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Abstract 

Background T2D is of high prevalence in the middle east and thus studying its mechanisms is of a significant impor-
tance. Using 1026 Qatar BioBank samples, epigenetics, whole genome sequencing and metabolomics were com-
bined to further elucidate the biological mechanisms of T2D in a population with a high prevalence of T2D.

Methods An epigenome-wide association study (EWAS) with T2D was performed using the Infinium 850K EPIC array, 
followed by whole genome-wide sequencing SNP-CpG association analysis (> 5.5 million SNPs) and a methylome-
metabolome (CpG-metabolite) analysis of the identified T2D sites.

Results A total of 66 T2D-CpG associations were identified, including 63 novel sites in pathways of fructose 
and mannose metabolism, insulin signaling, galactose, starch and sucrose metabolism, and carbohydrate absorp-
tion and digestion. Whole genome SNP associations with the 66 CpGs resulted in 688 significant CpG-SNP associa-
tions comprising 22 unique CpGs (33% of the 66 CPGs) and included 181 novel pairs or pairs in novel loci. Fourteen 
of the loci overlapped published GWAS loci for diabetes related traits and were used to identify causal associations 
of HK1 and PFKFB2 with HbA1c. Methylome-metabolome analysis identified 66 significant CpG-metabolite pairs 
among which 61 pairs were novel. Using the identified methylome-metabolome associations, methylation QTLs, 
and metabolic networks, a multi-omics network was constructed which suggested a number of metabolic mecha-
nisms underlying T2D methylated genes. 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) – a triglyceride-associated metabolite, 
shared a common network with 13 methylated CpGs, including TXNIP, PFKFB2, OCIAD1, and BLCAP. Mannonate 
– a food component/plant shared a common network with 6 methylated genes, including TXNIP, BLCAP, THBS4 
and PEF1, pointing to a common possible cause of methylation in those genes. A subnetwork with alanine, glu-
tamine, urea cycle (citrulline, arginine), and 1-carboxyethylvaline linked to PFKFB2 and TXNIP revealed associations 
with kidney function, hypertension and triglyceride metabolism. The pathway containing STYXL1-POR was associ-
ated with a sphingosine-ceramides subnetwork associated with HDL-C and LDL-C and point to steroid perturbations 
in T2D.

Conclusions This study revealed several novel methylated genes in T2D, with their genomic variants and associ-
ated metabolic pathways with several implications for future clinical use of multi-omics associations in disease 
and for studying therapeutic targets.
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Background
The worldwide prevalence of Type 2 diabetes (T2D) in 
2021 was estimated to be 9.8% [1]. However, the prev-
alence in countries from the Middle East and North 
Africa was 18.1%. The prevalence of T2D in Qataris has 
been estimated to be 14–17% [2], similar to other Mid-
dle Eastern populations. Such high prevalence of T2D 
in Qatar compared to western populations increases the 
risk of diabetes complications, including cardiovascu-
lar disease, retinopathy, nephropathy and early mortal-
ity. More than 400 independent genetic loci have been 
found to be associated with T2D across different ethnic-
ities and yet explain only a modest portion of the preva-
lence [3–5]. T2D is caused by complex interactions of 
multiple factors including genetic, epigenetic and envi-
ronmental influences. Current evidence indicates that 
lifestyle and environmental factors can influence gene 
expression and clinical phenotype through epigenetic 
mechanisms such as changes in DNA methylation. 
Identifying the epigenetic factors driving T2D are thus 
important to our understanding of T2D etiology.

DNA methylation in blood or pancreatic beta cells has 
been associated with T2D in multiple populations [6–
13]. Most used a previous version of the Infinium EPIC 
array utilizing 450K CpGs (rather than the newer 850K 
array) and involved western populations. A previous 
study done on Qataris (n = 123) demonstrated heteroge-
neity in methylation between Qatari and UK populations, 
indicating the importance of studying multiple world 
populations with varying prevalence of T2D [14].

Genetic variants have also been associated with meth-
ylation sites, referred to as methylation quantitative trait 
loci (meQTLs), and have further elucidated factors affect-
ing methylation. For example, 4.7 million cis- and 630,000 
trans-meQTL variants were identified in one study using 
the 450K array [15]. Using the 850K EPIC arrays, another 
study identified a large number of significant SNP-CpG 
pairs related to various features of diabetic kidney disease 
[16]. Those, and other previous studies, used imputed 
genotypes from available SNP arrays.

Circulating metabolites have also been associated 
with T2D and its complications [17, 18]. Since metab-
olite levels are influenced by both genetics [19] and 
epigenetics, and methylation affects gene expression 
which in turn affects metabolic pathways, T2D methyl-
ation would be expected to be associated with metabo-
lites and metabolic pathways related to T2D.

This study focuses on the epigenetic associations 
with T2D in a large number of subjects from the Qatari 
population to highlight the similarities and differences 
in T2D methylation compared to other populations. 
The integration of genomics and metabolomics with 
epigenetics was used to better understand the biologi-
cal mechanisms underlying methylation changes asso-
ciated with diabetes. First, the larger Infinium 850K 
EPIC array was used to identify novel methylation asso-
ciations with T2D using Qatari samples. Second, whole 
genome-wide sequencing (> 5.5M SNPs) was used to 
identify methylation quantitative trait loci (meQTLs) 
for the T2D-associated CpGs to highlight genetically 
driven CpGs. Third, an untargeted panel of metabo-
lites (Metabolon) was used to identify the associations 
of the T2D CpGs with the metabolome. Finally, com-
bining these results with metabolic correlations, multi-
omics networks were constructed to find functional 
metabolic pathways connecting the methylated genes 
and to understand their biological relation to T2D in 
this high-risk Middle Eastern population.

Methods
Subjects
The Qatar Biobank (QBB) is Qatar’s National Reposi-
tory Centre for biological samples and health infor-
mation [2]. T2D patients were selected based on the 
following criteria: a) The patient replied “Yes” to the 
question “Have you ever been diagnosed by a doctor 
as diabetic;” or b) HbA1c was ≥ 6.5); and c) The self-
reported age of diabetes onset was above 30  years or 
missing. Controls were selected to exclude any diabet-
ics (T2D or T1D) according to the above criteria.

Samples were delivered to Weill Cornell Medicine’s 
genomics core for methylation in three batches as 
kits became available. Subjects in cohorts 1 (454 sam-
ples after QC, 39% with T2D) and 2 (381 samples after 
QC, 48% with T2D) were selected randomly within 
disease category with a target to select approximately 
40% of the total sample (actual final percent was 43%) 
with T2D to increase statistical power. A third cohort, 
Cohort 3 (191 samples after QC, 33% with T2D), was 
selected after the T2D EWAS analyses of cohorts 1 and 
2 were completed (batch 3) and was combined with 
these cohorts to increase the power of the methylation-
SNP (meQTL) association analyses.
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DNA methylation profiling, quality control and statistical 
methods
A total of 1056 blood samples were collected and profiled 
using an Infinium Methylation EPIC 850K beadchip (Illu-
mina, Inc). The R package and library “minfi” were used 
for quality control. Samples that failed the “qc” function 
and sex assignment were removed. Samples or sites with 
a median detection p value < 0.05 were kept. ~ 30,000 
CpG sites were removed after dropping CpGs in a SNP 
locus (“droploci” function). Normalization was done 
using “Funnorm” [20] and beta values were used for the 
analysis. A total of 813,660 CpGs in autosomal chromo-
somes, and 1026 samples remained after QC (details in 
Additional file 1).

For the T2D EWAS, CpGs associated with T2D in 
cohort 1 were tested for replication in cohort 2 and 
those discovered in cohort 2 were tested for replication 
in cohort 1. Each time, the discovery p-value of 5.8 ×  10–8 
and the replication p-value of 0.05/(#EWAS significant 
CpGs identified in the discovery cohort) were used. This 
experiment was repeated two times, with and without 
adjusting for BMI, and all CpGs with significant replica-
tion in both experiments were combined.

Linear regression models were used for T2D EWAS 
associations, with CpG as the dependent variable and 
T2D the independent variable. Covariates included were 
sex, two principal components of the cell counts meas-
ured in the lab (neutrophils, basophils, eosinophils, 
monocytes, and lymphocytes), plate number, batch 
effects, sample well position, smoking surrogate (AHRR 
CpG site cg05575921) and three whole genome principal 
components to correct for population stratification [21] 
and relatedness. Batch effects were determined accord-
ing to groups of samples that were profiled together, 
and included differences in recording the gender code 
in some batches, which was included as a batch-gender 
interaction effect. Because the random selection of sub-
jects for cohorts 1 and 2 resulted in different distributions 
of BMI among cases and controls, we used both BMI-
adjusted and BMI-unadjusted association models. As age 
was found to be collinear with T2D in our cohorts, an age 
residual model was used for age adjustment in the T2D 
EWAS, where the CpGs were first regressed with age 
in controls and then CpGs in all samples were adjusted 
using the β0 (intercept) and β1 coefficients resulting from 
regression. Moreover, the CpGs that were identified as 
associated with T2D in the EWAS were further tested 
for association with age at a later stage where a larger set 
of controls was available. Only two CpGs were found to 
be associated with age as indicated in Additional file  2: 
Table S1.

Finally, pathway analysis was done using the Enrichr 
online tool [22, 23], where all genes of the 66 identified 

CpGs were submitted and KEGG pathways were selected. 
All KEGG results were used to assign the genes to path-
ways in order to discuss their biological relevance to 
diabetes.

Whole genome sequence, quality control and statistical 
methods (methylation quantitative trait loci)
A total of 5 million variants remained for analysis after 
quality control (Additional file 1) for 1026 samples. The 
subjects were divided into discovery (n = 703) and repli-
cation cohorts (n = 323) according to the genomic profil-
ing batches. For the meQTL analysis (SNP-CpG), mixed 
models were used and included kinship, age, sex, T2D 
status, BMI, two principal components of the actual cell 
counts (neutrophils, basophils, eosinophils, monocytes, 
and lymphocytes), plate number, batch effects, sam-
ple well position, smoking surrogate (AHRR CpG site 
cg05575921) and three whole genome principal com-
ponents as covariates. This analysis was done using the 
“Genabel” package [24] in the R statistical package, spe-
cifically the “polygenic” and “mmscore” functions [25].

Metabolomics, quality control and statistical methods 
(methylation‑metabolite association analysis)
A total of 1160 serum metabolites were measured using 
an untargeted metabolomics platform by Metabolon Inc. 
in 2985 samples. Data was quality controlled by log trans-
forming the values, removing outliers (above or below 3 
standard deviations from the mean over all samples for 
each metabolite) and z-scoring the metabolite values. A 
total of 936 metabolites remained for association with 
T2D after quality control. For the T2D MWAS analy-
ses, the samples were randomly divided into a discov-
ery (n = 1791, 70%) and a replication cohort (n = 1194, 
30%). Additional file 2: Table S12 shows the distribution 
of gender, age and BMI in the discovery and replication 
cohorts.

For CpG-metabolite association analyses, 708 samples 
from combined cohorts 1, 2 and 3, that had both metabo-
lomics and methylation were divided by batch into two 
sets, and METAL software [26] was used for the meta-
analysis. Associations with heterogeneity at p < 0.05 were 
excluded and corresponded to Isq > 74.

First, a T2D metabolome wide association study 
(MWAS) was performed to identify associations between 
metabolites and T2D, using linear regression models, 
with the metabolite as the dependent variable and T2D 
as the independent variable, including age, sex, BMI, and 
three whole genome principal components as covariates. 
Second, using the metabolites identified as significant 
from the MWAS and the CpGs significant from the T2D 
EWAS, CpG-metabolite associations were computed 
using the same model and covariates (excluding BMI) 
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from the T2D EWAS analyses, replacing T2D status with 
T2D metabolites.

Mendelian randomization
A two sample mendelian randomization (2SMR) analysis 
was used where CpG-HbA1c associations were computed 
in our cohort for CpGs that had meQTL SNP-HbA1c 
association statistics reported in the GWAS catalogue or 
Stanford Bio Bank. Linear regression models for CpG-
HbA1c associations included all covariates considered 
in the EWAS analysis except for T2D. CpGs in HK1 and 
PFKFB2 were found significantly associated with HbA1c 
using cohort 1 and cohort 2 as discovery and replication 
cohorts, respectively. The causal associations were then 
tested for those genes with HbA1c. 2SMR statistics were 
computed using “mr_maxlik” (maximum likelihood) and 
“ivw” (inverse variance weighted) functions in “Mendeli-
anRandomization” package in R.

Network analysis
Metabolites were corrected for all covariates mentioned 
previously and residuals were used for the partial correla-
tion analysis, using “GeneNet” package in R, and utiliz-
ing a Bonferroni p-value threshold. Pairs of all identified 
CpG associations and significantly correlated metabolites 
were combined and visualized using Cytoscape software.

Results
Figure  1 summarizes the overall study design. Three 
cohorts of samples were obtained from the Qatar 
Biobank over three years with 43.5% being T2D patients 
(Table  1 shows the cohort characteristics). Cohorts 1 
and 2 were used for the T2D Epigenome Wide Associa-
tion Study (EWAS) (n = 835) and cohort 3 was added to 
improve the statistical power of SNP-CpG association 
analysis (n = 1026). Samples from the 3 cohorts that had 
both metabolomics and methylation were used for the 
CpG-metabolite association analyses (n = 708).

66 CpG sites in 48 genes were associated with T2D
A T2D EWAS analysis was performed using cohorts 1 
and 2, in a two-way discovery and replication analysis. A 
total of 47 CpGs were significant at an EWAS significance 
threshold of p-value p < 5.8 ×  10–8 in cohort 1 and repli-
cated in cohort 2. An additional 10 CpGs were significant 
when using cohort 2 as the discovery cohort and cohort 
1 as the replication cohort. When including BMI as a 
covariate, 33 CpG sites were identified in cohort 1 and 
replicated in cohort 2 and 14 CpG sites were identified 
as significant in cohort 2 and replicated in cohort 1. In 
total, 74 CpGs from models with or without adjustment 
for BMI were identified and replicated, out of which 66 
CpGs in 48 genes had the same direction of association in 

both cohorts (Table 2, Additional file 2: Table S1, Fig. 2). 
Twenty-seven of the 66 CpGs were significant both with 
and without BMI adjustment. Of the 66 CpGs, only two 
CpGs in TXNIP were lower in T2D patients compared 
to nondiabetics; all other CpGs were higher in T2D com-
pared to nondiabetics.

Three of the 66 CpGs (TXNIP, POR, and DQX1) were 
previously reported at an EWAS significance, and 63 
CpGs are thus novel. Thirty one of the 66 identified CpGs 
have been previously reported to be methylated in T2D 
or related traits at a nominal p-value (p < 0.05), includ-
ing fasting glucose, HOMA IR, HbA1c [6, 16], or BMI 
(Additional file 2: Table S2). An additional 15 T2D CpGs 
were reported to be associated with kidney function, 
albuminuria and kidney function decline in [16] (Addi-
tional file 2: Table S2). We also replicated T2D methyla-
tion associations [6–8, 27, 28] at a replication p-value in 
the larger cohort using the “no-BMI” model (Additional 
file 2: Table S3).

Five of the 48 methylated genes, namely TCF3, 
OCIAD1, SPRED2, DOCK10 and LMTK2 were found 
to be associated with T2D in the GWAS catalogue [29], 
(Additional file 2: Table S2). The Biobank-based Integra-
tive Omics Studies website (BIOS QTL) [30], showed 
that 7 of the 66 CpGs, namely LRFN1, RP11-629O1.2, 
PABPC4, CD81, COL7A1, NLGN2 and HCG18 have 
expression-methylation associations at FDR < 0.05 (Addi-
tional file 2: Table S4).

KEGG pathways containing the genes associated 
with the significant CpGs included fructose and man-
nose metabolism (PFKFB2, HK1) and insulin signaling 
(PPP1R3E, HK1, PRKAR2A). HK1 is linked to galactose, 
starch and sucrose metabolism, carbohydrate absorption 
and digestion, glycolysis and gluconeogenesis, and amino 
sugar and nucleotide sugar metabolism (Additional file 2: 
Table S5).

688 whole genome meQTLs in 27 loci were identified 
for T2D CpGs
The 66 significant CpG sites were tested for association 
with whole genome sequence SNPs (> 5.5 million SNPs) 
in 703 samples and tested for replication in 308 sam-
ples (see Methods). A total of 688 associations were sig-
nificant in the discovery cohort at p < 8.7 ×  10–10 (Fig.  3, 
Additional file  2: Table  S6) and constituted 22 unique 
CpG sites that were associated with 27 unique genes, in 
27 unique genic and intergenic loci. Out of 688 SNP-CpG 
pairs (27 loci), 222 pairs (7 loci) were either replicated 
at the exact SNP position or in the same locus (within 
500 kb of the SNP position) in the Qatari replication 
cohort, and 369 pairs confirmed previous pairs or loci in 
Sheng et al. [16] or in BIOS QTL [30]. Collectively, 591 
pairs (86% of pairs) in 19 loci (75% of loci) were either 
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Fig. 1 Detailed flow of the study of T2D using data from epigenetic, whole genome and metabolomics data

Table 1 Sample characteristics for 3 cohorts selected from the Qatar Biobank

Whole genome‑ Epigenome (meQTL) analysis

T2D EWAS analysis

Cohort 1, N = 454 Cohort 2, N = 381 Cohort 3, N = 191

Variable T2D (N = 176) Nondiabetics (N = 278) T2D (N = 183) Nondiabetics (N = 198) T2D (N = 63) Nondiabetics (N = 128)

Age (mean ± SD) 54.4 ± 8.8 34.5 ± 10.2 51.2 ± 9.5 37.8 ± 11.4 53.4 ± 9.5 55.1 ± 12.4

BMI (mean ± SD) 32.4 ± 6.0 26.6 ± 6.0 30.8 ± 5.2 30.7 ± 5.2 32.7 ± 6.6 29.6 ± 5.6

Sex (Female %) 55.11% 50.7% 40.4% 55% 42.8% 48.4%
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Table 2 66 CpG sites associated with T2D from two regression models (with and without BMI adjustment)

id Gene Cohort 1 Cohort 2

DF Beta p‑value DF Beta p‑value Model covariate Is CpG 
significant in 
both models?

cg19693031 TXNIP⊥ 425 0.06 2.4E-21 * 362 0.04 7.6E-13 * no BMI Both

cg06291107 BLCAP 425 -0.03 1.8E-16 * 362 -0.02 3.7E-07 no BMI Both

cg10615580 FLJ90757 425 -0.04 3.8E-16 * 362 -0.02 5.8E-06 no BMI Both

cg01676795 POR⊥ 425 -0.06 7.6E-15 * 362 -0.03 2.9E-06 no BMI Both

cg20567408 PCID2 425 -0.05 2.6E-14 * 362 -0.02 3.6E-06 no BMI Both

cg13108341 DNAH9 425 -0.08 4.8E-14 * 362 -0.05 1.2E-06 no BMI Both

cg19420720 P4HB 425 -0.04 8.5E-14 * 362 -0.02 4.7E-06 no BMI Both

cg00994936 DAZAP1 425 -0.03 2.3E-13 * 362 -0.02 3.7E-06 no BMI Both

cg01219924 FLJ90757 425 -0.05 2.6E-12 * 362 -0.03 7.7E-06 no BMI Both

cg11969813 P4HB 425 -0.05 3.0E-12 * 362 -0.03 1.9E-07 no BMI Both

cg27094813 425 -0.04 5.1E-12 * 362 -0.03 8.4E-09 * no BMI Both

cg08088075 425 -0.03 7.3E-12 * 362 -0.03 3.9E-10 * no BMI Both

cg19707375 BAIAP2-AS1 425 -0.04 2.1E-11 * 362 -0.02 1.1E-06 no BMI Both

cg06721411 DQX1⊥ 425 -0.04 3.9E-11 * 362 -0.03 4.0E-08 * no BMI Both

cg22904406 DAXX 425 -0.04 9.4E-11 * 362 -0.02 1.0E-05 no BMI Both

cg12973487 TCF3 425 -0.03 1.1E-10 * 362 -0.02 2.2E-06 no BMI Both

cg14334460 NELF 413 -0.04 1.2E-10 * 361 -0.02 3.0E-05 with BMI

cg00683922 PFKFB2 425 -0.04 1.2E-10 * 362 -0.02 2.6E-06 no BMI Both

cg09879165 CACNA2D2 425 -0.02 2.0E-10 * 362 -0.01 6.6E-07 no BMI Both

cg08992189 HK1 425 -0.04 6.2E-10 * 362 -0.03 1.6E-07 no BMI Both

cg21124952 425 -0.04 7.0E-10 * 362 -0.02 3.4E-06 no BMI

cg12761421 LGR6 413 -0.03 1.6E-09 * 361 -0.02 1.3E-05 with BMI

cg15007470 TCF3 413 -0.04 1.8E-09 * 361 -0.02 1.5E-05 with BMI

cg27305772 MUS81 413 -0.03 2.3E-09 * 361 -0.01 3.8E-05 with BMI

cg06646796 DHRS2 425 -0.03 2.4E-09 * 362 -0.02 5.7E-06 no BMI

cg15326645 413 -0.03 2.7E-09 * 361 -0.02 6.6E-06 with BMI

cg19358608 425 -0.03 3.4E-09 * 362 -0.03 3.1E-06 no BMI

cg01689405 SLC30A2 425 -0.03 3.6E-09 * 362 -0.02 4.7E-06 no BMI

cg21279706 KIAA1257 425 -0.04 5.6E-09 * 362 -0.02 5.9E-06 no BMI

cg10167677 THBS4 425 -0.03 5.9E-09 * 362 -0.03 2.0E-07 no BMI Both

cg12350057 PPP1R3E 413 -0.05 6.0E-09 * 361 -0.03 4.4E-05 with BMI

cg01307606 425 -0.03 6.7E-09 * 362 -0.02 1.5E-06 no BMI Both

cg09777883 425 -0.03 7.5E-09 * 362 -0.03 2.3E-08 * no BMI Both

cg09029192 TNRC6C 425 -0.03 8.7E-09 * 362 -0.02 1.0E-05 no BMI

cg20006294 FRMD4B 425 -0.04 8.8E-09 * 362 -0.02 4.2E-06 no BMI

cg03037271 425 -0.03 1.1E-08 * 362 -0.02 3.3E-07 no BMI

cg19225036 PBRM1 413 -0.04 1.1E-08 * 361 -0.02 2.7E-05 with BMI

cg22896572 425 -0.04 1.2E-08 * 362 -0.04 1.0E-06 no BMI Both

cg06555354 SPRED2 413 -0.04 1.2E-08 * 361 -0.02 4.0E-05 with BMI

cg08110950 425 -0.02 1.2E-08 * 362 -0.02 8.4E-07 no BMI

cg18939666 PEF1 425 -0.03 1.3E-08 * 362 -0.02 4.0E-07 no BMI

cg11692409 SERPINF1 425 -0.03 1.6E-08 * 362 -0.02 4.7E-06 no BMI

cg17054691 P4HB 425 -0.02 1.6E-08 * 362 -0.02 8.7E-07 no BMI

cg13442656 NR5A1 425 -0.03 1.9E-08 * 362 -0.02 1.2E-06 no BMI

cg00765623 425 -0.03 1.9E-08 * 362 -0.02 6.4E-06 no BMI

cg13547913 OCIAD1 425 -0.04 2.0E-08 * 362 -0.03 8.5E-07 no BMI

cg26236214 ARHGEF7 425 -0.04 2.0E-08 * 362 -0.03 2.4E-06 no BMI
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replicated in the Qatari replication cohort or confirmed 
in previous studies with an exact pair match or in the 
same locus. A total of 130 pairs were considered novel 
CpG-SNP associations located in previously published 
loci and replicated in Qataris (Additional file 2: Table S6), 
and 51 pairs were in novel loci, replicated in Qataris 
(Table 3, Additional file 2: Table S6). These loci were in 
TXNIP-SLC2A1, OCIAD1, and SERPINF1 genes. A total 
of 542 (i.e., 92% of 591) pairs were cis pairs (defined as 
less than 1 Mb distance between the SNP and the CpG; 
however, all identified cis pairs were within < 134 kb dis-
tance, with an average of 32 kb) and 49 pairs were trans 
associations (24 pairs were on the same chromosome 
at > 100 Mb distance, and 25 pairs were on another chro-
mosome) in TXNIP-SLC2A1 and OCIAD1. SNPs in 
the 591 pairs are annotated as follows: 416 in introns, 
84 intergenic, 48 in a downstream/upstream gene, 14 in 
3’UTR or 5’UTR, 14 non-coding exons, 6 synonymous, 3 
intron-near-splice, and 6 missense and stop-gained SNPs.

Three meQTLs harbored nonsynonymous and 5’UTR 
variants, specifically in SERPINF1, DOCK10 and 
SLC2A1-TXNIP (Fig. 4). Four missense SNPs in the SER-
PINF1-SMYD4 locus were associated with cg11692409 

(chromosome 17:1665181), among which rs1136287 
(17:1673276) and rs1804145 (17:1674434) associated with 
this CpG at p = 4.0 ×  10–22 and p = 5.4 ×  10–17 respectively. 
The former (cg11692409-rs1136287) was also reported in 
[15] at p = 3.9 ×  10–165 and in [16] at p = 3.8 ×  10–12. More-
over, rs1136287 had been associated with pigment epithe-
lium-derived factor (PEDF, p = 3.9 ×  10−35), where PEDF 
was associated with diabetic nephropathy (p < 0.001) and 
sight threatening diabetic retinopathy (p < 0.001) [31]. 
Additionally, [32] showed an inverse correlation between 
cg11692409 and the mRNA expression of its gene (PEDF) 
(correlation coefficient =  − 0.38, p < 0.001). Another gene, 
DOCK10, harbored a stop-gained (rs12328236), a mis-
sense (rs4674940) and an intron-near-splice (rs77952666) 
variant associated with cg12331557, which were consid-
ered novel associations compared to previously known 
meQTLs [16]. It is worth noting that rs80176144 (~ 20 kb 
away from this locus) was associated with coronary artery 
calcified atherosclerotic plaque in T2D at p = 7 ×  10–6 
[33] and is ~ 50  kb away from the identified meQTL 
SNP. The third gene, SLC2A1, harbored a 5’UTR SNP 
(rs11537640) that associated with cg19693031 in TXNIP, 
two genes that are biologically linked [34, 35]. Located 

Table 2 (continued)

id Gene Cohort 1 Cohort 2

DF Beta p‑value DF Beta p‑value Model covariate Is CpG 
significant in 
both models?

cg27187909 HDAC5 425 -0.03 2.2E-08 * 362 -0.02 5.0E-06 no BMI

cg22699725 PFKFB2 413 -0.03 2.4E-08 * 361 -0.02 2.0E-05 with BMI

cg09627709 LMTK2 425 -0.04 3.7E-08 * 362 -0.03 9.2E-06 no BMI

cg25693597 P4HB 413 -0.03 4.4E-08 * 361 -0.02 2.3E-05 with BMI

cg04406114 POU2F2 413 -0.03 4.6E-08 * 361 -0.02 1.3E-05 with BMI

cg01280703 TFF3 425 -0.02 5.3E-08 * 362 -0.02 4.7E-08 * no BMI Both

cg12067024 S100A7A 425 -0.02 3.3E-06 362 -0.02 1.4E-08 * no BMI Both

cg26747273 IDO2 413 -0.05 6.1E-06 361 -0.04 5.7E-08 * with BMI

cg19629891 LOC100288637 413 -0.03 1.3E-05 361 -0.03 4.8E-08 * with BMI

cg01004980 PRKAR2A 425 -0.03 2.0E-05 362 -0.04 1.2E-09 * no BMI

cg27182880 LOC101929524 413 -0.02 1.2E-04 361 -0.02 3.0E-08 * with BMI

cg02988288 TXNIP;NBPF20;NBPF10 425 0.02 1.3E-04 362 0.02 3.9E-10 * no BMI Both

cg04326337 RPRD1B 425 -0.03 1.8E-04 362 -0.04 2.4E-08 * no BMI

cg00842231 LOC55908;DOCK6 425 -0.01 2.5E-04 362 -0.01 3.8E-08 * no BMI

cg00092123 KIAA1211L 425 -0.01 2.8E-04 362 -0.02 5.2E-08 * no BMI

cg12331557 DOCK10 413 -0.02 4.1E-04 361 -0.02 1.9E-08 * with BMI

cg05919951 HAUS8 413 -0.02 4.2E-04 361 -0.03 5.0E-08 * with BMI

cg25358033 TPCN1 425 -0.01 4.2E-04 362 -0.02 3.0E-08 * no BMI

cg00929203 425 -0.01 6.3E-04 362 -0.02 2.7E-09 * no BMI Both
*  Epigenome-wide (EWAS) significant. ⊥ indicates a previously known T2D methylated gene. Beta column indicates the effect size from regression analysis. Cohort 1 
and cohort 2 were used in a 2-way discovery and replication procedure. The 66 identified CpGs were a combination of CpGs identified in cohort 1 and replicated in 
cohort 2 (asterisk in the cohort 1 column), and CpGs identified in cohort 2 and replicated in cohort 1 (asterisk in the cohort 2 column), using models either adjusted 
or unadjusted for BMI. The presented statistics were obtained from the statistical model indicated (including or excluding BMI as a covariate) when both models were 
significant. More details are in Additional file 2: Table S1
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6738  bp upstream of rs11537640, rs12407920 had been 
associated with diabetic nephropathy (DN) [36], whereas 
cg19693031, besides its association with T2D, has been 
associated with kidney function [37].

meQTLs with GWAS associations and causal relationships
To investigate the biological functions of meQTL genes 
and identify whether meQTL SNPs are in loci that 
harbor GWAS associations with T2D relevant traits, 
we searched the GWAS catalogue [29] and the Stan-
ford Biobank [38] for phenotypic associations with the 
meQTL genes. From the GWAS catalogue, 64 unique 
SNPs were identified at < 1kb away from meQTL SNPs, 
and were associated with several traits, some of which 
were relevant to T2D. Among those, 29 SNPs were 
exact matches of meQTL SNPs associated with 10 
T2D CpGs (Fig. 5, Table 4, Additional file 2: Table S7). 
Among the most significant GWAS associations were 
meQTL SNPs in HK1 with HbA1c. Using the Stanford 
portal, we identified 20 unique SNPs located at < 1kb 
away from meQTL SNPs, that were associated with 

several traits (Table  4, Additional file  2: Table  S8). 
Among those, 7 were exact matches of meQTL SNPs 
associated with 3 T2D CpGs. Both HK1 and PFKFB2 
GWAS associations with HbA1c were significant in 
this database.

For meQTL SNPs in HK1 and PFKFB2 that had asso-
ciations with HbA1c, causal relationships of methylated 
genes with HbA1c as a biomarker of T2D were studied. 
The associations of methylation sites in those genes 
with HbA1c were first confirmed to be significant in our 
cohort. cg08992189 in HK1 was associated with HbA1c 
at a discovery p-value of p = 2.39 ×  10–5 and replicated 
at a p-value of p = 1.6 ×  10–4, whereas cg22699725 in 
PFKFB2 was associated with HbA1c at a discovery 
p-value of p = 2.68 ×  10–6 and replicated at a p-value of 
p = 2.53 ×  10–5. Afterwards, a two-Sample Mendelian 
Randomization (2SMR) analysis was conducted using 
CpG-SNP statistics from our cohort (meQTL results) 
and SNP-HbA1c statistics from the GWAS catalogue 
and Stanford Biobank. Table 5 shows the 2SMR results 
for PFKFB2 and HK1 with HbA1c (See Methods).

Fig. 2 Manhattan plot of 66 CpGs associated with T2D. The red line indicates the Bonferroni p-value threshold for significance
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66 CpG‑metabolite associations were identified from T2D 
CpGs and T2D metabolites
We ran a T2D metabolome wide association study 
(MWAS) using 2985 individuals with 936 plasma metab-
olites, and identified 112 metabolites that were sig-
nificantly associated with T2D at a Bonferroni p-value 
threshold of (p < 0.05/936) in the discovery cohort 
(n = 1791), of which 75 metabolites were replicated in the 
replication cohort (n = 1194) (p < 0.05/112) (Additional 
file 2: Table S9). All 66 T2D CpGs identified in this study 
were tested for associations with the 75 T2D metabolites 
in 708 individuals. Those were divided into two cohorts 
of 364 and 344 individuals which were used for meta-
analysis of the CpG-metabolite associations obtained 
from each. We identified 77 significant CpG-metabolite 
associations (p < 0.05/66*75), out of which 11 associations 
were removed due to a high heterogeneity, resulting in 
66 significant associations in 24 unique CpGs (19 genes) 
and 25 unique metabolites (Table  6, Fig.  6, Additional 

file  2: Table  S10). Of these, 61 were considered novel 
associations.

TXNIP (mainly cg1969303), was associated with 25 
metabolites including 1,5 anhydroglucitol and pyru-
vate from the glycolysis pathway, and metabolites from 
fructose/mannose metabolism, alanine and aspartate 
metabolism, aminosugars, pentose metabolism, phe-
nylalanine metabolism, branched chain amino acids, 
glutamate metabolism, glutathione metabolism, phos-
phatidylethanolamines and metabolites classified as food 
components. Among the remaining 41 associations, 
were DQX1 (DEAQ Box Polypeptide 1) with phosphati-
dylethanolamines and ribitol, BLCAP (Bladder Cancer 
Associated Protein) with ribitol, mannonate, glucose, 
and phosphatidylethanolamines, DAZAP1 (Deleted In 
Azoospermia-Associated Protein 1) with mannonate, 
OCIAD1 (Ovarian Carcinoma Immunoreactive Anti-
gen) with phosphatidylethanolamines, PFKFB2 (6-Phos-
phofructo-2-Kinase/Fructose-2,6-Biphosphatase 2) with 

Fig. 3 Manhattan plot of 688 CpG-SNP significant pairs. Red line is the Bonferroni p-value threshold for significance. (p = 8.6 ×  10–10). “x” indicates 
an undefined gene or an intergenic region. “*” indicates a trans meQTL
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Table 3 Fifty-one novel SNP-CpG pairs in novel loci

rsID chr:position CpG Chra Positiona Beta* p‑value function GVS SNP Gene CpG Gene cis /trans

34964576 1:43409364 cg19693031 1 145441552 94.97 1.40E-10 intron SLC2A1 TXNIP trans

35022307 1:43409420 cg19693031 1 145441552 94.97 1.40E-10 intron SLC2A1 TXNIP trans

751210 1:43410859 cg19693031 1 145441552 94.97 1.40E-10 intron SLC2A1 TXNIP trans

16830121 1:43412469 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

3768037 1:43412662 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

900836 1:43412727 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

7534555 1:43413319 cg19693031 1 145441552 96.61 7.73E-11 intron SLC2A1 TXNIP trans

7512557 1:43413324 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

7512565 1:43413361 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

710,222 1:43413653 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

61296119 1:43414046 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

74742820 1:43414369 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

57247989 1:43414370 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

75366795 1:43414447 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

112893098 1:43414563 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

2297975 1:43415516 cg19693031 1 145441552 95.82 1.07E-10 intron SLC2A1 TXNIP trans

79608798 1:43416158 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

4660691 1:43417150 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

12406072 1:43419737 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

113583149 1:43423955 cg19693031 1 145441552 95.49 1.18E-10 intron SLC2A1 TXNIP trans

11537640 1:43424519 cg19693031 1 145441552 95.27 9.15E-11 5-prime-UTR SLC2A1 TXNIP trans

62621848 1:43425082 cg19693031 1 145441552 95.49 1.18E-10 non-coding-exon SLC2A1-AS1 TXNIP trans

4306169 1:43431433 cg19693031 1 145441552 91.40 4.91E-10 intron SLC2A1-AS1 TXNIP trans

4,660,240 1:43433286 cg19693031 1 145441552 91.40 4.91E-10 intron SLC2A1-AS1 TXNIP trans

12356274 10:115290365 cg13547913 4 48831680 -61.64 1.38E-10 intergenic none OCIAD1 trans

2419834 10:115296495 cg13547913 4 48831680 -61.78 1.16E-10 intergenic none OCIAD1 trans

11196365 10:115298288 cg13547913 4 48831680 -61.78 1.16E-10 intergenic none OCIAD1 trans

7898594 10:115298906 cg13547913 4 48831680 -62.67 6.10E-11 intergenic none OCIAD1 trans

55760941 10:115298957 cg13547913 4 48831680 -62.61 6.59E-11 intergenic none OCIAD1 trans

1857320 10:115300285 cg13547913 4 48831680 -62.92 5.70E-11 intergenic none OCIAD1 trans

1857319 10:115300382 cg13547913 4 48831680 -62.99 5.27E-11 intergenic none OCIAD1 trans

11596601 10:115300407 cg13547913 4 48831680 -62.99 5.27E-11 intergenic none OCIAD1 trans

10509979 10:115301699 cg13547913 4 48831680 -63.78 2.26E-11 intergenic none OCIAD1 trans

4457677 10:115302658 cg13547913 4 48831680 -62.99 5.27E-11 intergenic none OCIAD1 trans

57919847 10:115303435 cg13547913 4 48831680 -63.78 2.26E-11 intergenic none OCIAD1 trans

1157916 10:115303743 cg13547913 4 48831680 -62.99 5.27E-11 intergenic none OCIAD1 trans

4342960 10:115304399 cg13547913 4 48831680 -62.99 5.27E-11 intergenic none OCIAD1 trans

11196368 10:115304614 cg13547913 4 48831680 -62.99 5.27E-11 intergenic none OCIAD1 trans

118011654 10:115305727 cg13547913 4 48831680 -62.99 5.27E-11 upstream-gene none OCIAD1 trans

4311988 10:115306261 cg13547913 4 48831680 -63.78 2.26E-11 upstream-gene none OCIAD1 trans

10885471 10:115307040 cg13547913 4 48831680 -62.60 6.29E-11 upstream-gene none OCIAD1 trans

76070905 10:115308927 cg13547913 4 48831680 -62.76 5.97E-11 upstream-gene none OCIAD1 trans

59096313 17:1661829 cg11692409 17 1665181 -58.43 5.30E-10 upstream-gene none SERPINF1 cis

62088168 17:1662296 cg11692409 17 1665181 97.30 7.39E-21 upstream-gene none SERPINF1 cis

7010095 8:98766461 cg13547913 4 48831680 64.95 2.46E-10 intergenic none OCIAD1 trans

2917964 8:98766490 cg13547913 4 48831680 64.95 2.46E-10 intergenic none OCIAD1 trans

7002076 8:98767981 cg13547913 4 48831680 64.95 2.46E-10 intergenic none OCIAD1 trans

112977944 8:98768643 cg13547913 4 48831680 65.43 1.92E-10 intergenic none OCIAD1 trans

12546567 8:98769090 cg13547913 4 48831680 64.90 2.55E-10 intergenic none OCIAD1 trans

148246392 8:98770499 cg13547913 4 48831680 64.17 3.82E-10 intergenic none OCIAD1 trans

185918087 8:98771524 cg13547913 4 48831680 64.20 3.34E-10 intergenic none OCIAD1 trans

a : chr and position of the CpG. *Beta column indicates the effect size from regression analysis
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1-carboxyethylphenylalanine, alanine, erythronate and 
phosphatidylethanolamines, and POR (P450 Cytochrome 
Oxidoreductase) with 1,5 anhydroglucitol and a hexosyl-
ceramide among others.

Multi‑omics networks in T2D
A multi-omics network was constructed from all asso-
ciations obtained and metabolic networks to identify 
pathways combining methylation and metabolism. Inte-
grating the 66 CpG-metabolite pairs with 9 meQTL SNPs 
of the CpGs in those pairs and the T2D metabolites that 
had significant partial correlations with the metabolites 
involved in those 66 CpG-metabolite pairs, we obtained a 
network with 105 nodes (SNP/CpG/metabolite) and 165 
edges (associations or correlations). The largest subnet-
work had 75 nodes and 120 edges and harbored all CpGs 
that had metabolic associations (Fig. 7, Additional file 3: 
Figure S1).

The methylated genes interconnect together through 
three major pathways: amino acids (11 metabolites), 
carbohydrates (8 metabolites) and lipids (13 metabo-
lites). Amino acids formed a subnetwork that linked 
TXNIP, PFKFB2, THBS4, and POR with alanine and 
aspartate metabolism, urea cycle metabolites, branched 
chain amino acid metabolites, glutathione metabolism, 
phenylalanine metabolism, and glutamate metabolism. 
The carbohydrates formed a subnetwork that linked 
TXNIP, PFKFB2, PPP1R3E, BLCAP, DQX1, RPRD1B, 
and POR to glycolysis metabolism (1,5 anhydroglu-
citol, glucose, pyruvate), fructose, mannose, pentose 
metabolism (ribitol, ribulonate), and the aminosugar 
erythronate. A group of 8 lipids formed a subnetwork 
of ceramides and sphingosines linked to POR and 
BAIAP2-AS1. Other major connectivity is through hub 
metabolites (with many edges to genes) as 1-palmitoyl-
2-oleoyl-GPE (16:0/18:1) connection to 13 CpGs in 11 

Fig. 4 Regional plots and summary of biological functions of meQTLs in SLC2A1, DOCK10 and SERPINF1



Page 12 of 20Yousri et al. BMC Medicine          (2023) 21:347 

genes and mannonate’s (xenobiotic) connection to six 
genes.

To enrich the metabolic pathway information, the asso-
ciations of metabolites with BMI, lipoprotein cholesterols 
and triglycerides were identified. Of the 43 T2D metab-
olites in this network, 16 showed higher significance in 
association with BMI, LDL-C, HDL-C or triglycerides 
compared to their association with T2D (Additional 
file 2: Table S11), among which 1-palmitoyl-2-oleoyl-GPE 
(16:0/18:1) was associated with triglycerides and linked 
to 13 CpGs.

Discussion
This study used a large number of subjects from the 
Qatari population that has a high prevalence of diabe-
tes and used the largest methylation EPIC array. Whole 
genome sequencing and metabolomics data were incor-
porated to enrich the identification of biological path-
ways associated with methylation and diabetes.

A total of 66 CpG sites were significantly associated 
with T2D, of which 63 CpGs were novel in the  insu-
lin signaling pathway, fructose and mannose pathway 
and other T2D relevant pathways. Twenty-two of the 

Fig. 5 Bonferroni significant GWAS associations for traits associated with SNPs within 1kb of the meQTL SNPs. Traits are clustered according 
to the phenotype in > 9 clusters, indicated on the horizontal axis, that could be relevant to T2D and the blue bars are irrelevant to T2D. The marked 
clusters (*) have at least one exact matching meQTL and GWAS SNPs. 47 associations are exact matches, with further details shown in Additional 
file 2: Table S7

Table 4 Significant GWAS associations with HbA1c and exact meQTL SNP matches

a  Repeated associations with the same SNP and traits with less significance are not shown

GWAS catalogue  resultsa meQTL statistics

chr:pos rs Mapped gene Reported trait P value Source CpG p

10:71,124,228 rs7909192 HK1 HbA1c 1E-250 Stanford portal cg08992189 4.89E-10

10:71,098,351 rs75743765 HK1 HbA1c 1.32E-32 Stanford portal cg08992189 7.32E-14

10:71,108,149 rs11596193 HK1 HbA1c 1.00E-09 GWAS catalogue cg08992189 1.96E-14

1:207,250,300 rs1060286 PFKFB2 HbA1c 5.38E-10 Stanford portal cg22699725 1.22E-10
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identified CpGs had meQTLs in 688 CpG-SNP associa-
tions, among which 130 were novel associations and 51 
pairs were in novel loci. Novel nonsynonymous and 
5’UTR variants were identified in T2D methylated sites 
of SERPINF1, DOCK10, and TXNIP. Several meQTLs 
SNPs had GWAS associations with T2D related traits, 
and causal relationships were statistically inferred 
between novel CpG sites in HK1 and PFKFB2 and HbA1c 
(p < 0.0001). Finally, 61 CpG-metabolite pairs out of all 
66 identified pairs were novel, among which TXNIP, 
DAZAP1, BLCAP, and OCIAD1 were found associated 
with various carbohydrates, lipids, amino acids and xeno-
biotics. The constructed multi-omics network revealed 
several methylation-metabolism pathways that related to 
T2D risks or complications.

The most significantly-associated T2D methylated 
gene, thioredoxin-interacting protein (TXNIP), plays a 
role in insulin sensitivity, is a tumor suppressor that is 
upregulated in diabetes, is induced when glucose lev-
els are elevated, and its deficiency improves glucose 
tolerance and increases insulin sensitivity in high fat 
diet-induced obesity [34, 39]. TXNIP suppresses glu-
cose uptake by directly binding and suppressing the glu-
cose transporter, GLUT1 (SLC2A1), by facilitating its 
clathrin-mediated endocytosis [34, 40]. When elevated, 
TXNIP induces β-cell apoptosis, while its deficiency pro-
tects against type I and type II diabetes by promoting 
β-cell survival [41, 42]. It is also known to be involved in 
kidney injury and with IL-1 β in the pathogenesis of T2D 
[43, 44]. Thus, findings from the meQTL analysis, linking 
SLC2A1 to TXNIP and its several metabolic associations 
support and add to those known functions of the gene. 
Besides TXNIP, pathway analysis and the known biology 
of the novel methylated genes support their relevance to 
T2D. For example, PPP1R3E, PRKAR2A and HK1 are 
involved in insulin signaling and resistance (Additional 
file  2: Table  S5). Together with the several T2D-related 

pathways reported for HK1, further evidence of its rel-
evance to T2D has been provided by GWAS associa-
tions of HK1 genetic variants with HbA1c [45], with the 
strongest signals reported in [46]. HK1 is in the family of 
hexokinases, which are known to phosphorylate glucose 
to produce glucose-6-phosphate, the first step in most 
glucose metabolism pathways [47]. Its association with 
the insulin signaling pathway and hyperinsulinemia [48], 
along with being part of the carbohydrate absorption, 
glycolysis, fructose and mannose metabolism pathways 
further emphasizes the statistically inferred causality 
relation. Other methylated genes have been associated 
with T2D incidence [49] and cardiovascular disease [50]. 
For example, CACNA2D2 is involved in pathways related 
to T2D-associated coronary heart disease, cardiomyopa-
thy, cardiac muscle contraction [51]. Variants of DOCK6 
have been associated with GWAS studies on coronary 
heart disease and total and HDL cholesterol levels [52, 
53]. THBS4  has been associated with more advanced 
peripheral artery disease and T2D [54]. It has also been 
reported to mediate breast cancer inflammation and 
growth in mouse models in response to hyperglycemia 
and TGF-beta [55]. IDO2, one of the isoforms of IDO 
(Indoleamine 2, 3-dioxygenase) which forms part of the 
tryptophan metabolism and catalyzes the conversion of 
tryptophan to kynurenine, is upregulated in T2D patients 
with baseline tryptophan being associated with higher 
risk of incident T2D [56].Variants of PBRM1 have been 
reported to be associated with BMI-related traits and 
diabetes pathways [57, 58]. While the pathways and bio-
logical function of the identified genes could partially be 
explained from previous findings, our study reveals other 
biological functions through linking methylation with 
genomic variants and metabolic pathways.

The meQTL analysis indicated the effect of genomic 
variation on methylation levels of 22 T2D CpGs, whereas 
the remaining 44 T2D CpGs are more likely affected by 

Table 5 Mendelian randomization results for associations of HK1 and PFKB2 with HbA1c

* x is considered the exposure (CpG) obtained from meQTL statistics in our cohort and y is considered the outcome obtained from GWAS databases (GWAS catalogue 
or Stanford portal). Bx and Bxse stand for effect size and standard error for x, and similar symbols are used for y
†  Results for the 3 SNPs are from the inverse variance weighted method rather than the maximum likelihood method used for single SNPs. Heterogeneity score (I2) is 
90.34007, p = 2.4E-20

Gene SNP CpG Input Two sample Mendelian Randomization

Bx* Bxse* By* Byse* Estimate SE CI p‑value

HK1 rs7909192 cg08992189 -100.2 16.1 0.08 0.0022 -0.00079 1.3E-04 [-0.001, -0.0005] 8.6E-10

HK1 rs75743765 cg08992189 -73.5 9.8 0.0456 0.0036 -0.0006 9.6E-05 [ -0.0008, -0.0004] 1.2E-10

HK1 rs11596193 cg08992189 -86.6 11.3 0.0277 0.004 -0.0003 6.2E-05 [-0.0004, -0.00019] 2.8E-07

HK1 rs7909192, 
rs75743765, 
rs11596193

cg08992189  ~  ~  ~  ~ -0.0007 1.8E-05 [-0.0007, -0.0006] 0†

PFKFB2 rs1060286 cg22699725 65.04 10.10 -0.013 0.002 -0.00019 4.4E-05 [-0.0002, -0.0001] 4.7E-06



Page 14 of 20Yousri et al. BMC Medicine          (2023) 21:347 

Table 6 66 significant CpG-metabolite associations sorted by gene and significance

CpG Gene Metabolite Pathway Subpathway Effect P‑value

cg19693031 TXNIP 1,5-anhydroglucitol (1,5-AG) a Carbohydrate Glycolysis, Gluconeogenesis, Pyruvate 0.02 2.93E-19

cg19693031 TXNIP pyruvate Carbohydrate Glycolysis, Gluconeogenesis, Pyruvate -0.02 4.94E-14

cg19693031 TXNIP Glucosea Carbohydrate Glycolysis, Gluconeogenesis, Pyruvate -0.01 2.09E-11

cg02988288 TXNIP;NBPF20;NBPF10 glucose Carbohydrate Glycolysis, Gluconeogenesis, Pyruvate -0.01 9.24E-07

cg19693031 TXNIP 3-methyl-2-oxobutyrate Amino Acid Leucine, Isoleucine, Valine -0.02 2.14E-13

cg19693031 TXNIP 3-methyl-2-oxovalerate Amino Acid Leucine, Isoleucine, Valine -0.01 1.23E-06

cg19693031 TXNIP 1-carboxyethylvaline Amino Acid Leucine, Isoleucine, Valine -0.01 9.64E-06

cg19693031 TXNIP mannonate* Xenobiotics Food Component/Plant -0.01 1.61E-11

cg19693031 TXNIP Gluconatea Xenobiotics Food Component/Plant -0.01 4.83E-08

cg02988288 TXNIP;NBPF20;NBPF10 mannonate* Xenobiotics Food Component/Plant -0.01 9.01E-06

cg19693031 TXNIP 1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4)*

Lipid Phosphatidylethanolamine (PE) -0.01 4.31E-11

cg19693031 TXNIP 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) -0.01 4.03E-09

cg19693031 TXNIP alanine Amino Acid Alanine, Aspartate -0.01 9.68E-10

cg02988288 TXNIP;NBPF20;NBPF10 alanine Amino Acid Alanine, Aspartate -0.01 3.02E-08

cg19693031 TXNIP erythronate* Carbohydrate Aminosugar -0.01 2.57E-08

cg19693031 TXNIP Mannosea Carbohydrate Fructose, Mannose, Galactose -0.01 9.30E-07

cg19693031 TXNIP glutamine Amino Acid Glutamate 0.01 1.11E-06

cg19693031 TXNIP 2-hydroxybutyrate/2-hydroxyisobu-
tyratea

Amino Acid Glutathione -0.01 1.66E-10

cg19693031 TXNIP ribitol Carbohydrate Pentose -0.01 5.98E-06

cg19693031 TXNIP 1-carboxyethylphenylalanine Amino Acid Phenylalanine -0.01 1.63E-06

cg19693031 TXNIP X—24295 Unnamed Unnamed -0.01 7.53E-15

cg19693031 TXNIP X—24334 Unnamed Unnamed -0.02 3.62E-12

cg19693031 TXNIP X—12101 Unnamed Unnamed -0.01 4.17E-09

cg19693031 TXNIP X—14056 Unnamed Unnamed -0.01 3.03E-08

cg19693031 TXNIP X—19438 Unnamed Unnamed -0.01 1.32E-07

cg11969813 P4HB 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 1.23E-08

cg00683922 PFKFB2 1-carboxyethylphenylalanine Amino Acid Phenylalanine 0.01 3.57E-08

cg22699725 PFKFB2 alanine Amino Acid Alanine, Aspartate 0.01 3.31E-07

cg00683922 PFKFB2 alanine Amino Acid Alanine, Aspartate 0.01 4.54E-07

cg00683922 PFKFB2 erythronate* Carbohydrate Aminosugar 0.01 2.87E-06

cg00683922 PFKFB2 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 7.71E-07

cg00683922 PFKFB2 X—14,056 Unnamed Unnamed 0.01 1.00E-05

cg06291107 BLCAP mannonate* Xenobiotics Food Component/Plant 0.01 3.08E-07

cg06291107 BLCAP glucose Carbohydrate Glycolysis, Gluconeogenesis, Pyruvate 0.01 5.76E-07

cg06291107 BLCAP ribitol Carbohydrate Pentose 0.01 6.12E-07

cg06291107 BLCAP 1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4)*

Lipid Phosphatidylethanolamine (PE) 0.01 2.21E-07

cg06291107 BLCAP 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 8.49E-07

cg01676795 POR 1,5-anhydroglucitol (1,5-AG) Carbohydrate Glycolysis, Gluconeogenesis, Pyruvate -0.01 2.25E-07

cg01676795 POR glycosyl ceramide (d18:2/24:1, 
d18:1/24:2)*

Lipid Hexosylceramides (HCER) -0.01 8.92E-06

cg01676795 POR methylsuccinoylcarnitine Amino Acid Leucine, Isoleucine, Valine 0.01 3.89E-06

cg00092123 KIAA1211L mannonate* Xenobiotics Food Component/Plant 0.01 4.37E-07

cg09029192 TNRC6C 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 7.23E-07

cg09029192 TNRC6C 1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4)*

Lipid Phosphatidylethanolamine (PE) 0.01 2.36E-06

cg13547913 OCIAD1 1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4)*

Lipid Phosphatidylethanolamine (PE) 0.01 8.90E-07

cg13547913 OCIAD1 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 1.51E-06
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environment/lifestyle. The association of the missense SNP 
rs1136287 in the SERPINF1/SMYD4 locus with cg11692409 
aligns with the previously reported GWAS association of 
SMYD4 with T2D that is harbored in the SRR locus [4]. The 
DOCK10 association with diabetic atherosclerosis [33] and 
its gene expression association with glucose in pancreatic 
islets [59] suggest that the nonsynonymous meQTL SNPs 
in DOCK10 may link the gene’s methylation to T2D genetic 
factors, diabetes complications or mechanisms in islet cells. 
The presence of a 5’UTR variant in SLC2A1 that codes the 
GLUT1 protein and that controls methylation in TXNIP 
is another novel finding that confirms previous biological 
links found between TXNIP and SLC2A1 [34, 35, 40] as dis-
cussed above.

GWAS associations of meQTL SNPs with T2D-related 
traits such as HbA1c (HK1 and PFKFB2), BMI (EFEMP2, 
CFL1), eGFR and creatinine (PFKFB2), diabetic nephrop-
athy, urate levels (EFEMP2), bilirubin (HK1), and white 
blood cell counts (DOCK10, EFEMP2, SLC2A1, CFL1, 
PFKFB2) [51, 60, 61], further emphasize the involvement 
of the meQTL genes in the pathogenesis of T2D. In other 
words, SNP variation may alter methylation levels in T2D 

CpGs inducing various biological perturbations and com-
plications in T2D patients. Furthermore, the mendelian 
randomization analysis suggested a causal relationship of 
DNA methylation in HK1 with HbA1c levels, support-
ing previous findings of HK1’s GWAS associations with 
HbA1c and HK1 pathways involving glucose [47], insulin 
signaling and hyperinsulinemia [48].

This study reports novel T2D methylation-metabolite 
associations. Compared to a few previously reported 
metabolic associations with TXNIP CpG cg19693031, 
this study reveals a much larger role of TXNIP in T2D 
metabolic pathways that span several pathways of inter-
est, including branched chain amino acids, alanine, lipid 
metabolism, and sugars among others. DQX1, previously 
identified to be methylated with T2D in an Arab popula-
tion, has no meQTL associated with it, suggesting that the 
metabolic associations of DQX1 with lipid metabolism 
and ribitol could be largely affected by lifestyle factors. 
Metabolic associations with genes known to associate 
with bladder cancer (BLCAP), ovarian cancer (OCIAD1), 
and infertility caused by azoospermia (DAZAP1) could 

a  indicates associations previously reported in other studies. *indicates compounds that have not been officially confirmed based on a standard, but Metabolon is 
confident in its identity

Table 6 (continued)

CpG Gene Metabolite Pathway Subpathway Effect P‑value

cg18939666 PEF1 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 9.27E-07

cg18939666 PEF1 1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4)*

Lipid Phosphatidylethanolamine (PE) 0.01 3.02E-06

cg18939666 PEF1 mannonate* Xenobiotics Food Component/Plant 0.01 8.02E-06

cg10167677 THBS4 mannonate* Xenobiotics Food Component/Plant 0.01 1.06E-06

cg10167677 THBS4 methylsuccinoylcarnitine Amino Acid Leucine, Isoleucine, Valine 0.01 3.62E-06

cg12350057 PPP1R3E erythronate* Carbohydrate Aminosugar 0.01 1.14E-06

cg00994936 DAZAP1 mannonate* Xenobiotics Food Component/Plant 0.01 1.72E-06

cg04326337 RPRD1B ribitol Carbohydrate Pentose 0.01 1.73E-06

cg06721411 DQX1 ribitol Carbohydrate Pentose 0.01 2.10E-06

cg06721411 DQX1 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 4.59E-06

cg06721411 DQX1 1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4)*

Lipid Phosphatidylethanolamine (PE) 0.01 7.90E-06

cg27305772 MUS81 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 2.32E-06

cg09879165 CACNA2D2 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.00 3.24E-06

cg15007470 TCF3 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 6.22E-06

cg19707375 BAIAP2-AS1 glycosyl ceramide (d18:2/24:1, 
d18:1/24:2)*

Lipid Hexosylceramides (HCER) -0.01 9.55E-06

cg08088075 1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4)*

Lipid Phosphatidylethanolamine (PE) 0.01 1.73E-07

cg09777883 ribitol Carbohydrate Pentose 0.01 2.19E-07

cg08088075 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 2.54E-07

cg09777883 1-palmitoyl-2-oleoyl-GPE (16:0/18:1) Lipid Phosphatidylethanolamine (PE) 0.01 1.20E-06

cg09777883 1-palmitoyl-2-arachidonoyl-GPE 
(16:0/20:4)*

Lipid Phosphatidylethanolamine (PE) 0.01 2.70E-06

cg22896572 ribitol Carbohydrate Pentose 0.01 5.38E-06
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highlight the importance of integrating both methylation 
and metabolomics for assessing T2D complications.

Integrating methylation with both genomics and 
metabolomics has an important role in understanding 
the cause-effect direction of methylation-metabolism in 
T2D, i.e., whether methylation drives metabolic changes 
through gene expression or changes in metabolites 
cause changes in methylation. For example, methylation 

of TXNIP is controlled by SNPs in SLC2A1, known to 
be involved in glucose metabolism, and thus TXNIP 
association with the glycolysis pathway could be 
through this meQTL. Similarly, we showed that the 
meQTL of PFKFB2 had SNPs associated with HbA1c, 
eGFR, and creatinine, and at the same time the gene 
had associations with carbohydrates, lipids, phenyla-
lanine and alanine that are involved in both T2D [17, 

Fig. 6 Volcano plot showing the significant CpG-metabolite associations, indicating the gene and metabolite of the top 5 significant associations 
(top). Metabolic pathways associated with T2D CpGs, with significant associations are above the threshold red line (bottom). The top most 
significant associations are labelled 1–10 and they are all TXNIP associations with (1) 1,5 AG, (2) X – 24295, (3) pyruvate, (4) 2-methyl-2-oxobutyrate, 
(5) X – 24334, (6) mannonate, (7) glucose, (8) 1-palmitoyl-2-arachidonoyl-GPE (16:0/20:4), (9) 2-hydroxybutyrate/2-hydroxyisobutyrate, (10) alanine
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18] and kidney function [62, 63], suggesting that the 
metabolic perturbations could be an end effect of the 
meQTL. Linking methylated genes to metabolism may 
help future investigation of the population-specificity of 
some methylated genes to Qataris. Perturbation of the 
methylation-metabolic pathway by changing lifestyle 
factors or nutrition in Qataris may result in different 
methylation patterns in Qataris compared to the other 
populations and  thus may help explain T2D mecha-
nisms in Qataris.

Multi-omics networks have facilitated the identi-
fication of metabolic pathways linked to the methyl-
ated genes, thus revealing their functionality through 
metabolites that were associated with T2D risks/com-
plications. One example is the alanine subnetwork 
that links PFKFB2 and TXNIP to the urea cycle and 
to amino acids, where amino acids were associated 
with triglycerides (alanine association with triglycer-
ides: discovery p-value of p = 6.4 ×  10–12, replication 
p-value of p = 9.3 ×  10–13) and where both urea cycle 
and alanine have been associated with kidney failure 
[64]. Moreover, 1-carboxyethylphenylalanine in the 
alanine subnetwork was associated with triglycerides 
(p-value discovery: 1.42 ×  10–34, p-value replication: 
4.6 ×  10–21) and is known to be associated with hyper-
tension [65]. Both links extend the GWAS findings for 

PFKFB2 described above and reveal the involvement 
of triglycerides in T2D methylation. The association of 
1-palmitoyl-2-oleoyl-GPE(16:0/18:1) with triglycerides 
(discovery p-value p = 6.47 ×  10–100, replication p-value 
p = 1.39 ×  10–80) and its link to 11 methylated genes 
suggests a possible cause of methylation linked to a 
diabetes risk/complication that is common between 
those genes. Mannonate, a xenobiotic (food compo-
nent/plant) is another example that shares a network 
with six genes, namely TXNIP, BLCAP, THBS4, PEF1, 
DAZAP1, and KIAA1211L and may suggest a possible 
xenobiotic effect on methylation. The networks also 
highlighted a STYXL1–POR–sphingosines/ceramides–
LDL,HDL–steroids connection, where the unique 
association of POR with a lipid subnetwork of sphin-
gosines, GPCs, and ceramides is supported by the fact 
that gene’s production of the enzyme cytochrome P450 
oxidoreductase is required for the synthesis of choles-
terol and steroid hormones (https:// medli neplus. gov/ 
genet ics/ gene/ por/, and references therein). Moreo-
ver, since reproductive and fertility complications may 
arise from diabetes [66], it is interesting to note that 
STYXL1, the meQTL gene of the cg01676795 (POR) 
is known to be associated with  seminal vesicle tumor 
and  male reproductive organ benign neoplasm [67], 
that may help in understanding the link of POR to a 

Fig. 7 Multi-omics network of T2D methylated genes associations with metabolites, and their meQTLs integrated with metabolic networks. Oval 
nodes are CpGs, diamonds are SNPs, and hexagons are metabolites

https://medlineplus.gov/genetics/gene/por/
https://medlineplus.gov/genetics/gene/por/
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network of sphingosines and ceramides which play a 
role in forming steroids [68].

Limitations of the study include measuring methylation 
from whole blood rather than pancreatic islets as that 
was the only available tissue from the Qatar Bio Bank. 
Another limitation was the inability to correct for medi-
cation as that information was not yet annotated by the 
provider at the time of the study.

Conclusions
A total of 66 CpG sites were identified to be associated 
with T2D, of which 63 were novel and linked to biologi-
cal pathways of T2D. Genomic drivers of the CpG sites 
were identified in 688 significant CpG-SNP pairs, among 
which 181 CpG-SNP pairs were novel associations or 
in novel loci. Several GWAS associations in meQTLs’ 
genes revealed various underlying factors in pathways 
linked to T2D. The study identified novel nonsynony-
mous and 5’UTR variants associated with T2D methyla-
tion in SERPINF1, DOCK10, and TXNIP, as well as the 
statistically-inferred causal relation between HbA1c and 
each of the HK1 and PFKFB2 methylation sites. A total 
of 61 novel methylation-metabolite associations revealed 
association of several methylated genes with T2D meta-
bolic pathways including population specific genes such 
as DQX1, among others. The multi-omics network sug-
gested a number of T2D biological mechanisms asso-
ciated with methylation, including the association of 
triglyceride metabolism and xenobiotics to 11 and 6 
methylated genes respectively, indicating a common fac-
tor among those methylated genes and may have a role in 
their methylation. The pathways identified linked to ster-
oid metabolism, and to metabolites associated with BMI, 
lipoprotein cholesterols and kidney function, namely 
STYXL1-POR, SLC2A1-TXNIP, and PFKFB2, may reveal 
the association of T2D risk factors or complications with 
methylation mechanisms. Finally, this study revealed sev-
eral novel methylated genes related to T2D, with their 
associated genomic variants and metabolic pathways.
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