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Abstract 

Background Precocious puberty (PP) in girls is traditionally defined as the onset of breast development 
before the age of 8 years. The specific biomarkers of premature thelarche (PT) and central precocious puberty 
(CPP) girls are uncertain, and little is known about their metabolic characteristics driven by perfluorinated com-
pounds (PFCs) and clinical phenotype. This study aimed to screen specific biomarkers of PT and CPP and elucidate 
their underlying pathogenesis. The relationships of clinical phenotype-serum PFCs-metabolic characteristics were 
also explored to reveal the relationship between PFCs and the occurrence and development of PT and CPP.

Methods Nuclear magnetic resonance (NMR)-based cross-metabolomics strategy was performed on serum from 146 
PP (including 30 CPP, 40 PT, and 76 unspecified PP) girls and 64 healthy girls (including 36 prepubertal and 28 
adolescent). Specific biomarkers were screened by the uni- and multivariate statistical analyses. The relationships 
between serum PFCs and clinical phenotype were performed by correlation analysis and weighted gene co-expres-
sion network analysis to explore the link of clinical phenotype-PFCs-metabolic characteristics in PT and CPP.

Results The disordered trend of pyruvate and butyrate metabolisms (metabolites mapped as formate, ethanol, 
and 3-hydroxybutyrate) were shared and kept almost consistent in PT and CPP. Eight and eleven specific biomarkers 
were screened for PT and CPP, respectively. The area under curve of specific biomarker combination was 0.721 in CPP 
vs. prepubertal, 0.972 in PT vs. prepubertal, 0.646 in CPP vs. prepubertal integrated adolescent, and 0.822 in PT vs. 
prepubertal integrated adolescent, respectively. Perfluoro-n-heptanoic acid and perfluoro-n-hexanoic acid were sta-
tistically different between PT and CPP. Estradiol and prolactin were significantly correlated with PFCs in CPP and PT. 
Clinical phenotypes and PFCs drive the metabolic characteristics and cause metabolic disturbances in CPP and PT.

Conclusions The elevation of formate, ethanol, and 3-hydroxybutyrate may serve as the early diagnostic indicator 
for PP in girls. But the stratification of PP still needs to be further determined based on the specific biomarkers. Spe-
cific biomarkers of CPP and PT exhibited good sensitivity and can facilitate the classification diagnosis of CPP and PT. 
PFC exposure is associated with endocrine homeostasis imbalance. PFC exposure and/or endocrine disturbance 
directly or indirectly drive metabolic changes and form overall metabolic network perturbations in CPP and PT.
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Background
Pubertal timing is usually regulated by complex inter-
play of genetic, environmental, nutritional, and epige-
netic factors. Therefore, the criteria for normal pubertal 
timing and thus the definition of precocious puberty are 
hard to determine. Precocious puberty (PP) in girls is 
traditionally defined as the onset of breast development 
before the age of 8 years [1]. Its underlying pathophysi-
ology may be gonadotropin-releasing hormone (GnRH)-
dependent for central precocious puberty (CPP) girls or 
GnRH-independent for premature thelarche (PT) girls. 
CPP is mainly induced by the continuous pulse secretion 
of GnRH to prematurely activate the hypothalamic-pitui-
tary-gonadal (HPG) axis; however, the exact mechanisms 
remain unclear. The main clinical manifestation of the PT 
girls is simple breast development due to exposure to the 
peripheral estrogen environment. When PT is accompa-
nied by the significant advance growth of bone age, it is 
more likely to evolve into secondary CPP. CPP can lead 
to short- and long-term complications in girls, includ-
ing increased risk of psychosocial distress, short stature, 
obesity, cardiovascular disease, and type 2 diabetes in 
adulthood [2]. Therefore, it is vital to understand the eti-
ology of PT and CPP for accurate diagnosis and prompt 
intervention.

Some researchers tried to quantify PP with the help 
of clinical phenotype such as luteinizing hormone (LH), 
follicular-stimulating hormone (FSH), and estradiol to 
determine the index threshold for CPP diagnosis, but it 
is still confronted with great controversy and challenge 
at this moment [3, 4]. Some evidences have indicated 
the changes of metabolic profile during puberty. Qi et al. 
found that catecholamine metabolic pathway, trypto-
phan metabolic pathway, and TCA cycle were disturbed 
in CPP girls by GC/LC-MS-based urinary metabolomics 
analysis [5]. Yang et al. used LC-MS technology to char-
acterize the urinary metabolomes of CPP girls and found 
that amino acids, especially aromatic amino acids, were 
closely related to the pathogenesis of CPP by activating 
the HPG axis and inhibiting the hypothalamic-pituitary-
adrenal axis [6]. However, the clinical differential diagno-
sis of CPP and PT is still in a vague interface, and the lack 
of powerful molecular biomarkers is a long-term bottle-
neck in the clinical diagnosis and evaluation of PP.

Recently, ubiquitous exposures to polyfluorinated com-
pounds (PFCs) have attracted concerns regarding their 
possible harmful effects during critical periods of devel-
opment in early-life and long-term consequences on 

health in consideration of their persistence and bioaccu-
mulation potential. Massive researches have shown that 
PFCs can interfere with estrogen homeostasis and pose 
a risk of endocrine-disrupting effects [7–9], and they are 
association with dyslipidemia, renal function, and age at 
menarche [7, 10–12], but there is still inconsistency in 
the research results [13] as well as certain gender differ-
ences [14–17]. In addition, evidences have shown that 
PFCs can affect the HPG axis [18, 19] or directly affect 
the gonad axis through their weak estrogen or antian-
drogen effects to disrupt the development of puberty 
[20]. However, the correlation research of PFC exposure 
with the occurrence and development of PP is still in 
its infancy [19, 21, 22], and therefore extensive in-depth 
research and exploration is urgently required to clarify 
the exact response mechanism. The correlation analysis 
between PFCs and the clinical phenotype in girls with 
PP as well as the endogenous metabolites driven by PFCs 
will help to reveal the impact of PFCs on the occurrence 
and development of precocious puberty in girls and the 
preliminary mechanisms.

Based on this, the serum metabolic profiles of prepu-
bertal, PP, PT, CPP, and adolescent girls were character-
ized by one-dimensional nuclear magnetic resonance 
hydrogen spectrum (1H-NMR) technology, and the 
metabolic differences and connections were analyzed by 
cross-metabolomics analyses, aiming to screen the spe-
cific biomarkers of CPP and PT. Furthermore, to reveal 
the effect of PFCs on the occurrence of CPP and PT, the 
metabolic modules driven by PFCs and clinical pheno-
type were identified by weighted gene co-expression net-
work analysis (WGCNA).

Methods
Subject selection and sampling
The children were enrolled from the Department of Child 
Health, Women and Children’s Hospital, School of Medi-
cine, Xiamen University. A total of 146 PP (including 30 
CPP, 40 PT, and 76 unspecified PP) girls were enrolled at 
their first visit. The inclusion criteria of the patients are 
shown in detail in Fig. 1 according to the clinical guide-
lines and the related literatures [23–25]. In addition, 64 
healthy girls were recruited as a control group for meta-
bolic comparison, who were divided into 36 prepubertal 
and 28 adolescent girls based on their developmental sta-
tus. Relevant clinical phenotypes were collected during 
the clinical examination. Morning fasting serum sample 
was collected from each girl through a clinical standard 
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procedure and stood for 30 min, then centrifuged at 
1000g for 10 min at 4 °C. The serum supernatant was 
transferred to a new centrifuge tube and stored at −80 °C 
until analysis.

Sample preparation, 1H‑NMR spectra acquisition 
and processing
All serum samples were thawed at 4 °C, and 400 μL of 
serum was mixed with 200 μL of 60 mM phosphate 
buffer (pH 7.4, in 0.9% deuterated saline solution) and 
then vortexed for 10 s. After being centrifuged at 13,000g 
for 10 min at 4 °C, 550 μL of supernatant was transferred 
into a 5-mm NMR tube for 1H-NMR spectral acquisition.

The 1H-NMR spectra of serum samples were obtained 
on a 600-MHz Bruker Advance nuclear magnetic res-
onance (NMR) spectrometer (Bruker BioSpin, Ger-
many) equipped with a triple resonance cryogenic 
probe operating at 600.13 MHz and 298.0 K. A typical 
water-suppressed Carr-Purcell-Meiboom-Gill (CPMG, 
[RD-90°-(τ-180°-τ)n-ACQ]) pulse sequence with a spec-
tral width of 12,019.2 Hz, an acquisition time of 1.36 s, a 
relaxation delay of 4.0 s, a scan accumulation of 64 times, 
and a data point of 16 K was adopted to acquire 1H-NMR 
spectra.

Spectral processing was performed on MestReNova 
(version 14.1.1, Mestrelab Research S.L., Spain). All the 

free induction decays were zero-filled to 64 K data points 
and multiplied by an exponential function of 1.0 Hz line-
broadening factor. The 1H-NMR spectra were manually 
phased, and baseline corrected, and then referenced to 
the doublet of endogenous lactate at δ1.33 after Fourier 
transformation. The spectral regions of δ4.70–δ5.17 and 
δ5.50–δ6.00 were removed to eliminate the interference 
of residual aquatic and urea signals. The remainder spec-
tral regions (δ0.55–δ8.60) were integrally segmented into 
discrete regions of 0.002 ppm. To reduce the concentra-
tion difference between the samples, the obtained NMR 
spectral data were normalized to the total integrated 
area.

LC‑MS/MS detection of serum PFCs
The serum PFCs of 40 PT and 30 CPP girls were meas-
ured by LC-MS/MS technique, and eleven kinds of PFCs, 
including perfluoro-n-octanoic acid (PFOA), potas-
sium perfluoro-1-octanesulfonate (PFOS), perfluoro-
n-butanoic acid (PFBA), perfluoro-n-undecanoic acid 
(PFUnDA), perfluoro-n-dodecanoic acid (PFDoDA), 
potassium perfluoro-1-butanesulfonate (PFBS), per-
fluoro-n-decanoic acid (PFDA), perfluoro-n-heptanoic 
acid (PFHpA), perfluoro-n-hexanoic acid (PFHA), potas-
sium perfluoro-1-hexanesulfonate (TFHSA), and per-
fluoro-n-nonanoic acid (PFNA), were detected according 

Fig. 1 Inclusion and screening process for study cohorts. *: Depending on the method of measurement. The detection method of basal LH 
and GnRH stimulation test in this study was immunochemiluminometric. LH: luteinizing hormone; FSH: follicular-stimulating hormone; BA: bone 
age (at the time of diagnosis); CA: chronologic age (at the time of diagnosis)
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to the references [26, 27]. The detailed procedures of 
serum sample preparation and PFC detection are shown 
in section S1 and Figure S1 in the Additional file 1.

Data processing and statistical analysis
The data are expressed as the means ± standard devia-
tion (S.D.). All univariate statistical analysis was carried 
out using SPSS 20.0 software (SPSS Inc., Chicago, IL). 
According to distribution and variance homogeneity 
of indicator variables of data, Student’s t test or Mann-
Whitney test were used for comparisons between two 
groups. If the variance was homogeneous, the p value 
was calculated directly; otherwise, Welch-Satterthwaite 
method was used. Differences were considered statisti-
cally significant when p < 0.05. Linear regression analysis 
was performed to correct the age factors.

The processed data of NMR were used for multivariate 
statistical analysis on SIMCA 14.1 software (Umetrics, 
Umea, Sweden) including principal component analysis 
(PCA) and orthogonal partial least squares-discriminant 
analysis (OPLS-DA). The normalized dataset was scaled 
by unit variance, which makes each variable have the 
same variance. PCA is usually used for variable reduc-
tion and display of the relationship between samples such 
as whether there is clustering or outlier. The OPLS-DA 
models were applied to maximize the metabolic differ-
ences and extract the differential metabolites between 
the pair-wise groups. The NMR signals were assigned to 
individual metabolites with the referenced proton NMR 
peaks from Chenomx NMR Suite 8.1 (Chenomx Inc., 
EDBonton, AB, Canada) and confirmed by the public 
Human Metabolome Database (HMDB) (http:// www. 
hmdb. ca/). In this study, the potential biomarkers were 
screened according to the following criteria: the value 
of variable importance for projection (VIP) > 1  of the 
metabolite and the p value after age correction (p-adj) < 
0.05.

The comprehensive metabolic network was con-
structed by integrating all potential biomarkers identified 
from the present research using the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (http:// www. genome. ad. 
jp/ kegg/), HMDB (http:// www. hmdb. ca/) and Metabo-
Analyst 5.0 (https:// www. metab oanal yst. ca/). Sensitivity 
and specificity of the potential biomarkers were analyzed 
by an exploratory receiver operating characteristic (ROC) 
curve based on random forest, and the area under ROC 
curve (AUC) and confidence interval (Cl) were deter-
mined correspondingly.

For the serum PFCs, after the raw data were trans-
formed by natural logarithm, the Mann-Whitney test 
was utilized to analyze the statistical difference between 
PT and CPP girls. Spearman correlation analysis was 

performed to analyze the association of PFCs and clinical 
phenotype in PT and CPP girls, respectively.

WGCNA procedure
In order to better understand the relationships of 
clinical phenotype-PFCs-metabolic characteristics, 
WGCNA were further used to identify the metabo-
lite modules driven by clinical phenotype and PFCs. 
The protocol includes four aspects, namely network 
construction, module identification, the correlation 
between modules and features, and network visualiza-
tion [28, 29]. Before analysis, the serum metabolic spec-
tra (60 metabolites) were used as metabolite expression 
matrix, and clinical phenotype and PFCs of interest as 
trail matrix in the PT and CPP girls. Then the default 
WGCNA “step-by-step network construction” analy-
sis was used to build modules. Firstly, the adjacencies 
between metabolites were calculated and constructed 
a topological overlap matrix (TOM). A hierarchical 
clustering tree was produced with the dissimilarity of 
the TOM and the modules were then selected by using 
the dynamic tree cut. Finally, the similar modules were 
merged by calculating the module eigenmetabolites 
(ME), clustering them and assigning a distance thresh-
old (cut of 0.2). The detailed analysis process and net-
work construction results could be found in section S2 
and Figure S2 in the Additional file1.

Results
Demographic and clinical characteristics of the clinical 
cohort
According to the demographic and clinical characteris-
tics (Table 1), the body mass index standard deviation 
score (BMISDS) of PP girls (0.48 ± 1.16) was signifi-
cantly higher than that of both prepubertal (−0.32 ± 
1.16) (p < 0.001) and adolescent girls (−0.42 ± 1.41) 
(p = 0.005), the BMISDS of CPP girls (0.70 ± 1.06) 
was significantly higher than that of both prepuber-
tal (p < 0.001) and adolescent girls (p = 0.002), and 
the BMISDS of PT (0.33 ± 1.4) was also significantly 
higher than that of both prepubertal (p = 0.047) and 
adolescent (p = 0.0047). Obviously, the basal LH and 
FSH levels of PT girls (0.304 and 2.30 mIU/mL, respec-
tively) were closer to prepubertal girls (0.256 and 2.46 
mIU/mL, respectively), while those of CPP girls (2.73 
and 5.01 mIU/mL, respectively) were closer to those of 
adolescent girls (2.93 and 5.85 mIU/mL, respectively), 
and estradiol and prolactin showed a similar trend. 
The serum levels of testosterone, dehydroepiandros-
terone sulfate (DHEAS), free thyroxine (FT4), glucose, 
and urea/creatinine ratio were statistically significant 
between PT and CPP. The serum 25-hydroxyvitamin 

http://www.hmdb.ca/
http://www.hmdb.ca/
http://www.genome.ad.jp/kegg/
http://www.genome.ad.jp/kegg/
http://www.hmdb.ca/
https://www.metaboanalyst.ca/
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D (VD) level in CPP (61.86 nmol/L) was significantly 
lower than that of prepubertal (83.14 nmol/L) (p = 
0.01) and PT (75.57 nmol/L) (p = 0.02).

Identifying the serum potential biomarkers of PP, CPP, 
and PT girls
A total of 60 metabolites were identified from the serum 
1H-NMR spectra of PP, prepubertal, and adolescent girls 
(Additional file  1: Figure S3 and Table  S3). No obvious 
sample separation was observed between PP and prepu-
bertal and adolescent girls in the PCA score plots of the 
NMR data (Additional file 1: Figures S4A and S4B). The 
OPLS-DA highlighted and maximized the metabolic dif-
ferences between PP and prepubertal and adolescent as 
shown in Fig. 2A1 and A2. The favorable model param-
eters, including  R2 for indicating the explained variances 
of the original data and  Q2 for indicating the predic-
tive ability of the model, revealed the obvious metabolic 
differences between PP with prepubertal and adoles-
cent (Additional file  1: Table  S4), and the results were 

further externally cross-validated by the permutation 
tests (Additional file 1: Figure S5 and Table S4). Accord-
ing to the screening criteria (VIP >1 and p-adj < 0.05), 
a total of 16 metabolites were selected as the potential 
biomarkers of PP girls when compared with prepubertal 
girls and adolescent girls as demonstrated in Additional 
file 1: Table S5.

To clarify the respective pathogenesis of CPP and PT 
and differentiate the two classifications from the serum 
metabolome, the serum metabolic profile of CPP or 
PT girls was compared with prepubertal and adoles-
cent, respectively. The OPLS-DA model revealed the 
obvious metabolic differences between CPP and pre-
pubertal or adolescent girls (Fig.  2B1, B2 and Addi-
tional file 1: Table S4) and between PT and prepubertal 
or adolescent girls (Fig.  2C1, C2 and Additional file  1: 
Table  S4) though no obvious separation was observed 
in the corresponding PCA score plots (Additional 
file  1: Figures  S4C&S4D). The results were confirmed 
by the permutation tests (Additional file  1: Figure S5 

Table 1 Demographic data and clinical characteristics of the study cohort

Abbreviations: PP Precocious puberty, PT Premature thelarche, CPP Central precocious puberty, BMI Body mass index, BMISDS Body mass index standard deviation 
score, LH Luteinizing hormone, FSH Follicular-stimulating hormone, DHEAS Dehydroepiandrosterone sulfate, VD 25-hydroxyvitamin D, FT4 Free thyroxine, TSH Thyroid-
stimulating hormone

The data are expressed as the means ± standard deviation (S.D.). Student’s t test was used for comparisons between two groups. If the variance was homogeneous, 
the p value was calculated directly, otherwise Welch-Satterthwaite method was used:
a Significantly different compared with adolescent girls
b Significantly different compared with prepubertal girls
c Significantly different compared with PT

Clinical phenotype Prepubertal girls (n = 36) PP girls (n = 146) Adolescent girls (n = 28)
Age at presentation (years) 6.1 ± 2.2 7.90 ± 1.4a,b 10.9 ± 1.3

Age of onset of complaints (years) - 6.89 ± 0.73 -

BMI (kg/m2) 15.1 ± 1.60 16.4 ± 2.2 b 16.3 ± 3.1

BMISDS -0.32 ± 1.2 0.48 ± 1.2a,b −0.42 ± 1.4

Prepubertal girls (n = 36) PT girls (n = 40) CPP girls (n = 30) Adolescent girls (n = 28)
Age at presentation (years) 6.1 ± 2.6 6.32 ± 1.0a 8.7 ± 0.65a,b,c 10.9 ± 1.3

Age of onset of complaints (years) - 6.11 ± 0.56 7.32 ± 0.85 -

BMI (kg/m2) 15.1 ± 1.60 15.8 ± 2.2 17.0 ± 2.1b,c 16.3 ± 3.1

BMISDS -0.32 ± 1.2 0.33 ± 1.4a,b 0.70 ± 1.1a,b -0.42 ± 1.4

Basal LH (mIU/mL) 0.256 ± 0.16 0.304 ± 0.17a 2.73 ± 1.7a,b,c 2.93 ± 2.0

Basal FSH (mIU/mL) 2.46 ± 1.3 2.30 ± 0.96a 5.01 ± 2.9 a,b,c 5.85 ± 3.1

GnRH stimulation test (mIU/mL) - - LH peak (25.15 ± 18.0), 
LH/FSH (1.61 ± 0.89)

-

Estradiol (pg/mL) 20.00 ± 0.01 20.03 ± 7.61a 40.41 ± 28.6 b,c 44.09 ± 18.9

Prolactin (ng/mL) 8.01 ± 2.6 6.59 ± 3.9a 10.79 ± 4.88 c 10.99 ± 6.23

Testosterone (pg/mL) - < 0.10 0.20 ± 0.1 c -

DHEAS (μg/dL) - 18.29 ± 13.1 75.75 ± 39.51c -

VD (nmol/L) 83.14 ± 27.4 75.57 ± 14.5a 61.86 ± 21.3 b,c 63.05 ± 13.8

FT4 (ng/dL) 0.98 ± 0.1 1.02 ± 0.14a 0.93 ± 0.09c 0.90 ± 0.1

TSH (Uiu/mL) 2.76 ± 1.5 2.18 ± 1.0 2.38 ± 1.2 2.35 ± 1.4

Glucose (mmol/L) - 4.70 ± 0.38 5.05 ± 0.25c -

Urea/creatinine - 0.10 ± 0.02 0.08 ± 0.02c -
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Fig. 2 OPLS-DA score plots of serum samples. A1 The PP vs. prepubertal girls. A2 The PP vs. adolescent girls. B1 The CPP vs. prepubertal girls. B2 
The CPP vs. adolescent girls. C1 The PT vs. prepubertal girls. C2 The PT vs. adolescent girls. The sample numbers of prepubertal, adolescent, PP, CPP, 
and PT girls were 36, 28, 146, 30, and 40, respectively. PPB: prepubertal; AD: adolescent
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and Table  S4). According to the screening criteria, 23 
metabolites were screened out as the potential bio-
markers of CPP when compared with prepubertal girls 
and adolescent girls, and 25 metabolites were screened 
out as the potential biomarkers of PT when compared 
with prepubertal girls and adolescent girls as demon-
strated in Table 2. Among them, formate, ethanol, and 
3-hydroxybutyrate were both significantly upregulated 
in CPP and PT (Table 2).

Random forest modeling validation of serum‑specific 
biomarkers of CPP and PT girls
The potential biomarkers of PP, CPP, and PT girls par-
tially overlap (Fig. 3A), which is understandable because 
of their similar metabolic characteristics. A comparative 
analysis was performed to get their individual specific 
biomarkers. The results indicated that PP shared the 
potential biomarkers with CPP or PT, and eleven poten-
tial biomarkers, including glutamine, α-&β-glucose, 
dihydrothymine, methionine, hypoxanthine, isobu-
tyrate, creatinine, valine, leucine, and phenylalanine, 
are specified to CPP, and eight potential biomarkers, 
including 1-methylhistidine, myo-inositol, N,N-dimeth-
ylglycine, very low-density lipoprotein (VLDL), glycerol, 
ornithine, asparagine, and glycine, are specified to PT 
(Fig. 3B). An exploratory ROC curve analysis based on 
random forest was used to evaluate the sensitivity and 
specificity of the specific biomarkers of the diseases 
(Fig. 4A). The AUC between CPP and prepubertal girls 
varied depending on the combinations of the eleven spe-
cific biomarkers, ranging from 0.66 to 0.73, and reached 
0.721 (95% CI 0.553–0.874) when the eleven specific 
biomarkers were integrated (Fig.  4A1), while the AUC 
between CPP and prepubertal integrated adolescent 
girls was 0.646 (95% CI 0.526-0.757) at the combination 
of the eleven specific biomarkers (Fig. 4A2). The specific 
biomarkers for PT exhibit higher sensitivity. The AUC 
between PT and prepubertal girls was 0.97–0.98 and 
reached 0.972 (95% CI 0.904–1) at the combination of 
the eight specific biomarkers (Fig. 4A3). And it reached 
0.822 (95% CI 0.698–0.92) between PT and prepubertal 
integrated adolescent girls when the eight specific bio-
markers applied (Fig.  4A4). These results indicated the 
favorable sensitivity and specificity of the specific bio-
markers of CPP and PT.

To further verify the superiority of disease-specific bio-
markers in classification to the healthy girls, the PLS-DA 
models were reconstructed with the specific biomark-
ers as variables (Fig. 4B and Additional file 1: Table S4). 
The score plot showed a clear distinction between CPP 
and prepubertal girls (Fig. 4B1), and CPP could be clearly 
distinguished from prepubertal and adolescent girls with 
excellent predictive and explanatory power (Fig. 4B2 and 

Additional file 1: Table S4). A similar result was obtained 
in PT (Fig. 4B3, B4 and Additional file 1: Table S4).

The disturbed metabolic pathway and network induced 
by CPP and PT
To gain insight into the metabolic disorders of CPP and 
PT, the metabolic pathways were enriched based on the 
potential biomarkers through online database Metabo-
Analyst 5.0, and the impact value was used to evaluate 
the crucial pathways involved in the occurrence of dis-
eases. Based on the criterion of pathway impact > 0.1 and 
p < 0.05, six disturbed metabolic pathways were screened 
out from CPP, including aminoacyl-tRNA biosynthesis, 
valine, leucine, and isoleucine biosynthesis, phenylala-
nine, tyrosine and tryptophan biosynthesis, phenylala-
nine metabolism, butanoate metabolism, and histidine 
metabolism (Additional file  1: Figure S6A), while seven 
metabolic pathways were significantly disordered in PT, 
including butanoate metabolism, synthesis and degra-
dation of ketone bodies, glyoxylate and dicarboxylate 
metabolism, glycine, serine, and threonine metabolism, 
glycerolipid metabolism, histidine metabolism, and 
aminoacyl-tRNA biosynthesis (Additional file  1: Figure 
S6B). Furthermore, to better understand the process 
of diseases, the core metabolic network of CPP and PT 
were constructed to explain their individual pathogen-
esis based on the potential biomarkers via integrating 
the database of KEGG and HMDB. The links between 
hypothalamic-pituitary-gonadal-adrenal (HPGA) axis 
initiation and metabolism (including phenylalanine, 
tyrosine, and tryptophan biosynthesis, glycine, serine 
and threonine metabolism, glycolysis/gluconeogenesis, 
alanine, aspartate and glutamate metabolism, pyrimidine 
metabolism, aminoacyl-tRNA biosynthesis, and pyru-
vate metabolism and butanoate metabolism) were mainly 
shown in the core metabolic network of CPP (Fig.  5A). 
Metabolic pathway interconnections including glyc-
erolipid metabolism, galactose metabolism, amino acid 
metabolism, pyruvate metabolism, butanoate metabo-
lism, and pyrimidine metabolism were mainly shown in 
the core metabolic network of PT (Fig. 5B).

Intra‑group association between PFCs and clinical 
phenotypes in the CPP and PT girls
To understand the latent effects of PFCs on the occur-
rence of PP, serum PFCs in the PT and CPP girls were 
analyzed. The detailed detection results of PFCs are 
shown in Additional file  1: Table  S6, which show the 
effectiveness of the detection method and the stability of 
the instrument. The levels of PFHPA and PFHA were sta-
tistically different between CPP and PT groups (p < 0.05), 
and the other nine PFCs were no statistical difference 
(Additional file 1: Table S7).
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Table 2 Potential biomarkers in serum of CPP and PT

Potential biomarker Raw p value VIP FC Age‑adjusted

OR (95% CI) p‑adj

Central precocious puberty girls
 Compared with the prepubertal girls

  Alanine 1.25E−02 2.250 0.909 0.408 (0.356 to 0.450) 2.01E−02

  Creatine 2.00E−05 2.956 0.874 0.180 (0.167 to 0.193) 3.32E−02

  Creatinine 3.65E−03 1.800 0.901 0.901 (0.069 to 0.084) 1.37E−02

  Dihydrothymine 1.86E−03 2.364 0.916 0.916 (0.011 to 0.013) 1.46E−03

  Glutamate 2.74E−02 1.592 0.863 0.863 (0.245 to 0.354) 3.12E−02

  Glutamine 1.74E−02 2.328 1.080 1.082 (0.947 to 1.217) 7.89E−02

  Histidine 2.05E−02 2.919 0.926 0.088 (0.080 to 0.096) 4.52E−02

  Hypoxanthine 1.72E−03 1.537 0.440 0.049 (0.033 to 0.064) 2.09E−02

  Isobutyrate 4.95E−03 2.458 0.895 0.037 (0.033 to 0.041) 1.95E−02

  Isoleucine 1.93E−03 2.680 0.883 0.114 (0.102 to 0.126) 2.27E−03

  Lactate 9.93E−03 1.965 0.794 3.121 (2.493 to 3.748) 1.72E−01

  Lactose 1.00E−05 2.598 1.242 0.017 (0.013 to 0.020) 1.47E−02

  Leucine 1.16E−02 2.811 0.941 0.146 (0.136 to 0.156) 1.55E−02

  Methanol 1.88E−02 1.630 1.168 0.057 (0.040 to 0.073) 1.13E−01

  Phenylalanine 4.66E−02 1.656 0.916 0.047 (0.041 to 0.052) 3.79E−02

  Serine 8.15E−03 3.156 0.922 0.176 (0.160 to 0.192) 2.23E−02

  Tyrosine 5.22E−03 2.020 0.858 0.062 (0.053 to 0.070) 2.17E−03

  α-Glucose 9.58E−03 2.432 1.147 0.866 (0.660 to 1.071) 9.42E−03

  β-Glucose 4.27E−02 2.258 1.124 1.021 (0.764 to 1.278) 3.64E−02

 Compared with the adolescent girls

  3-Hydroxybutyrate 4.53E−03 2.436 1.184 0.090 (−0.021 to 0.191) 2.10E−02

  Alanine 4.85E−03 2.274 0.869 0.406 (0.175 to 0.637) 1.39E−02

  Creatinine 9.80E−04 2.572 0.892 0.106 (0.077 to 0.136) 6.30E−04

  Ethanol 4.74E−02 2.061 1.112 0.111 (0.003 to 0.219) 4.42E−02

  Formate 1.89E−02 1.802 1.240 0.006 (−0.002 to 0.015) 2.29E−02

  Isoleucine 1.00E−05 3.187 0.873 0.128 (0.091 to 0.164) 3.10E−04

  Methionine 3.97E−02 2.840 0.943 0.228 (0.175 to 0.281) 3.35E−03

  Phenylalanine 3.22E−02 2.806 0.907 0.072 (0.048 to 0.096) 2.37E−03

  Tyrosine 9.90E−04 3.383 0.862 0.087 (0.059 to 0.114) 4.70E−04

  Uridine 6.26E−03 2.109 0.802 0.040 (0.023 to 0.056) 1.91E−03

  Valine 4.61E−02 2.719 0.932 0.350 (0.233 to 0.467) 2.02E−02

  α-Ketoisovalerate 1.61E−02 1.656 0.848 0.009 (−0.011 to 0.030) 9.97E−03

Premature thelarche girls
 Compared with the prepubertal girls

  Acetate 3.42E−02 1.510 1.091 0.059 (0.048 to 0.070) 3.61E−02

  Asparagine 9.28E−03 2.527 1.085 0.567 (0.492 to 0.642) 5.93E−03

  Dihydroxyacetone 2.79E−02 1.404 1.257 0.013 (0.005 to 0.022) 3.78E−02

  Ethanolamine 1.30E−04 2.728 1.126 0.059 (0.050 to 0.068) 2.20E−04

  Glycerol 4.65E−02 2.456 1.061 0.338 (0.294 to 0.382) 5.08E−02

  Lipid 2.22E−02 1.615 0.943 1.928 (1.753 to 2.103) 3.23E−02

  Methanol 1.86E−02 1.432 1.149 0.056 (0.039 to 0.074) 2.62E−02

  myo−Inositol 4.65E−02 2.645 1.072 0.139 (0.119 to 0.159) 3.11E−02

  N,  N−Dimethylglycine 4.58E−02 1.429 1.104 0.013 (0.012 to 0.017) 3.98E−02

  Ornithine 2.63E−02 1.795 1.103 0.117 (0.117 to 0.151) 1.76E−02

  para-Hydroxybenzoate 1.81E−03 2.491 1.100 0.021(0.018 to 0.024) 2.05E−03

  Trimethylamine N-oxide 2.61E−03 2.010 1.137 0.010 (0.008 to 0.012) 3.02E−03
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Spearman correlation analysis showed strong positive 
correlations among PFCs in the CPP girls. Estradiol was 
positively correlated with PFBA, TSH, and FSH. Prolac-
tin was negatively correlated with PFBS and VD (Fig. 6a1 
and Additional file 2: Table S8). In PT, the strong positive 
associations were also observed between PFCs, and pro-
lactin was positively correlated with PFDUnDA, PFDA, 
and PFNA. VD was positively correlated with PFDA and 
PFNA, negatively correlated with PFBA (Fig.  6a2 and 
Additional file 2: Table S9).

Determination the trait‑driven metabolite modules 
in the CPP and PT girls
WGCNA is a systems biological method for understand-
ing the correlated patterns between variables across dif-
ferent samples and has been widely used to find clusters 
or modules of metabolites. In this study, the metabolites 

were finally divided into eight and nine modules by 
WGCNA in CPP and PT, respectively, and the different 
modules were represented by different colors (the metab-
olites that do not belong to any module are classified as 
gray modules) (Additional file  1: Figure S2B). Further-
more, module-to-module correlation and cluster analysis 
are shown in Additional file 1: Figure S2C.

In module-trait heatmap, the driver module was deter-
mined based on the criterion |cor| > 0.30 and p < 0.05. 
In CPP, PFOA, PFNA, and PFDA mainly drive MEyel-
low, PFDoDA mainly drives MEbrown, DHEAS and VD 
mainly drive MEblack, FT4 mainly drives MEred, LH and 
FSH mainly drive MEbrown, and prolactin mainly drives 
MEblue (Fig. 6b1). In PT, PFOA mainly drives MEblack, 
TFHSA mainly drives MEpink, PFDoDA mainly drives 
MEyellow, and PFHpA mainly drives MEred, DHEAS 
mainly drives MEbrown, FSH mainly drives MEblack, 

Raw p value, calculated by Student’s t test, p < 0.05 regard as significantly changed

FC, fold change of metabolite, FC = C disease/C control, where FC > 1 means elevated content and FC < 1 indicates decreased content of metabolite

VIP Variable importance for projection, OR Odds ratio

p-adj, after age correction of raw p value performed by linear regression analysis

Table 2 (continued)

Potential biomarker Raw p value VIP FC Age‑adjusted

OR (95% CI) p‑adj

  Uridine 3.50E−04 2.655 1.348 0.009 (0.004 to 0.014) 2.90E−04

  Very low-density lipoprotein 1.31E−02 1.747 0.814 4.077 (3.112 to 5.041) 1.90E−02

 Compared with the adolescent girls

  1-Methylhistidine 3.44E−03 2.045 1.164 0.149 (−0.038 to 0.335) 1.20E−03

  3-Hydroxybutyrate 4.40E−04 2.593 1.344 0.109 (0.079 to 0.139) 4.04E−02

  Acetate 9.00E−05 2.261 1.177 0.007 (−0.008 to 0.021) 9.00E−05

  Acetoacetate 2.55E−03 2.053 1.187 0.436 (0.282 to 0.590) 6.13E−03

  Acetone 3.15E−02 1.778 1.254 0.395 (0.196 to 0.593) 1.50E−01

  Asparagine 1.59E−02 2.494 1.076 0.119 (0.077 to 0.162) 2.32E−01

  Choline 5.80E−04 2.185 1.151 2.984 (−0.763 to 6.731) 6.88E−01

  Creatine 3.00E−05 2.061 1.151 1.606 (0.950 to 2.263) 1.00E−05

  Dihydroxyacetone 1.73E−02 1.210 1.295 0.047 (0.030 to 0.064) 3.29E−01

  Ethanol 3.01E−03 1.969 1.251 0.036 (0.026 to 0.046) 3.13E−02

  Ethanolamine 5.70E−03 2.184 1.090 0.163 (0.100 to 0.227) 3.50E−04

  Formate 5.69E−03 1.389 1.478 0.025 (0.013 to 0.036) 1.99E−02

  Glycerol 2.15E−02 2.126 1.072 0.727 (−2.896 to 4.350) 2.75E−02

  Glycine 2.38E−02 1.898 1.121 0.016 (−0.004 to 0.037) 2.13E−02

  Histidine 4.14E−02 2.572 1.081 0.149 (−0.038 to 0.335) 1.12E−02

  Lactate 4.25E−02 1.819 1.260 0.109 (0.079 to 0.139) 9.49E−02

  Lipid 3.80E−04 1.867 0.907 0.007 (−0.008 to 0.021) 8.20E−04

  N, N-Dimethylglycine 2.57E−02 1.820 1.085 0.436 (0.282 to 0.590) 1.05E−02

  para-Hydroxybenzoate 9.02E−03 2.077 1.089 0.395 (0.196 to 0.593) 1.53E−01

  Serine 1.00E−05 2.281 1.148 0.119 (0.077 to 0.162) 3.00E−05

  Succinate 1.34E−02 2.344 1.189 2.984 (−0.763 to 6.731) 2.30E−04

  Very low-density lipoprotein 2.15E−03 1.684 0.761 1.606 (0.950 to 2.263) 1.27E−03

  α-Ketoisovalerate 1.34E−02 1.323 0.853 0.047(0.030 to 0.064) 2.32E−02
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BMISDS and body mass index (BMI) mainly drives 
MEgreen, FT4 mainly drives MEpink, TSH mainly drives 
MEturquoise, and estradiol mainly drives MEyellow 
(Fig. 6b2). The metabolites in each module are shown in 
Fig. 6C.

Discussion
PFCs contribute to PP by affecting endocrine disorders 
in girls
In this study, the levels of basal LH and FSH, estradiol, 
prolactin, testosterone, and DHEAS in PT and CPP indi-
cated that the HPG axis is not activated in the PT girls 
but activated in the CPP girls, which was also confirmed 
by the GnRH stimulation test [30]. With activation of 
HPG axis, hypothalamus increasingly secretes gon-
adotropin GnRH, anterior pituitary gland increasingly 
secretes FSH and LH, and gonad increasingly secretes 
estradiol and testosterone. The higher level of estradiol 
(aromatized from testosterone) in girls before puberty is 
associated with an earlier thelarche, and it can affect and 
maintain cognitive function, regulate the sexual behav-
ior and ovulation in the brain, and regulate higher order 
neural function [31, 32]. Behr et al. found that PFOA and 
PFOS can enhance estradiol-stimulated estrogen recep-
tor β activity, and PFOS and PFBA can enhance dihy-
drotestosterone-stimulated androgen receptor activity 
[33]. In this study, PFBA was positively correlated with 
estradiol, PFBS was negatively correlated with prolactin 
in the CPP girls, and PFUnDA, PFDA, and PFNA were 
positively correlated with prolactin in the PT girls, which 
indicated that PFCs mainly caused developmental and 
reproductive toxicity by disrupting the body’s endocrine 

homeostasis, thus leading to an imbalance in the body’s 
steroid hormone secretion.

DHEAS is a stable marker for adrenal androgenic activ-
ity. At the biological level, DHEAS has effects on brain 
development, sexuality, mood and cognition, cardiovas-
cular disease, stroke, and mortality [34]. Relevant longi-
tudinal studies show that higher DHEAS level at the age 
of 8 predicts early menarche and doubles the risk of pubic 
hair development in girls [35]. In this study, the higher 
level of DHEAS in the CPP girls may be the result of a 
combination of adrenaline secretion and gonadal secre-
tion, and it further leads to significant secondary sex-
ual characteristics of the CPP girls. On the other hand, 
the increased level of DHEAS may potentially provide 
additional energy for the metabolic costs of early brain 
development, and also acts as a co-factor in promoting 
cortical maturation, thus leading to increased capacity 
for mentalizing and perspective-taking before the onset 
of reproductive maturation. This conclusion could be 
supported by the WGCNA analysis, where MEyellow 
in CPP and MEbrown in PT driven by DHEAS showed 
glucose aggregation. In addition, the significantly higher 
level of glucose in the CPP girls than in the PT girls also 
indicated a more active energy metabolism in CPP.

Interestingly, in this study, the BMI of CPP was 
higher than that of other groups. Studies have shown 
that the HPG axis initiates when girls’ body reaches 
a certain fat and/or protein mass [36]; therefore, the 
occurrence of CPP may be closely related to high 
BMI of girls. It is possible that obesity or overweight 
can promote the occurrence and development of CPP, 
which could be confirmed by the findings of many 

Fig. 3 The potential biomarkers of PP, PT, and CPP. A The Venn plots of the potential biomarkers in the PP, PT, and CPP. B The bipartite graph 
of the potential biomarkers in the PP, PT, and CPP
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other scholars [37, 38]. In addition, the relationship 
between PFCs and VD in CPP and PT indicated PFCs 
partly disturbed osteogenesis [39], and also revealed 
new potential long-term PFC impacts on children.

PFCs mediate perturbation of the core metabolic network 
of the CPP girls
CPP is primarily an early initiation of the HPGA axis, 
and hypothalamus generates a GnRH pulse that stimu-
lates the pituitary gonadotropin secretion. Therefore, the 
corresponding core metabolic network mainly reflects 
the cause of activation of the HPGA axis and the meta-
bolic disorder in the CPP girls. The link of clinical phe-
notype-PFCs-metabolic characteristics in the CPP girls 
indicated that PFCs may cause disturbance of metabolic 
network of CPP girls by disturbing endocrine homeosta-
sis and/or directly affecting metabolite characteristics.

Tyrosine and phenylalanine are the precursor for cat-
echolamines including tyramine, dopamine, epinephrine, 
and norepinephrine. The sympathetic nervous system 
neurotransmitters and catecholamines, especially nor-
epinephrine, play an important role in the regulation of 
GnRH neurons [40]. The downregulated levels of pheny-
lalanine and tyrosine in serum of the CPP girls indicated 

that the biosynthesis of phenylalanine, tyrosine, and 
tryptophan was disturbed, which keeps consistent with 
the previous metabolomics results [5]. The downregula-
tion of phenylalanine and tyrosine levels may be due to 
the more consumption of norepinephrine for the activa-
tion of HPG axis, resulting in lower levels of its precur-
sor substances. Such conclusion could be confirmed by 
the WGCNA analysis, where the modules MEblue and 
MEturquoise were primarily driven by prolactin and 
DHEAS (Fig. 6b1, c1).

Serine and glycine are connected through biosynthe-
sis to provide necessary synthetic precursors of pro-
teins, nucleic acids, and lipids. At the same time, serine 
homeostasis plays a vital role in maintaining brain energy 
metabolism [41]. The homeostasis of serine/glycine is 
essential for the proliferation of human primary muscle 
progenitor cells and efficient skeletal muscle regeneration 
[42]. Therefore, the decreased serine level in the CPP girls 
may be one of the reasons for the lifelong high short stat-
ure in adults, but further research is needed to confirm 
it. Creatine is essential in maintaining human growth, 
development, and health and can improve skin and 
bone health [43]. Creatinine was selected as a biomarker 
for predict CPP in Qi’s study [5], and it was regarded 

Fig. 4 An exploratory ROC curve analysis (A) and the validation PLS-DA models (B) based on the specific biomarkers. ROC curve analysis 
for the predictive power of specific biomarkers of CPP for distinguishing CPP from prepubertal girls (A1) and for distinguishing CPP 
from prepubertal integrated adolescent girls (A2). ROC curve analysis for the predictive power of specific biomarkers of PT for distinguishing PT 
from prepubertal girls (A3) and for distinguishing PT from prepubertal integrated adolescent girls (A4). The validation models were constructed 
to classify between CPP and prepubertal girls (B1), between CPP and prepubertal integrated adolescent girls (B2), between PT and prepubertal girls 
(B3), between PT and prepubertal integrated adolescent girls (B4). The sample numbers of prepubertal, adolescent, CPP and PT girls were 36, 28, 30, 
and 40, respectively. PPB: prepubertal; AD: adolescent
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Fig. 5 The core metabolic network of CPP (A) and PT (B). (HPG: hypothalamic-pituitary-gonadal; HPA: hypothalamic-pituitary-adrenal; GnRH: 
gonadotropin-releasing hormone; CRH: corticotropin releasing hormone; ACTH: adrenocorticotropic hormone; LH: luteinizing hormone; FSH: 
follicular-stimulating hormone; DHEAS: dehydroepiandrosterone sulfate; VLDL: very low-density lipoprotein.)
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Fig. 6 Visualization plot of the association of clinical phenotype-PFCs-metabolic characteristics. A Spearman correlation analysis of PFCs and clinical 
phenotypes in the CPP (a1) and PT (a2) girls, red and blue represent positive and negative correlation, respectively (noted: only correlation values 
that meet p < 0.05 are presented on the heat map). B Module-trait associations of CPP (b1) and PT (b2), where each row corresponds to a module 
eigenmetabolite, column to a trait, respectively. Each cell contains the corresponding correlation and p value. C Visualization of module metabolites 
of CPP (c1) and PT (c2)
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as one of the specific biomarkers for CPP in this study. 
Creatinine is linked to muscle mass, and the lower level 
of serum creatinine observed in the CPP girls could be 
a result of the excessive weight and relative low muscle/
fat ratio caused by low physical activity. In the MEyellow 
and MEblue, creatine and creatinine are mainly related to 
amino acids and driven by multiple PFCs (PFOA, PFNA, 
PFDA), DHEAS, and prolactin (Fig.  6b1, c1), indicated 
that exposure to PFCs and/or endocrine disturbance will 
cause amino acid metabolism disturbance, thus affecting 
the bone growth of girls.

The increased levels of α-&β-glucose and lactose and 
decreased level of hypoxanthine in the CPP girls sug-
gested the disturbed glycolysis/gluconeogenesis (energy 
metabolism). PFOA, PFDA, and PFNA were positively 
correlated with PFOS and mainly drove MEyellow con-
taining α-&β-glucose. Studies have shown that the accu-
mulation of PFCs, especially PFOS, contributes to the 
disorder of lipid and glucose metabolisms in children, but 
the mechanism is still in the initial stage of exploration 
[12, 44]. Compared with adolescent girls, the CPP girls 
had lower insulin sensitivity, glucose and lipid metabo-
lism profile, and body composition, and the metabolic 
disturbance remained unchanged even after 1 year of 
GnRH treatment [45, 46]. The accumulation of PFCs may 
be a crucial reason for the decreased insulin sensitivity 
and high level of serum glucose in the CPP girls [47].

Glutamate and GABA are the principal excitatory and 
inhibitory neurotransmitters. Their interactions with 
GnRH neurons, including the regulation of GnRH gene 
and protein expression, hormone release, and modula-
tion by estrogen, are critical to age-appropriate changes 
in reproductive function [48]. Glutamate is also crucial 
for bone growth and reconstruction [49]. In our study, 
the significantly decreased glutamate level in the CPP 
girls implies its dynamic change in the development of 
CPP. We speculated that the increased glutamate level 
stimulated the HPG axis and induced CPP in the early 
stage. However, the occurrence of CPP is often accom-
panied with rapid height growth, and subsequently the 
glutamate in bone and blood is excessively consumed at a 
certain stage of CPP.

In addition, the downregulated levels of isoleucine, ala-
nine, valine, methionine, histidine, and α-ketoisovalerate 
in the CPP girls indicated the disturbed aminoacyl-tRNA 
biosynthesis. The disruption of aminoacyl-tRNA biosyn-
thesis further supports our inference that body needs to 
consume large amounts of amino acids during the ini-
tial growth spurt and rapid bone maturation stage of the 
CPP girls. The significantly reduced level of VD in the 
CPP girls further indicated the affected bone growth of 
the CPP girls. It is possible that the lack of VD affected 
the absorption and deposition of calcium in the bone, 

thus affecting the health and growth of bones. Balance of 
aminoacyl-tRNA biosynthesis is closely related to bone 
health, and its disruption can lead to osteocyte protein 
synthesis dysfunction, marrow hypoplasia, and osteo-
porosis [50]. This may also be the reason for the short 
height of CPP girls at adult. However, whether appropri-
ate supplementation of amino acids in diet can improve 
the adult height, or whether aminoacyl-tRNA biosynthe-
sis can become a targeted therapeutic metabolic pathway 
for CPP girls is worthy of further research and discussion.

Purines and pyrimidines give prominent contributions 
in the development of the central nervous system, but 
the exact molecular mechanisms remain unclear [51]. PP 
girls have an increased risk of precocious sexual behav-
ior and an increased prevalence of mental disorders such 
as depression and anxiety in adulthood [52, 53]. In this 
study, the downregulated serum levels of hypoxanthine, 
dihydrothymine, and uridine were observed in the CPP 
girls. Dihydrothymine belongs to MEblack jointly driven 
by PFOA, PFNA, DHEAS, FT4, and VD. This suggested 
that the disturbed pyrimidine metabolic pathway may 
be caused by the joint action of external environment 
and internal factors. CPP girls need to advance adaption 
to the cognitive, emotional, and changes of puberty pre-
maturely, therefore, the sense of anxiety and depression 
increases significantly, resulting in a certain disorder of 
pyrimidine metabolism.

PFCs mediate perturbation of the core metabolic network 
of the PT girls
PT does not involve the early initiation of HPGA axis 
and keep normal growth of height and maturation of 
bone age. Its occurrence is mainly due to the breast 
enlargement caused by exogenous hormone intake. 
In Qi et  al. study [5], upregulated levels of succinate 
and 1-methylhistidine in urine can effectively predict 
PT. In this study, it was found that most amino acids 
showed upregulated in PT girls, including the specific 
biomarker 1-methylhistidine and the potential bio-
marker succinate. Amino acids are not only the build-
ing blocks of proteins and an indispensable component 
of cells, but also play versatile roles in regulating cell 
metabolism, proliferation, differentiation, and growth 
by themselves or their derivatives. Their requirements 
vary at the various stages of children’s growth and 
development [54, 55]. Studies have shown that arginine 
and ornithine supplementation can promote the secre-
tion of growth hormone and insulin growth factor-1 
[56]. We speculated that the nutritional diets promote 
the high level of amino acid in the PT girls for provid-
ing energy for the growth and development. But the 
more relevant reason may be that exposure to PFCs 
disturbs the body’s amino acid metabolism, endocrine 
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homeostasis, and vitamin level, which will affect the 
girl’s bone health and growth.

In this study, the metabolites in glycerolipid metabolic 
pathway and galactose metabolic pathway including N,N-
dimethylglycine, ethanolamine, glycerol, dihydrothy-
mine, and myo-inositol were upregulated in the PT girls. 
Studies have shown that thyroid dysfunction will affect 
the body’s glycerol metabolism and gluconeogenesis 
pathway [57, 58]. In this study, FT4 and TFHSA mainly 
drive MEpink containing glycerol, and PFHpA mainly 
drives MEred containing low-density lipoprotein, myo-
inositol, phosphocholine, and glycerophosphorycholine, 
suggesting that the PFCs exposure and high level FT4 
may be the main reason contributed to the disorder of 
serum glycerolipid metabolic and galactose metabolism 
in PT. However, this study cannot directly prove the cau-
sation between the elevated FT4 level and PFCs exposure 
in PT.

Interestingly, the disordered trend of pyruvate metab-
olism and butyrate metabolism kept almost consistent 
between CPP and PT (Fig.  5), indicating that pyruvate 
metabolism and butyrate metabolism disorder are possi-
bly a common phenomenon of PP. In other words, simul-
taneously elevated levels in serum formate, ethanol, and 
3-hydroxybutyrate may serve as the early diagnostic indi-
cators for CPP and PT, i.e., precocious puberty in girls, 
but the stratification of PP still needs to be further deter-
mined based on the serum-specific biomarkers. Ethanol 
may act on bone remodeling including osteocyte apop-
tosis [59, 60]. Elevated level of 3-hydroxybutyrate will 
inhibit the differentiation and growth of (pre)-chondro-
cytes [61] and participate in the process of osteoporosis 
[62]. There is a strong correlation between PFOA and 
PFNA in CPP and PT. Ethanol and 3-hydroxybutyrate 
belong to MEred which were jointly driven by PFNA 
and FT4 in CPP. In PT, ethanol and 3-hydroxybutyrate 
belong to the MEblack which were jointly driven by 
PFOA and FT4. It is suggested that PFC exposure and/or 
fluctuations in FT4 level will lead to elevated ethanol and 
3-hydroxybutyrate in PP and thus affects bone growth 
and development, but more evidence is needed to prove 
this point.

It should be pointed out that this study had several 
limitations. Firstly, the results were obtained from a 
smaller-sample-size cohort, and measurements in an 
expanded cohort are necessary to validate the disease-
specific biomarkers and determine their universality. 
Secondly, clinical reports have revealed the gender-
related differences of PP not only in symptoms but also 
in pathophysiology. Therefore, the present findings 
could not naturally extend to boys, and further study 
on the sex-specific metabolic characteristics of PP is 
needed to comprehensively understand the underlying 

pathogenic mechanisms of PP. Finally, the detailed 
mechanism of how PFCs lead to endocrine homeo-
stasis imbalance still keeps unclear and needs further 
study.

Conclusions
In summary, based on the cross-metabolomics analy-
ses, our study showed that formate, ethanol, and 
3-hydroxybutyrate may serve as the early diagnos-
tic indicators for the CPP and PT, i.e., precocious 
puberty in girls, and eleven CPP-specific biomarkers 
and eight PT-specific biomarkers in serum exhibited 
good sensitivity, which can facilitate the classifica-
tion diagnosis of CPP and PT girls. The link of clinical 
phenotype-PFCs-metabolic characteristics in CPP and 
PT by WGCNA method revealed that PFC exposure is 
associated with endocrine homeostasis imbalance in 
the CPP and PT girls, and thus directly or indirectly 
drives metabolic changes and forms perturbations of 
the overall metabolic network. These findings will pro-
vide a potential diagnostic and stratification approach 
for the clinical diagnosis of precocious puberty in girls, 
and also raise social awareness that reducing exposure 
to PFC compounds may be an important strategy for 
preventing the occurrence and development of preco-
cious puberty in girls.
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OPLS-DA  Orthogonal partial least squares-discriminant analysis
p-adj  p value after age correction
PCA  Principal component analysis
PFBA  Perfluoro-n-butanoic acid
PFBS  Potassium perfluoro-1-butanesulfonate
PFCs  Perfluorinated compounds
PFDA  Perfluoro-n-decanoic acid
PFDoDA  Perfluoro-n-dodecanoic acid
PFHA  Perfluoro-n-hexanoic acid
PFHpA  Perfluoro-n-heptanoic acid
PFNA  Perfluoro-n-nonanoic acid
PFOA  Perfluoro-n-octanoic acid
PFOS  Potassium perfluoro-1-octanesulfonate
PFUnDA  Perfluoro-n-undecanoic acid
ROC  Receiver operating characteristic
TFHSA  Potassium perfluoro-1-hexanesulfonate
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TOM  Topological overlap matrix
TSH  Thyroid-stimulating hormone
VD  25-hydroxyvitamin D
VIP  Variable importance for projection
VLDL  Very low-density lipoprotein
WGCNA  Weighted gene co-expression network analysis
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