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Abstract 

Background Micronutrients, namely vitamins and minerals, are associated with cancer outcomes; however, their 
reported effects have been inconsistent across studies. We aimed to identify the causally estimated effects of micro‑
nutrients on cancer by applying the Mendelian randomization (MR) method, using single‑nucleotide polymorphisms 
associated with micronutrient levels as instrumental variables.

Methods We obtained instrumental variables of 14 genetically predicted micronutrient levels and applied two‑
sample MR to estimate their causal effects on 22 cancer outcomes from a meta‑analysis of the UK Biobank (UKB) 
and FinnGen cohorts (overall cancer and 21 site‑specific cancers, including breast, colorectal, lung, and prostate can‑
cer), in addition to six major cancer outcomes and 20 cancer subset outcomes from cancer consortia. We used sensi‑
tivity MR methods, including weighted median, MR‑Egger, and MR‑PRESSO, to assess potential horizontal pleiotropy 
or heterogeneity. Genome‑wide association summary statistical data of European descent were used for both expo‑
sure and outcome data, including up to 940,633 participants of European descent with 133,384 cancer cases.

Results In total, 672 MR tests (14 micronutrients × 48 cancer outcomes) were performed. The following two asso‑
ciations met Bonferroni significance by the number of associations (P < 0.00016) in the UKB plus FinnGen cohorts: 
increased risk of breast cancer with magnesium levels (odds ratio [OR] = 1.281 per 1 standard deviation [SD] higher 
magnesium level, 95% confidence interval [CI] = 1.151 to 1.426, P < 0.0001) and increased risk of colorectal cancer 
with vitamin B12 level (OR = 1.22 per 1 SD higher vitamin B12 level, 95% CI = 1.107 to 1.345, P < 0.0001). These two 
associations remained significant in the analysis of the cancer consortia. No significant heterogeneity or horizontal 
pleiotropy was observed. Micronutrient levels were not associated with overall cancer risk.

Conclusions Our results may aid clinicians in deciding whether to regulate the intake of certain micronutrients, par‑
ticularly in high‑risk groups without nutritional deficiencies, and may help in the design of future clinical trials.
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Background
Numerous studies have addressed the effects of micro-
nutrients, particularly vitamins and minerals, on 
various health outcomes, including cancer. Observa-
tional studies have frequently reported the benefits of 
micronutrient supplementation on cancer risks [1–7], 
whereas randomized controlled trials (RCTs) have 
often reported a null effect [8–10]. However, observa-
tional studies are inherently prone to confounding and 
reverse causation, and RCTs are expensive and often 
insufficiently powered for cancer outcomes, requir-
ing long-term follow-up and large cohort sizes. A sys-
tematic review conducted in 2013 reported a paucity 
of fair- or good-quality studies assessing the asso-
ciations between micronutrient supplementation and 
cancer and concluded that there was a lack of evidence 
to support micronutrient supplementation for cancer 
prevention [9]. The Mendelian randomization (MR) 
approach attempts to overcome these limitations by 
using genetic variants as instrumental variables (IVs) 
to assess the potential causal association between risk 
factors and disease [11].

In the past decade, many health benefits of micro-
nutrients reported in observational studies have been 
shown to have null causal associations in MR studies. 
For example, although vitamin D is a promising micro-
nutrient with statistically significant beneficial effects 
on various malignant, cardiovascular, metabolic, and 
other diseases [12], over 60 MR studies published 
in the previous decade found no effect of genetically 
predicted vitamin D concentrations on most health 
outcomes [13]. Numerous MR studies reporting asso-
ciations between various micronutrients and the risk 
of various cancers [14–17] revealed that only a few 
exposure-outcome pairs were potentially genuine 
associations. Furthermore, MR methods are not con-
sistent across studies, making it difficult to compare 
the robustness of associations. According to a recent 
systematic review, most MR studies assessing can-
cer outcomes did not adequately perform sensitivity 
analyses assessing the pleiotropy of MR associations, 
such as MR-PRESSO, resulting in potentially biased 
estimates [18], and many previous MR studies report-
ing micronutrient-cancer associations [15–17, 19–22] 
chose IVs under linkage disequilibrium (LD) thresh-
olds less strict than the conventionally used threshold 
of r2 < 0.001, resulting in potentially biased estimates. 
To overcome these limitations and clarify the presence 
and robustness of causal associations, we performed 
exposure-wide and outcome-wide MR analyses of 14 
micronutrients and 48 cancer outcomes.

Methods
Study design
This study was conducted in accordance with STROBE-
MR (Strengthening the Reporting of Observational Stud-
ies in Epidemiology using Mendelian Randomization) 
guideline (Additional files 1 and 2) [23]. We conducted 
a two-sample MR study using single-nucleotide poly-
morphisms (SNPs) associated with various micronutri-
ent levels as IVs to assess the causal association of 14 
micronutrients with 48 cancer outcomes (overall cancer 
or 21 site-specific cancers) [11]. We used publicly avail-
able summary statistics data from the largest available 
genome-wide association studies (GWASs) for various 
micronutrients and GWASs from the UK Biobank (UKB) 
study, FinnGen study, and various cancer consortia [24–
28] for cancer outcomes. All the GWAS cohorts were 
of European descent. There was no overlap between the 
exposure and outcome cohorts. MR relies on the follow-
ing three assumptions: first, genetic predictors of the 
exposure of interest are strongly associated with expo-
sure; second, genetic predictors of exposure are not cor-
related with exposure-outcome association confounders; 
and third, genetic predictors affect the outcome only by 
affecting the exposure of interest [29]. All analyses were 
based on publicly available non-individual-level data; 
therefore, no ethical approval from an ethics committee 
was required.

Genetic associations with micronutrients
Genetic associations with micronutrients were 
obtained from the largest available GWAS in the Euro-
pean population, identifying SNPs associated with each 
micronutrient at a genome-wide significance threshold 
(P < 5 ×  10−8). We systematically searched for GWASs 
in PubMed and screened the references of relevant arti-
cles (details in Additional File 1). When two or more 
independent GWASs were available for exposure, the 
GWAS with the highest number of participants was 
selected. GWASs for seven essential minerals (serum 
calcium, copper, iron, magnesium, phosphorus, toe-
nails, blood selenium, and zinc) and seven vitamins 
(25-OH vitamin D, vitamins A1 [retinol], B6, B9 [folic 
acid], B12, C, and E) were identified (Additional File 
2: Table  S1) [30–41]. For IVs representing iron status, 
we selected three SNPs known to show concordant 
effects on serum iron, ferritin, transferrin, and trans-
ferrin saturation and consistent effects on overall iron 
status [30, 42]. For IVs representing vitamin C status, 
a GWAS study [41] reported 11 SNPs, and we selected 
10 SNPs after excluding one SNP (rs174547) reported 
to have pleiotropic effects on the FADS1 gene, which is 
associated with a large number of glycerophospholipids 
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or sphingolipids. Two GWASs were available for sele-
nium levels [31, 32], and we selected the one with the 
largest number of participants [31] for our analysis. All 
GWASs measured serum micronutrient levels, except 
for selenium, which was measured in either the toenails 
or blood. Potassium, sodium, and vitamins B1, B2, and 
K were excluded because of a lack of GWAS reporting 
SNPs of genome-wide significance [38, 43].

Genetic associations with cancer
We identified 22 cancer outcomes for which GWAS 
summary statistical data were available for both the 
UKB (Lee Lab GWAS [44] or Neale Lab [45] GWAS if 
Lee Lab GWAS was not available) and FinnGen stud-
ies, R9 release [46]. The resulting cancer outcomes were 
overall cancer and 21 major site-specific cancers: blad-
der, brain, breast, cervical, colorectal, Hodgkin’s lym-
phoma, kidney, leukemia (lymphoid or myeloid), liver, 
lung, melanoma, multiple myeloma, esophageal, oral 
and pharyngeal, ovarian, pancreatic, prostate, stom-
ach, testisticular, thyroid, and uterine cancers. For each 
cancer outcome, we meta-analyzed summary statis-
tics from the UKB and FinnGen cohorts using METAL 
software [47]. The UKB and FinnGen studies are ongo-
ing cohorts containing data from approximately 500 
thousand and 390 thousand participants, respectively, 
of European descent. The combined outcome sum-
mary statistics included up to 940,633 participants and 
124,092 cases of overall cancer, ranging from 992 to 
27,554 site-specific cancer outcomes.

To replicate and strengthen our findings in other 
databases, we identified six cancer outcomes from the 
updated data provided by various cancer consortia, per-
formed additional MR analyses using identical expo-
sure datasets, and compared their findings with those of 
MR analyses using the UKB and FinnGen cohorts. The 
six additional cancer outcomes were as follows: breast 
cancer, derived from the Breast Cancer Association 
Consortium (BCAC) [24]; colorectal cancer, from the 
meta-analysis of studies including the Genetics and Epi-
demiology of Colorectal Cancer Consortium (GECCO) 
[25]; lung cancer, from the Transdisciplinary Research of 
Cancer in Lung of the International Lung Cancer Con-
sortium (TRICL-ILCCO) [26]; invasive and non-invasive 
ovarian cancer, from the Ovarian Cancer Association 
Consortium (OCAC) [27]; and prostate cancer, from 
the Prostate Cancer Association Group to Investigate 
Cancer-Associated Alterations in the Genome (PRAC-
TICAL) consortium [28]. The number of cancer cases 
ranged from 3103 to 133,384, and an additional 20 cancer 
subsets were available from the consortia for breast, lung, 
and ovarian cancers.

Selection of genetic instruments
Of the SNPs obtained from the GWASs of micronutri-
ent levels, we further selected only SNPs with a minor 
allele frequency > 0.01, which were not in LD (r2 < 0.001 
and clumping window within 10,000 base pairs based on 
European 1000 Genomes Project reference panel) for MR 
analyses. We replaced SNPs that were not available in the 
outcome summary statistics or that were palindromic 
with non-inferable allele frequencies (minor allele fre-
quency > 0.42) with SNPs in LD (r2 > 0.8). We calculated 
MR estimates per 1 standard deviation (SD) difference 
at the micronutrient or log-transformed micronutrient 
level. We estimated F-statistics representing the strength 
of the association between IVs and exposure [48] and 
estimated the variance of each exposure explained by 
the IVs (details provided in Supplementary Methods) 
[49]. Details of the eligible IVs and micronutrient GWAS 
cohorts are reported in Supplementary Tables S1-2. For 
each association, we assessed the minimum detectable 
odds ratio (OR) assuming a statistical power of 80%. The 
statistical power assuming ORs of 1.1, 1.3, and 1.6 was 
also calculated, in conformance with previous MR stud-
ies [50–52].

Statistical analysis
We performed MR analysis for each exposure-out-
come pair, resulting in multiple tests for a total of 672 
associations (14 exposures × 22 UKB plus FinnGen 
cancer outcomes, 6 main cancer outcomes, and 20 
cancer subset outcomes from cancer consortia). The 
random-effects inverse-variance weighted (IVW) 
method was used to obtain a summary of the associa-
tions. The IVW method assumes that all genetic vari-
ants are valid; thus, it is prone to bias when a large 
portion of IVs are subject to horizontal pleiotropy 
[53]. Statistical significance was set at P < 0.05, and the 
Bonferroni correction was applied (P < 0.0036 based 
on alpha = 0.05/14 available exposures and P < 0.00016 
based on alpha = 0.05/14 × 22 exposure-outcome pairs) 
for multiple testing. To test for evidence of horizontal 
pleiotropy, we performed sensitivity MR analyses under 
varying assumptions, including the weighted median, 
MR-Egger, and MR-PRESSO methods. The weighted-
median method assumes that the majority of IVs are 
valid and is considered robust when the percentage of 
horizontal pleiotropic IVs is < 50% [54]. The MR-Egger 
method is reliable when more than 50% of the IVs 
are subject to horizontal pleiotropy [55]. We further 
inspected horizontal pleiotropy using the Egger regres-
sion intercept and outlier correction by MR-PRESSO 
methods [56] and inspected visual asymmetry in funnel 
plots [57]. We assessed heterogeneity using Cochran’s 
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Q-test and I2 and visually inspected heterogeneity using 
scatter plots [57]. We examined whether the IVs were 
causally associated with major risk factors for cancer, 
such as body mass index (BMI), weight circumference, 
physical activity, and smoking, using corresponding 
GWAS summary data [58–61]. All statistical analyses 
used R version 4.0.5 (R Foundation) and its package 
“TwoSampleMR” and “MRPRESSO.”

Results
For the 14 exposures, there were one to nine available 
IVs, and the F statistics ranging from 11.3 to 544, which 
were well above the recommended value of 10 (Addi-
tional file 2: Tables S1 and S2). The variance in exposure 
explained by the IVs ranged from 0.6 to 4.6%. The num-
ber of cases and total participants in each cohort and the 
minimum detectable ORs, assuming 80% power for the 
672 associations, are shown in Fig. 1.

Fig. 1 Minimum detectable odds ratios assuming statistical power of 80% for the 672 micronutrient‑cancer associations. * The number of cancer 
cases and total participants are listed for cohorts reporting cancer outcomes, and the number of total participants is listed for cohorts reporting 
micronutrient levels
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Analyses of UKB plus FinnGen cancer outcomes
Of the 308 associations included in the UKB and 
FinnGen meta-analyses (14 exposures × 22 outcomes), 18 
were statistically significant in the IVW analysis (Figs. 2 
and 3, Additional file  2: Table  S3, and Additional file  1: 
Figs. S1-31), of which two associations showed Bonfer-
roni-corrected significance based on the number of expo-
sure-outcome pairs (P < 0.00016). There was an increased 
risk of breast cancer with magnesium levels (OR = 1.281 
per 1-SD higher level, 95% CI = 1.151 to 1.426, P < 0.0001) 
and an increased risk of colorectal cancer with vita-
min B12 levels (OR = 1.22 per 1 SD higher level, 95% 
CI = 1.107 to 1.365, P < 0.0001). These two associations 
had six and seven IVs, respectively, and their heterogene-
ity was low (I2 = 0% and Q statistics P > 0.1 for both asso-
ciations). No evidence of pleiotropy was found using the 
MR-Egger intercept test or the MR-PRESSO test, and no 
outlier SNPs were detected (Additional file 2: Table S3). 
The two associations were statistically significant in the 
weighted median analysis, indicating that the association 
was significant even if some (< 50%) of the IVs were hori-
zontally pleiotropic. Visual examination of the funnel and 
scatter plots revealed no obvious asymmetry or hetero-
geneity. For both micronutrient-cancer associations, all 
individual SNPs showed concordance of effect estimates 
(Additional file 1: Figs. S15-16).

The other 16 statistically significant associations were 
iron, magnesium, phosphorus, selenium, and vitamins 
A1, B6, B9, C, and E associated with various cancer out-
comes, of which eight had decreased risks and eight had 
increased risks of cancer outcomes with higher micronu-
trient levels (Figs. 2 and 3). However, these associations 
did not show Bonferroni-corrected significance accord-
ing to the number of exposures (P < 0.0036). Of the 308 
tested associations, 15, 100, and 235 had > 80% power 
to detect ORs of 1.1, 1.3, and 1.6, respectively (Fig.  1; 
Additional file 2: Table S3). The power of the tested asso-
ciations differed by cancer outcome, and the number of 
exposures that had > 80% power to detect an OR of 1.3 
were 14 (all exposures) for overall cancer, breast cancer, 
and prostate cancer; 11 for colorectal cancer; and 9 for 
lung cancer (Fig. 1, Additional file 2: Table S3). Consid-
ering the overall cancer risk, no micronutrient levels 
showed a benefit or risk, although the minimum detecta-
ble ORs assuming 80% power were < 1.2 for all 14 associa-
tions. Some IVs were strongly associated with risk factors 
of cancer (P > 1 ×  10−5). One IV for calcium (rs780094) 
and another for copper (rs2769264) were associated with 
BMI (Additional File 2: Table S4). However, calcium and 
copper levels were not significantly associated with any 
cancer outcome in the UKB plus FinnGen analysis or 
major cancer outcomes in the cancer consortia analysis.
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Analyses of consortia cancer outcomes
Of the 84 major cancer associations (14 exposures × 6 
cancer outcomes), 10 were statistically significant (Fig. 4, 
Additional file  2: Table  S3, and Additional file  1: Figs. 
S32-41). Two out of these associations, increased risk of 
breast cancer with magnesium levels (OR = 1.235 per 1 
SD higher level, 95% CI = 1.14 to 1.338, P < 0.0001) and 
increased risk of colorectal cancer with vitamin B12 lev-
els (OR = 1.115 per 1 SD higher level, 95% CI = 1.016 to 
1.223, P = 0.0213), were statistically significant with simi-
lar effect sizes in both the cancer consortia and UKB plus 
FinnGen analyses (Figs. 3 and 4). Both associations were 
found to be significant using a weighted median analysis. 
Evidence of horizontal pleiotropy was identified for the 
vitamin B12-colorectal cancer association (MR-PRESSO 
P for horizontal pleiotropy = 0.014); however, the asso-
ciation retained its significance (OR = 1.171, 95% CI = 1.1 
to 1.246, P = 0.004) after excluding the outlier SNP. The 
number of exposures that had > 80% power to detect 
an OR of 1.3 was 14 (all exposures) for colorectal and 
lung cancers, 13 for breast and prostate cancers, 12 for 

invasive ovarian cancer, and 3 for non-invasive ovarian 
cancer (Fig. 1, Additional file 2: Table S3).

Moreover, 20 cancer subset outcomes, corresponding 
to 280 analyses (14 exposures × 20 outcomes), were avail-
able (Fig.  4, Additional file  2: Table  S3, and Additional 
file  1: Figs. S42-55). There were five breast cancer out-
comes (luminal A-like, luminal B-like, luminal B human 
epidermal growth factor receptor 2 [HER2] negative-like, 
HER2 enriched-like, and triple-negative), five lung cancer 
outcomes (ever-smokers only, never-smokers only, ade-
nocarcinoma, squamous cell carcinoma, and small cell 
carcinoma), and ten ovarian cancer outcomes, including 
serous, mucinous, clear cell, and endometrial subtypes. 
Magnesium was associated with a higher risk of luminal 
A-like breast cancer (OR = 1.319, 95% CI = 1.159 to 1.501, 
P < 0.0001) but not with the other four breast cancer sub-
types, although the minimum OR assuming power of 80% 
was large for these subtypes (ranging from 1.37 to 1.97). 
Other associations showing concordance in the overall 
cancer and subset cancer analyses were magnesium lev-
els associated with a lower risk of invasive ovarian cancer 
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and endometrioid ovarian cancer, and vitamin B12 levels 
associated with a higher risk of noninvasive, noninvasive 
serous, and clear cell ovarian cancers (Additional file 2).

Discussion
In this large-scale MR analysis of 672 micronutrient-can-
cer associations, we provided the most comprehensive 
and updated atlas of associations between micronutri-
ents and cancer. We discovered that two associations, the 
association of magnesium with the risk of breast cancer 
and the association of vitamin B12 with the risk of colo-
rectal cancer, were robust in terms of statistical signifi-
cance, sensitivity, and replicability in different cohorts. 
Cancer subset analysis revealed that magnesium was 
associated with the luminal A-like breast cancer subtype. 
No specific micronutrients were beneficial in preventing 
cancer overall, which is consistent with the findings of 
previous RCTs [9].

Genetically predicted 1 SD higher levels of magnesium 
were associated with 1.281 higher odds of breast cancer 
in the UKB and FinnGen meta-analyses, and 1.235 and 
1.319 higher odds of overall breast cancer and luminal 
A-like breast cancer, respectively, in the BCAC analysis. 
These findings are consistent with the results of a pre-
vious MR study [15] that used an earlier version of the 
BCAC summary statistics [62], which reported that a 1 
SD higher genetically predicted magnesium level was 
robustly associated with 1.17 higher odds of breast can-
cer and 1.2 higher odds of estrogen receptor-positive 
breast cancer, respectively. Although we could not find 
RCTs or observational studies assessing magnesium lev-
els and breast cancer outcomes, the consistent results 
and similarity in the effect sizes in different datasets sup-
port the validity of our findings. Evidence from in  vitro 
and animal studies has suggested plausible pathways 
wherein high magnesium concentrations can promote 
tumor growth and metastasis [63–65].

Genetically predicted 1 SD higher levels of vitamin 
B12 were associated with 1.22 increased odds of colo-
rectal cancer in the UKB and FinnGen meta-analysis and 
1.115 increased odds of colorectal cancer in the analy-
sis using cancer consortium data. This result is consist-
ent with that of a previous MR study that used colorectal 
cancer GWAS meta-analysis of GECCO and other con-
sortium data [16], which reported 1.12 higher odds per 
1 SD increase of genetically predicted vitamin B12 level 
of colorectal cancer (specifically 1.1 higher odds of colon 
cancer and 1.21 higher odds of rectal cancer). Previous 
RCTs reported conflicting results [66, 67]. A long-term 
follow-up study of RCT of 2524 Caucasian participants 
compared 2–3 years daily supplementation of folic acid 
(0.4 mg)/vitamin B12 (0.5 mg) and placebo and reported 
a higher risk of colorectal cancer in the treatment group 

(hazard ratio = 1.77, 95% CI = 1.08 to 2.90) [66]. The 
median age of the participants was 74 years, and the 
median follow-up period was 78 months, resulting in 68 
colorectal cancer cases. Another four-arm RCT assessed 
6837 Caucasian patients with ischemic heart disease, 
with a median age of 63 years. Patients were adminis-
tered folic acid (0.8 mg), vitamin B12 (0.4 mg), or vita-
min B6 (40 mg) [67] for a median of 39  months and 
were followed for an additional 38  months, resulting in 
95 colorectal cancer cases. In this study, the incidence 
of colorectal cancer did not differ according to the sup-
plements received. One limitation of these trials was 
their low power. The latter trial [67] reported 629 cases 
of any cancer and the power to detect any cancer inci-
dence difference between the two groups was 61% [67]. 
It can be expected that the power to detect differences in 
colorectal cancer incidence was much lower, given that 
there were only 95 colorectal cancer cases. Additionally, 
both trials assigned both vitamin B12 and folic acid to 
treatment arms, and the participants either had elevated 
homocysteine level [66] or ischemic heart disease [67], 
making it hard to generalize the results to the effect of 
vitamin B12 on the general population. Another key limi-
tation of these RCTs was that the follow-up duration was 
insufficient to detect an effect on the incidence of colo-
rectal cancer (77–78 months), given that the progres-
sion of colorectal adenoma to colorectal cancer may take 
10–15 years [68]. A long-term study over 10 years may 
be beneficial for identifying the true association between 
vitamin B12 supplementation and colorectal cancer.

For breast, colorectal, lung, ovarian, and prostate 
cancers, the associations between micronutrient levels 
were assessed in both the combined UKB and FinnGen 
cohorts, as well as the cancer consortia cohort. However, 
there were considerable inconsistencies between the two 
results. For example, in the UKB plus FinnGen cohort, 
vitamin C was found to be associated with a decreased 
risk of colorectal cancer (OR = 0.822, 95% CI = 0.698 to 
0.968, P = 0.0187) (Fig.  3), which aligns with the results 
of a previous MR study [69]. However, this associa-
tion was not replicated in the cancer consortia analysis 
in our study. Similarly, vitamin B12 was associated with 
an increased risk of non-invasive ovarian cancer in the 
cancer consortia dataset analyses (OR = 1.348, 95% 
CI = 1.106 to 1.643, P = 0.0031) and was statistically sig-
nificant after Bonferroni’s correction for the number of 
exposures (P < 0.0036) (Fig. 4). This was consistent with a 
previous MR study [22], but the result was not replicated 
in the UKB plus FinnGen meta-analysis dataset in our 
study. Only one association, that of iron and colorectal 
cancer, was statistically significant in both analyses. Nev-
ertheless, this association showed a borderline p-value 
(0.01 < P < 0.05) in both results and a sensitivity analysis 
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was not feasible because it was supported by only two 
SNPs. This discrepancy indicates that the seemingly 
robust associations reported in previous MRs need to be 
carefully assessed to confirm their true causality.

Associations detected on MR may raise awareness 
regarding the potential harm of micronutrient supple-
mentation, which should be considered when conduct-
ing RCTs. For example, the present study and another 
MR [15] identified high serum magnesium levels as a risk 
factor for breast cancer; clinicians conducting RCTs with 
magnesium supplementation should be cautious about 
breast cancer as a potentially negative outcome and care-
fully consider whether to include individuals with a high 
risk of developing breast cancer. Additionally, results 
from robustly conducted MR may serve as secondary 
evidence in clinical decision-making before sufficiently 
powered RCTs are fully conducted. Results from our MR 
and previous MR studies [15, 16] may imply that exces-
sive intake of magnesium or vitamin B12 (via diet or 
supplements) can potentially be harmful, especially for 
individuals without nutritional deficiency and who have a 
high risk of developing breast cancer or colorectal cancer.

The strengths of our study include its extensive scope, 
examining over 600 potential causal associations in a 
consistent manner and analyzing cancer outcome data 
from the UKB, FinnGen, and various cancer consortia. 
Additionally, the MR design is inherently less likely to 
be biased compared to those in classical observational 
studies, and our MR analysis also reflected the effect of 
lifelong exposure to micronutrients, thereby assessing 
long-term risks that may not be moderated by relatively 
short-term interventions [70].

Nevertheless, this study has several limitations. First, 
the number of SNPs was small, ranging from 1 to 9, and 
some exposures had less than four genome-wide sig-
nificant SNPs; thus, tests for potential pleiotropy could 
not be performed. Second, although we used the largest 
available micronutrient and cancer GWASs available to 
our knowledge to report the most powered associations, 
not all 308 associations using the UKB plus FinnGen 
data were sufficiently powered, partly because of our 
stringent IV selection method. Null associations with 
low power should be interpreted cautiously to avoid false 
negative results. Third, because full summary statistics 
data were not available for most exposures, bidirec-
tional MR analysis was not possible, and some exposure 
GWASs of micronutrients were adjusted for cancer risk 
factors (i.e., mediators) and cancer status, potentially 
leading to collider bias [71]. For example, the GWASs 
of vitamins A1 and E were adjusted for BMI, choles-
terol level, and cancer status (Additional file 2: Table S1). 
Fourth, we could not assess micronutrients, such as vita-
min K, with no appropriate GWAS for MR analyses that 

may affect cancer outcomes [72]. Fifth, participants in 
the UKB and FinnGen are likely to represent well-nour-
ished populations without nutritional deficiency, and 
the observed associations may differ in populations with 
nutritional deficiency [8], which were not assessed here. 
Associations may also vary according to sex [9], and 
sex-stratified MR analyses were not available because 
of the absence of GWAS results for exposure. Sixth, we 
meta-analyzed the UKB and FinnGen cohorts; however, 
the ancestry of the UKB and FinnGen cohorts may have 
been slightly different, and participants in the FinnGen 
cohort had fewer close genetic relatives than those in the 
UKB cohort [73], potentially leading to heterogeneity in 
the association effect between the cohorts. Additionally, 
we restricted the study sample to individuals of Euro-
pean ancestry to minimize the population stratification 
bias. This, in turn, prevents our findings from generaliz-
ing to other ancestries. Finally, two-sample MR assumes 
that the relationship between exposure and outcome is 
linear; thus, we might not have detected true nonlinear 
relationships between micronutrients and cancer.

Conclusions
We performed extensive exposure- and outcome-wide 
MR analyses to determine the associations between 14 
major micronutrients and 22 cancer outcomes. While 
our study did not show a causal association between 
micronutrients and overall cancer outcomes, we iden-
tified two robust micronutrient-cancer associations, 
which merit further investigation in clinical trials. Our 
results may aid clinicians in deciding whether to regu-
late the intake of certain micronutrients, particularly in 
high-risk groups without nutritional deficiencies and 
may help in designing future clinical trials.
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