single exposure on an outcome is mediated 
by another exposure [49]. Following Carter et  al., we 
implement our mediation analysis as described below 
in UKB individual-level data (where X and M are the 
exposures of interest (CRP, BMI) and Y is the outcome) 
(Fig. 1c.):

– Estimate the total effect of X on Y by UMVR, β̂total.
– Estimate the direct effect of X on Y β̂direct via an MVMR 

and the indirect effect as β̂indirect = β̂total − β̂direct.
– Estimate the quantity π̂m =

β̂indirect

β̂total
 and its confidence 

interval via a non-parametric bootstrap of the data in 
order to test the null hypothesis H0 : πm=0. When 
β̂indirect and β̂total have the same sign, π̂m can be inter-
preted as an estimate for the proportion of the effect of 
X on Y mediated via M.

Fig. 1 Methods overview. a Causal diagram (DAG) representing the assumed relationship between genetic variants for CRP ( GCRP ), measured 
levels of serum CRP and BMI, and major depressive disorder (MDD). The dashed line between CRP and BMI represents a potential contribution 
of BMI to CRP levels. b DAG for an MVMR analysis that genetically proxies both CRP and BMI ( GCRP ,GBMI ) enables estimation of the direct causal 
effect of CRP and BMI on MDD. c Estimation of the proportion of the CRP effect mediated by BMI (pm ). d Robust MVMR to account for unmeasured 
pleiotropy as well as measured BMI pleiotropy. If some of the genetic variants in GCRP or GBMI affect MDD directly, other than just through changing 
CRP or BMI levels, the estimated effects will be biased. Robust methods such as MR GRAPPLE protect against this
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Bayesian bootstrap for uncertainty quantification and sparse 
binary outcomes
Carter et al. [49] recommend the use of a standard non-
parametric bootstrap in order to provide confidence 
intervals for π̂m . We additionally developed a method to 
implement Rubin’s Bayesian Bootstrap [50]. Whilst the 
standard non-parametric bootstrap samples individuals 
with replacement from the original data, each iteration of 
the Bayesian bootstrap is always based on the complete 
data, but the weight each individual receives in the analy-
sis is instead generated from a Dirichlet distribution. Our 
simulations showed that the Bayesian Bootstrap pro-
duces confidence intervals with similar coverage to the 
non-parametric bootstrap and improved performance 
for very sparse binary outcomes (Section A.3). For fur-
ther details, see the Appendix. We used this method to 
test the hypotheses that the effects of CRP are mediated 
by BMI and that the effects of CRP and BMI on TRD do 
not operate solely through MDD, as previously investi-
gated by Maske et al. [51]).

Sex specific effects and age as a moderator
Our individual level data methods enabled us to per-
form analyses separately in males and females, formally 
testing for heterogeneity in causal estimates of BMI and 
CRP on depression between males and females, using 
Fisher’s z-score. In addition to sex-stratified analyses, 
we also explored the extent of heterogeneity in causal 
effects of BMI and CRP across age strata. To achieve 
this we split the total sample of 451,025 European par-
ticipants to seven 5-year sub-samples and performed 
meta-regression to assess whether age was an important 
predictor of causal effect heterogeneity. (see Appendix 
A.2 for further information). Results of this analysis are 
are contained in Table S9.

Sensitivity analyses
Choice of instrument
CRP SNPs have been shown to be highly pleiotropic and 
affect a range of cardiovascular outcomes and serum 
lipid traits [40]. In addition to the data-driven pleiot-
ropy-robust methodology described above, we perform 
a complementary approach of limiting the SNPs used as 
instruments exclusively to the CRP locus. This is based 
on the hypothesis that SNPs in this specific location rep-
resent more biologically relevant CRP variants rather 
than indirect associations.

We also provide an analysis using the recently pro-
posed cis-MR approach by Patel et  al. [52] which uses 
the complete set of highly correlated SNPs in a sin-
gle area of biological relevance, instead of limiting the 
analysis to few independent signals. The argument is 
that SNPs in close proximity to a gene that codes for a 

precise molecular target are less likely to affect other 
phenotypes. We therefore use the CRP genomic region 
( 1 : 159712288− 4589± 100kb) and select correlated 
instruments in the external study [29]. We apply no 
p-value selection threshold. We then use the method of 
Patel et  al. [52] to test the hypothesis that CRP has no 
effect on the depression outcomes. In this analysis, the 
exposure data is from the CHARGE study summary sta-
tistics [40] and follows the two-sample MR framework.

For BMI, we aimed to locate the Locke et  al. instru-
ment to variants that affect BMI through a central mech-
anism and would hypothetically be more likely to affect 
depression through other pathways; a tissue enrichment 
analysis of genes associated with depression showed spe-
cific patterns of expression in the brain [42]. We follow a 
similar approach to Leyden and co-authors [53], employ-
ing a dedicated database [54]. The process is presented in 
detail in Section A.1.

Reverse causality
Bias due to reverse causality may emerge when an out-
come affects the risk factor, that is a hypothetical causal 
effect of mood dysregulation on inflammation status and 
weight. There is abundant clinical literature supporting a 
longitudinal, potentially bidirectional association of these 
phenotypes with mood disorders [55, 56] and changes in 
appetite, eating behaviours and unintended weight gain 
or weight loss all are included in the diagnostic crite-
ria for MDD [57]. We therefore studied how low mood 
affects CRP and BMI, using 102 SNPs that associate with 
MDD [58] to genetically proxy CIDI, one of the MHQ 
mood questionnaire completed by a subset of UKB par-
ticipants. Given the previous evidence for depression and 
BMI sharing a genetic component and as CRP variants 
also influence BMI, we used Steiger filtering to exclude 
MDD SNPs that associate more strongly with BMI or 
CRP rather than MDD, so that the SNP-set GMDD con-
sists of SNPs that predict CIDI more strongly than CRP 
or BMI [59]. As the instrument strength of GMDD sug-
gested that there may be dilution bias due to weak instru-
ments, a combination of the collider correction approach 
[45] and the weak-instrument robust MR RAPS approach 
were also reported [60].

Results
Patient characteristics
Table  1 reports the individual characteristics of the UK 
Biobank participants. The TRD phenotype as previ-
ously curated was available for n = 189, 917 controls 
and n = 2199 TRD individuals. At the observational 
level, participants that went on to be diagnosed with 
TRD had a higher CRP and BMI. The baseline measure-
ments of mood indicated that they scored higher both 
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for CIDI and PHQ9 (Table 1). The proportion of females 
in the GP depression and TRD groups is higher than in 
the control group. The majority of individuals have CRP 
levels that are not consistent with clinically active inflam-
mation, however it seems that there is variability of CRP 
levels according to depression status, with people with 

depression and TRD having a 0.55- and 1.1-mg/L higher 
CRP on average respectively than controls.

Stratifying by this clinical diagnosis status, a statisti-
cally significant difference in the PHQ-9 and CIDI scores 
is observed. Specifically, individuals with an MDD diag-
nosis and those with TRD exhibited higher scores on 
both measures compared to those with no diagnosis. This 
suggests a strong association between clinical diagnosis 
of MDD/TRD and the severity of depressive symptoms as 
measured by the PHQ-9 and the presence of depression 
based on the CIDI. Using a single diagnostic cutoff for a 
CIDI value at 8 [61], we observed that, among individu-
als with no diagnosis, a total proportion of 2.08% met the 
criterion for MDD, whereas for those with a GP diagnosis 
of MDD, this proportion was 24.71% , and among indi-
viduals diagnosed with TRD), the proportion was 56.17% . 
These findings suggest that there is a strong correlation 
of clinical diagnosis status and questionnaire responses.

Univariable and multivariable MR
BMI
Figure 2 presents the causal estimates for BMI on a range 
of depression outcomes. In the UVMR analyses of BMI 
in green, all estimates suggest a robust causal effect, 
with 95% confidence intervals excluding the null. A 1 SD 

Table 1 Individual characteristics

Mean (±SD)

 a CIDI and PHQ9 were measured in a different, partly overlapping subset of UKB 
participants ( n = 146, 067)

 Comparisons across groups are performed with analysis of variance (ANOVA) 
tests, and F-values and p-values are reported. A χ2 test was used to compare the 
proportion of females across the three groups

Controls GP-based 
depression 
cases

TRD cases Group 
comparison

N 173,786 18,330 2199

Age 57.42 (±8.11) 56.11 (±7.95) 56.43 (±7.82) 224.6 ( <10−10)

% female 0.485 0.636 0.724 1804 ( <10−10)

BMI 27.38 (±4.67) 28.26 (±5.37) 29.41 (±5.96) 359.1 ( <10−10)

CRP (mg/L) 2.54 (±4.35) 2.99 (±4.57) 3.64 (±5.42) 109.7 ( <10−10)

CIDI_MDDa 2 (±2.84) 5.45 (±2.19) 6.63 (±1.68) 3290 ( <10−10)

PHQ9a 2.11 (±2.89) 4.52 (±5.09) 9.06 (±6.83) 2240 ( <10−10)

Fig. 2 Effects of BMI and CRP on various depression-related outcomes as measured by univariable and multivariable MR models. The CRP effect 
is measured by using 45 CRP SNPs as instruments. UV, univariable MR; MV, multivariable MR; GRAPPLE, robust multivariable MR with MR GRAPPLE; 
CIDI, Composite International Diagnostic Interview; PHQ9, Patient Health Questionnaire-9; TRD, treatment-resistant depression
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increase in genetically proxied BMI was associated with 
13.9% (95% CIOR : 8.3% , 22.1% ) higher odds of a lifetime 
diagnosis of depression, 19.7% (5.1% , 32.3% ) higher odds 
of a GP diagnosis of depression, and 41.9% (2.0% , 95.4% ) 
higher odds of TRD (Fig.  2). In the MVMR models (in 
red), this pattern persists, with the analyses with exter-
nal weights [40, 41] agreeing. The repeat analysis under 
a stricter approach of completely excluding related indi-
viduals similarly supports that BMI has a positive effect 
on all outcomes (Fig. S1). In the sex-stratified analysis in 
females (Fig. S2), there is evidence for a causal effect of 
BMI on all outcomes except for TRD whereas in males, 
a robust effect is observed only on PHQ9 (severity). 
Although the BMI point estimates appear larger in mag-
nitude for females, the z-test does not suggest statistical 
significance at the 95% level (Table S1).

Repeating the analyses in each 5-year age stratum, 
there was an attenuation of the causal effect of BMI on 
PHQ9 with age ( βage = −0.025 PHQ9 total units per, 
p = 0.011 ) (Fig. S3). This effect was also nominally signif-
icant for a non-linear trend ( βage2 = −0.22, p = 0.0397 , 
Table S2). The heterogeneity statistics indicate a bet-
ter fit for the model that includes age for this compari-
son ( Qdiff = 6.494, pQDiff

= 0.011 ). The evaluation of 
instrument strength in specific groups suggested a lower 
strength of association in the 69–74 age group (Table S3).

CRP
In UVMR, CRP displays an effect on all outcomes 
(Fig. 2). A 1 SD increase in genetically proxied CRP was 
associated with 12.7% (1.0% , 22.3% ) higher odds of a life-
time diagnosis of depression, 20.9% (95% CI: 2.0% , 40.5% ) 
higher odds of a GP diagnosis of depression, and 63.2% 
(13.9% , 146.0% ) higher odds of TRD (Fig. 2). In the sex-
stratified analyses, strong causal estimates are present for 
GP diagnosed depression and TRD in females only. All 
these associations do not persist in the MVMR analyses, 
where upon jointly predicting BMI and CRP in MVMR 
models, the estimated effect moves close to the null and 
significance is lost (Fig.  2). Of note, the consistency of 
the results remains unchanged even when only unrelated 
individuals are considered, as illustrated in Fig.  S1. The 
analysis with external weights suggests more modest 
CRP effects (Fig. S4). There does not seem to by a clear 
modification of the estimated effects by age but there 
seems to be heterogeneity on the age-specific effects on 
GP diagnosis (Fig. S3).

In Table S7, applying the Sargan test revealed sig-
nificant heterogeneity for all analyses. Therefore, these 
analyses could be potentially affected by at least one 
SNP exerting a pleiotropic effect. The reported estimate 
standard errors account for this heterogeneity, and the 
estimates themselves are valid under the assumption that 

the pleiotropy is balanced. A repeat test with the CRP-
BMI pair of exposures in an MVMR model indicates that 
heterogeneity is likely even in the joint model, motivating 
a pleiotropy-robust method as a more appropriate mod-
elling choice (Fig. 3).

Sensitivity analyses
Favourable and unfavourable adiposity
In Fig. 4, we substituted genetically predicted BMI with 
genetically predicted UFA and FA, and repeated the 
assessment of how these affect the outcomes and how the 
effect of CRP changes. Unfavourable adiposity appears to 
influence all outcomes, while CRP showed an effect on 
TRD, PHQ9, and CIDI. FA appears to affect only sever-
ity of depression (PHQ9). In the multivariable models, we 
found that the point estimate of CRP remained relatively 
stable, indicating a consistent association with the out-
comes. In summary, we see a retained effect of adipos-
ity on depression with these more granular phenotypes 
and an attenuating effect of CRP, as with BMI but more 
subtly.

Robust MVMR
Results for the pleiotropy-robust GRAPPLE implemen-
tation of MVMR are presented in Fig.  2 (purple). This 
method simultaneously accounts for weak instrument 
bias, imbalanced pleiotropy (via penalisation of outliers) 
and sample overlap [62]. The results appear to be largely 
concordant with those of the MVMR, with slightly lower 
precision and lower magnitude of effects. In this analysis, 
BMI is associated only with a GP diagnosis of depression 
and PHQ9. There was insufficient evidence to confirm an 
effect of CRP with any of the outcomes in the multivari-
able models.

CRP gene‑specific instrument and tissue‑specific BMI SNPs
Specifying the search for valid CRP instruments in the 
area around the CRP gene, 194 variants were identi-
fied in the selection sample [29]. After clumping, four 
were retained as independent (rs11585798, rs2794520, 
rs3934775, rs12727193) and one (rs2794520) was 
strongly associated with CRP ( β (SE): − 0.182 (0.004) 
with T and C as the effect and non-effect alleles, 
p = 1.2× 10−305 ). This SNP was carried forward for 
the analyses in UKB. As in the selection study, C car-
rier status was associated with lower CRP serum levels, 
more strongly in females ( β (SE) − 0.172 (0.002) in all, 
-0.185 (0.003) in women, − 0.158 (0.003) in men); Fisher’s 
z = 6.01 , pdiff < 1.9× 10−9 ). Using only this SNP as an 
instrument, UVMR indicates a negative association of 
CRP with a GP diagnosis of depression ( −0.155 (0.07) ). 
The sex-specific analysis implied a stronger effect in 
males ( −0.308 (0.133) ) and an effect in males only for 



Page 9 of 14Karageorgiou et al. BMC Medicine          (2023) 21:355  

PHQ9 reaching statistical significance at the 5% level. 
( −0.31 (0.136)).

In the MVMR analysis where we also proxy BMI 
with 73 SNPs, CRP is judged to negatively influence GP 
diagnosis of depression ( −0.151 (0.051) ); this is inde-
pendent of BMI. This effect is also observed in males 
( −0.211 (0.089) ), whereas in females it does not reach 

statistical significance at the 5% level ( −0.113 (0.062) ). In 
the robust MVMR analysis, a statistically significant neg-
ative effect was estimated ( −0.144 (0.055)).

Alternative instruments
Regarding CRP, the focused search in the CRP genetic 
region yielded 194 SNPs. Clumping significantly 

Fig. 3 Proportion of CRP effect mediated by BMI, defining the CRP effect with two different instruments (45 CRP SNPs, rs2794520 (C → T)) 
in the CRP region). Two methods of bootstrapping are used to estimate the uncertainty (Bayesian bootstrap, non-parametric bootstrap). CIDI, 
Composite International Diagnostic Interview; MDD, major depressive disorder; PHQ9, Patient Health Questionnaire-9; TRD, treatment-resistant 
depression
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restricted the available variants and only one variant 
was retained (rs2794520). Using the recently proposed 
approach of Patel et al., it was possible to retain all 194 
variants, extract them at the individual allele dosage level 
and decompose them in independent genetic signals [52]; 
namely, the variants presented in Fig. S5 were projected 
in 10 principal components which were then used for MR 
inference. The results are shown in Table S5. Although 
the estimates were more precise than those reported in 
“CRP gene-specific instrument and tissue-specific BMI 
SNPs” section, their magnitude was lower and con-
sequently none surpass the conventional significance 
threshold.

The tissue-specific MR analyses are presented in 
Section A.1. Of the 73 BMI SNPs, 23 were retained 
as being preferentially expressed in brain-related tis-
sues and 31 others that were mapped to coding regions 
were expressed in the periphery. Similar estimates 
were obtained for all outcomes. For TRD, UVMR and 
MVMR suggested a positive effect of BMI on depres-
sion only when the peripherally focused instru-
ment was used ( βUVMR(CI) : 0.722(0.246, 1.123) , 
βMVMR(CI) : 0.745(0.251, 1.229) ). In contrast, the 
UVMR and MVMR estimates from the instru-
ment that included brain-expressed genes failed to 
reject the null ( βUVMR(CI) : 0.139(−0.472, 0.750) , 
βMVMR(CI) : 0.136(−0.481, 0.752) ). Both instruments 
provided similar results for all outcomes including TRD 
in the pleiotropy-robust MR GRAPPLE method.

Reverse causality assessment using UVMR
Applying the Steiger filtering routine for BMI, 16 of the 
102 SNPs reported by Howard et al. [58] were excluded. 
For the remaining 86 SNPs, instrument strength for the 
genetic prediction of CIDI was estimated at Fstat = 5.337 . 
In 2SLS, the causal effect of genetically predicted CIDI on 
BMI was estimated as β (SE): 0.077(0.016), but was likely 
to be affected by weak instrument bias. Using MR-RAPS, 
the uncertainty in this result increased substantially ( β 
(SE):0.074(0.045). For CRP, Steiger filtering indicated that 
there were 27 SNPs that predict a larger proportion of 
the CRP variance compared with the CIDI variance. In 
the remaining 75 SNPs ( Fstat = 4.132 ), an association of 
genetically proxied CIDI with CRP was observed ( β (SE): 
0.080 (0.020)). Applying MR-RAPS as above, the result-
ing estimate did not maintain significance at the 95% level 
( β (SE): 0.101 (0.053)).

Mediation analysis
The results for the mediation analysis are presented 
in Fig.  3. When using the discovery set of CRP SNPs 
( nCRP = 45 ), the effect of CRP on GP diagnosis and TRD 
appears to be mediated by BMI ( 107.82%(56.1%, 357.02%) 

and 78.87%(33.35%, 197.23%) , respectively). For the ever 
depressed outcome, a similar magnitude was observed 
but the CIs do not indicate significance at the 95% level 
( 82.87%(−208.39%, 250.43%) ) (Fig. 3). In the sex-specific 
mediation analysis, BMI appears to mediate the effect 
of CRP on TRD and GPD in females and on the ever 
depressed in males (Fig.  S6). With the BB method, the 
CIs for πm are somewhat narrower for TRD. In all meth-
ods, the median and 2.5th and 97.5th quantiles of the 
distribution of the bootstrapped estimates were used to 
estimate πm and CIs, therefore some asymmetry around 
πm is observed.

As discussed above, there is a concern for residual plei-
otropy in this particular set of SNPs. Since 2SLS mod-
els are used throughout and CRP SNPs are known to be 
highly pleiotropic (“Robust MVMR” section), the esti-
mates with these 45 SNPs may be biased. In the multi-
variable MR, this is partly alleviated, however there is a 
possibility of other pathways not related to BMI affecting 
the outcome. As a result, the estimates of the proportion 
mediated may be distorted with the full set of 45 SNPs. 
In a repeat mediation analysis with only one SNP in the 
CRP locus used to genetically proxy serum CRP levels 
(rs2794520, “CRP gene-specific instrument and tissue-
specific BMI SNPs” section), the results are not signifi-
cant at the 95% level (green lines, right panel, Fig. 3).

In the mediation analysis of genetically proxying CIDI 
and assessing how the CRP and BMI estimates change 
in a MVMR model with all three as exposures, relatively 
imprecise results were obtained. This is possibly due 
to a lack of power ( n = 58, 586 individuals with a GP 
record, follow-up MHQ measurements and baseline CRP 
and BMI, of whom 514 TRD cases). As expected, CIDI 
appeared to contribute to TRD in the full model (0.757 
(0.382,  1.132)), suggesting that a unit increase in CIDI 
doubles the odds of TRD independently of CRP or BMI 
status. In this model, BMI and CRP were positively and 
negatively associated with TRD ( +0.533(−0.203, 1.268) 
and ( −0.093(−0.434, 0.247) , respectively). In comparison, 
the corresponding estimates in the univariable model 
were slightly larger in magnitude ( +0.567(−0.121, 1.255) 
and −0.127(−0.459, 0.206) ). The mediation analy-
sis results suggest that the independent BMI and 
CRP effects (Fig.  2) are not mediated by CIDI (pm,CRP

=0.231(−3.372, 4.041) , p m,BMI=0.288(−2.375, 3.221)).

Discussion
In this study, we aimed to investigate the causal effects of 
CRP and BMI on depression-related phenotypes, includ-
ing TRD, using various MR methods to overcome a 
series of methodological issues [45, 52, 62]. We show that 
apparent significant findings from univariable MR analy-
ses of CRP do not persist in MVMR analyses adjusting 
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for BMI, indicating that BMI may be the primary driver 
of the observed association between CRP and depression 
outcomes. We also found evidence for BMI exerting a 
positive causal effect on investigated outcomes, particu-
larly in women, and that age may attenuate the effect on 
severity of depression. We also describe two methodo-
logical improvements, an application of multivariable 
pleiotropy-robust methods in one-sample data and a 
more precise measurement of mediated effects in sparse 
binary outcomes.

We find evidence further supporting the influence of 
BMI on depression, with larger effect sizes observed 
in women. An attenuation of this effect on severity of 
depression was also found. Although the sex difference 
was not statistically significant, it aligns with previ-
ous research by Tyrrell et al. [22] on the role of BMI in 
depression. Our findings suggest that BMI directly influ-
ences depression beyond the inflammatory consequences 
of overweight, addressing a limitation in prior studies. 
The influence of social processes, including social stigma, 
may play a crucial role in the relationship between BMI 
and depression. Our results are in line with a recent work 
that suggested a causal relationship between trauma and 
MDD, that is independent of BMI [63].

Sensitivity analyses using brain-specific and periph-
ery-specific instruments yielded similar effects of BMI 
on depression measures, indirectly highlighting a social 
aetiology that is independent of metabolic or inflamma-
tory status. For resistance to antidepressant treatment, 
peripherally expressed BMI SNPs indicated a positive 
effect on TRD, although uncertainty in the estimates lim-
its strong conclusions. This could be related to a differ-
ential metabolic breakdown of antidepressants in those 
with a periphery-driven difference in adiposity. Future 
works could also look into more detailed liver and kidney 
markers, considering their influence on antidepressant 
metabolism and effectiveness.

Discrepancies across different models were seen for 
CRP. While a positive effect on depression outcomes 
was found in the main analyses, this did not persist when 
jointly estimating BMI and CRP effects for all depres-
sion outcomes, and additionally when using cis-MR. 
Although conditional instrument strength is adequate 
in these models [26], residual pleiotropy (i.e. other than 
through CRP or BMI) was still a concern. Indeed, using 
pleiotropy robust MVMR provided results where the null 
could not be rejected. Another way to address this issue 
is to use a stricter selection of variants based on their bio-
logically plausibility as instruments. For example, Kap-
pelmann et al. [20] assessed the role of CRP and IL-6 in 
individual symptom domains of depression, using a range 
of instrument selections rules. Another dimension that 
could explain the indirect effects of inflammation is early 

or later-life traumatic events [63]. In an MR study, an 
inflammatory marker that is presumably more sensitive 
to chronic upregulation, glycoprotein acetyls, also exhib-
ited no evidence for an effect on depression [64].

In the causal analyses for the reverse pathway (from 
depression outcomes to BMI and CRP), a significant 
proportion of SNPs were excluded in Steiger filtering as 
they appeared to be more strongly associated with CRP 
or BMI. Low predictive capacity of the 102 SNPs was 
observed for the mood questionnaire that quantified 
depressive symptomatology. We bypassed this issue by 
implementing a weak-instrument and pleiotropy-robust 
method [60], which suggested that there is no effect of 
depressive symptomatology to BMI or CRP. The esti-
mates were in line with those in 2SLS but uncertainty was 
larger.

Contextualising our results clinically, BMI reduction 
appears to have a positive impact on mood, particularly 
in females and younger individuals. It appears that poten-
tial harmful effects of inflammation on mood do not 
persist when we account for BMI, suggesting that clini-
cal studies of anti-inflammatory medications as adjuncts 
for MDD should consider the role of body weight. Sim-
ilar findings emerged in the context of the more severe 
experience of TRD, indicating the need to consider eating 
patterns and how these relate to mood. Overall, we rec-
ognise that in the care for MDD, other factors and psy-
chological suffering take precedence and it is important 
to prioritise interventions.

Strengths of our study include the adjustment of novel 
MR methods to address the issues of mediation and 
pleiotropy. We employed a range of cutting-edge MR 
methods including GRAPPLE [62] and cis-MR [52], and 
overcome a series of methodological issues, including 
the application of pleiotropy-robust methods in MVMR 
through an extention of the Collider-Correction algo-
rithm [45]. We also assess different methods of precise 
mediation analyses and provide a new method that per-
forms better in cases of sparse binary outcomes (the 
Bayesian bootstrap).

Our study has limitations to be considered. A limitation 
of the BMI and CRP phenotypes is that they do not fully 
capture the metabolically harmful aspects of adiposity 
and the concept of inflammation respectively. Although 
we observe similar effects when we proxy favourable and 
unfavourable adiposity, there still is room for improve-
ment for the inflammatory aspect. As data on proteom-
ics is becoming available at a large scale, more refined 
analyses will be feasible. Assortative mating plays a sig-
nificant role in the genetic correlation of depression and 
various psychiatric disorders [65] and it could ostensibly 
also account for some of the observed effect of body mass 
and depression outcomes as the BMIs of partners also 
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tends to be phenotypically correlated. Both adiposity and 
depression are moderately heritable [66, 67] and it has 
been shown that bias due to assortative mating increases 
for more heritable phenotypes [68]. This distorts herit-
ability estimates [69] and, to a degree, the magnitude of 
the effects of the SNPs used as instruments. Future stud-
ies of BMI and depression could control for assortative 
mating by dedicated techniques, such as analyses with 
parent-offspring trios [68].

Conclusion
We have applied a range of methods that provide causal 
estimates in a methodologically robust fashion, that sug-
gest that the effect of CRP on depression outcomes is 
likely attributable to the influence of BMI. It is not feasible 
however to definitively exclude the influence of inflam-
matory status on mood. Immune dysregulation is a wider, 
more complex phenomenon and we have limited our 
investigations to serum CRP results and related genetic 
variants. Further research is needed to understand if these 
generalise more broadly to other inflammatory mediators.

Abbreviations
BMI  Body mass index
CRP  C-reactive protein
CIDI  Composite International Diagnostic Interview
FA, UFA  Favourable, unfavourable adiposity
GP  General practitioner
GWAS  Genome-wide association study
MDD  Major depressive disorder
MR  Mendelian randomisation
MVMR  Multivariable Mendelian randomisation
PHQ9  Patient Health Questionnaire-9
SNP  Single nucleotide polymorphism
TRD  Treatment-resistant depression
UKB  UK Biobank
UVMR  Univariable Mendelian randomisation

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s12916- 023- 03001-7.

Additional file 1: Appendix [70–74]. Figure S1. Estimated effects of 
CRP and BMI on a range of depression-related outcomes in a subset of 
unrelated individuals (n = 52, 510 completed MHQ and contributed to 
PHQ9 and CIDI, n = 165, 378 with CPRD data linkage that contributed to 
GP Diagnosis of MDD and TRD. Figure S2. Sex-Stratified Analysis for all 
outcomes reported in Fig. 2. Estimates from univariable MR (UV), multivari-
able (MV), and pleiotropy-robust multivariable MR (GRAPPLE) are reported 
for females and males separately. Figure S3. MR Analysis with external 
weights for BMI [Locke2015] and CRP [40]. Figure S4. Age as a Modera-
tor of the causal associations of CRP and BMI with mood outcomes. In 
the visualisation of the meta-regression slope, if the intercept falls within 
the confidence region of the age slope, then the result is not statistically 
significant. Figure S5. SNP-CRP associations and SNP-depression associa-
tions for n = 194 SNPs in LD. These genetic associations are then projected 
to independent genetic components (cis-MR, [51]). Figure S6. Propor-
tion of CRP effect mediated by BMI in males and females. The CRP effect 
is defined by two different instruments. cisMR: CRP effect is estimated 
with one SNP as instrument (rs2794520). Figure S7. Tissue Expression for 
SNPs in Locke et al. Transcript per million (TPM) data, scaled per gene, are 

presented. Ordering follows the sum of scaled TPM across brain regions. 
Figure S8. Estimates of the Effect of BMI on the depression outcomes 
when two different tissue expression-informed instruments are used. In 
the top panel, the top 20 SNPs of genes that are predominantly expressed 
in the brain are shown (Brain); in the bottom panel, genes that are 
expressed in the periphery constitute the instrument. Figure S9. Assumed 
Data Generated Mechanism for two exposures (X1, X2). Some of the 
variants that associate with X1 also affect Y directly, thereby violating 
the third IV assumption. Figure S10. Estimation of the causal effect of 
two exposures X1 and X2 in the presence of weak instrument bias and 
pleiotropy. The targets of the estimation of βX1 = 1 and βX2 = 0.5 
are visualised with grey dashed lines. CFS: Conditional F statistic; CC: Col-
lider Correction; 2SLS: Two-Stage Least Squares; X1, X2: Exposures 1 and 2 
in Figure S9. Figure S11. Directed Acyclic Graph. The exposure X and the 
mediator M exert two independent effects on Y. Genetically proxying only 
X can result in an inaccuracy in the estimation as βXY ,Univariable will be 
capturing the total effect ( βX2 + βXM ∗ βMY  ). Figure S12. Uncer-
tainty in estimating the proportion of mediated effects, simulation 
Results. CFS: Conditional F statistic for the exposure X in Figure S11; CFSM : 
Conditional F statistic for the mediator M. Error bars in the coverage and 
power plots represent the Monte Carlo error for s = 6000 simulations. 
BB : Bayesian bootstrap; mediat_package : implementation with the R 
mediation package; norm: non-parametric bootstrap. Figure S13. Simula-
tion Results ( πm and 95% Confidence Intervals) for Increasing Prevalence 
of Binary Outcome.
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