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Abstract 

Background  Diabetes mellitus (DM) is a chronic metabolic disease that could produce severe complications threat-
ening life. Its early detection is thus quite important for the timely prevention and treatment. Normally, fasting blood 
glucose (FBG) by physical examination is used for large-scale screening of DM; however, some people with normal 
fasting glucose (NFG) actually have suffered from diabetes but are missed by the examination. This study aimed 
to investigate whether common physical examination indexes for diabetes can be used to identify the diabetes indi-
viduals from the populations with NFG.

Methods  The physical examination data from over 60,000 individuals with NFG in three Chinese cohorts were used. 
The diabetes patients were defined by HbA1c ≥ 48 mmol/mol (6.5%). We constructed the models using multiple 
machine learning methods, including logistic regression, random forest, deep neural network, and support vector 
machine, and selected the optimal one on the validation set. A framework using permutation feature importance 
algorithm was devised to discover the personalized risk factors.

Results  The prediction model constructed by logistic regression achieved the best performance with an AUC, 
sensitivity, and specificity of 0.899, 85.0%, and 81.1% on the validation set and 0.872, 77.9%, and 81.0% on the test set, 
respectively. Following feature selection, the final classifier only requiring 13 features, named as DRING (diabetes risk 
of individuals with normal fasting glucose), exhibited reliable performance on two newly recruited independent data-
sets, with the AUC of 0.964 and 0.899, the balanced accuracy of 84.2% and 81.1%, the sensitivity of 100% and 76.2%, 
and the specificity of 68.3% and 86.0%, respectively. The feature importance ranking analysis revealed that BMI, age, 
sex, absolute lymphocyte count, and mean corpuscular volume are important factors for the risk stratification of dia-
betes. With a case, the framework for identifying personalized risk factors revealed FBG, age, and BMI as significant 

†Kun Lv, Chunmei Cui, and Rui Fan contributed equally to this work.

*Correspondence:
Kun Lv
lvkun315@126.com
Chunmei Cui
ccm328@bjmu.edu.cn
Dong Zhao
zhaodong@ccmu.edu.cn
Qinghua Cui
cuiqinghua@bjmu.edu.cn
Liming Yang
limingyang@ems.hrbmu.edu.cn
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-023-03045-9&domain=pdf


Page 2 of 13Lv et al. BMC Medicine          (2023) 21:342 

hazard factors that contribute to an increased incidence of diabetes. DRING webserver is available for ease of applica-
tion (http://​www.​cuilab.​cn/​dring).

Conclusions  DRING was demonstrated to perform well on identifying the diabetes individuals among populations 
with NFG, which could aid in early diagnosis and interventions for those individuals who are most likely missed.

Keywords  Diabetes risk prediction, Normal fasting glucose, Machine learning, Missed diagnosis

Background
Diabetes mellitus (DM) is one of major public health 
threat in twenty-first century, characterized by signs of 
hyper-glycaemia and long-time accompanied with that 
would cause severe damage to multiple organs includ-
ing but not limited to the heart, kidney, foot, and retinal 
peripheral nerve [1]. As estimated by the International 
Diabetes Federation (IDF), there exists around 537 mil-
lion people with diabetes in 2021, and the number will 
rise to 643 million by 2030 [2]. The subjects with diabe-
tes are usually asymptomatic at preliminary stage, which 
is why the diagnosis for diabetes is often delayed, thus 
causing serious complications and even fatal reactions. A 
recent study has revealed that almost 50% patients with 
newly diagnosed diabetes have the clinical manifestations 
of micro- and macrovascular disease [3]. This suggests 
that those individuals with diabetes might remain undi-
agnosed or untreated for several years, which certainly 
exacerbates the economic burden on both patients and 
the healthcare system [4, 5]. It is projected that the cost 
of per diabetes individual per year would increase from 
$231 to $414 during 2020–2030, companied with that the 
total costs of diabetes would elevate from $250.2 billion 
to $460.4 billion in China [6]. Moreover, the healthcare 
costs for diabetes patients with complications are more 
than two times higher compared to those without com-
plications [7, 8]. Therefore, early detection of diabetes 
is critical for preventing the sustained progression of 
diabetes, and the onset of associated complications and 
correspondingly cost-effective strategies for diagnosis of 
diabetes are warranted.

Considering the cost- and time-consuming of detect-
ing multiple characteristics for diabetes diagnosis in 
large scale population, especially for some developing 
countries with rapidly rising prevalence of diabetes, it is 
an effectively alternative strategy to develop a predictive 
model for screening the individuals at high risk of dia-
betes for further examination. Improvement in the data 
amount advances the application of machine learning on 
diabetes. At present, increasing computational methods 
have been proposed for the prediction of diabetes risk 
using conventional statistical analysis or machine learn-
ing methods and achieved promising performance on the 
risk stratification of diabetes [9–14]. A diabetes risk score 
(DRS) based on the mainland Chinese population was 

constructed by multivariable stepwise logistic regression 
and achieved the AUC of 0.828 and 0.909 for detecting 
abnormal glucose tolerance and diabetes [11]. Mani et al. 
applied six machine learning methods combined with 
electronic medical record to predict the risk of devel-
opment of diabetes 6 months and 1 year later, in which 
AUCs were both greater than 0.8 [15]. Among the vari-
ous machine learning methods, support vector machine, 
random forest, and ensemble classifier have been shown 
to produce better classification outcomes [16]. And risk 
factors relevant to diabetes including age, family his-
tory of diabetes, blood pressure, body mass index (BMI), 
lipoprotein, cholesterol, fasting blood glucose (FBG), the 
questionnaire on medical history and exercise, and other 
physical examination indexes are frequently utilized [17]. 
For risk stratification, the most fundamental issue is to 
assign a correct class for each sample, here referred to 
diabetes or health, before constructing the prediction 
model. The utilization of diabetes definition criteria often 
varies among different studies, with common diagnostic 
indicators including FBG, oral glucose tolerance test, and 
glycated hemoglobin (HbA1c) [18, 19]. However, it has 
been reported that FBG used for diabetes diagnosis could 
grossly underestimates the prevalence of diabetes [20]. 
This implies that some subjects with diabetes might show 
normal fasting glucose (NFG) level (e.g., the threshold 
of 6.1  mmol/L according to World Health Organization 
(WHO) [21]) and thus be at high risk of being missed. 
Currently, most prediction models are designed to distin-
guish between individuals with impaired fasting glucose 
or diabetes and normal individuals; it is hard for them 
to accurately identify the diabetes individuals with NFG 
from a large population especially for models using FBG 
as the definition criterion for diabetes. Therefore, it is 
quite important and necessary to precisely and efficiently 
detect these undiagnosed diabetic patients in the people 
with NFG for timely and early diabetes prevention and 
treatment.

In the present study, we proposed a machine learning 
model, DRING (diabetes risk of individuals with nor-
mal fasting glucose), for identifying the missed diabetes 
patients from the individuals with NFG based on physi-
cal examination data from more than 60,000 individuals. 
With feature selection, DRING performed well on valida-
tion set and multiple test sets including newly recruited 
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test sets. Moreover, DRING can also uncover the risk fac-
tors of diabetes using feature importance analysis. Finally, 
we devised a framework for screening the personalized 
risk factors of diabetes and demonstrated its practicabil-
ity and reliability on a case study.

Methods
Data collection and processing
The physical examination data were derived from three 
hospitals, First Affiliated Hospital of Wannan Medical 
College, Beijing Luhe Hospital of Capital Medical Uni-
versity, and Daqing Oil field General Hospital. The three 
datasets were named as D1, D2, and D3, respectively. The 
first step was data cleaning, in which samples with miss-
ing values and abnormal values were excluded. Accord-
ing to the criteria for diagnosing prediabetes and diabetes 
from WHO, we screened the samples with normal fasting 
glucose (≤ 6.1 mmol/L) and classified these samples into 
two groups by HbA1c level with threshold of 6.5%, diabe-
tes patients (HbA1c ≥ 6.5%) and normal/healthy samples. 
After preprocessing, 61,059, 369, and 3247 samples were 
retained in D1, D2, and D3, which separately contained 
603, 3, and 21 subjects with diabetes, that is, the positive 
samples. Then, we split D1 into training set, validation 
set, and test set by 6:1:3 using randomly stratified sam-
pling. D2 and D3 were used as newly recruited independ-
ent test sets.

All datasets contained 27 physical examination char-
acteristics, including sex, age, height, body mass index 
(BMI), fasting blood glucose (FBG), white blood cell 
count (WBC), neutrophil (NEU), absolute neutrophil 
count (ANC), lymphocyte (LYM), absolute lymphocyte 

count (ALC), monocyte (MONO), absolute mono-
cyte count (AMC), eosinophil (EOS), absolute eosino-
phil count (AEC), basophil (BASO), absolute basophil 
count (ABC), hemoglobin (HGB), hematocrit (HCT), 
mean corpuscular volume (MCV), mean corpuscular 
hemoglobin (MCH), red cell distribution width (RDW), 
platelets (PLT), mean platelet volume (MPV), platelet 
distribution width (PDW), thrombocytopenia (PCT), red 
blood cell count (RBC), and mean corpuscular hemo-
globin concentration (MCHC).

Given the severe class-imbalance of all datasets, the 
SMOTE (synthetic minority over-sampling technique) 
method was employed on training set for oversampling 
the positive samples. SMOTE could generate new sam-
ples for the minority class by interpolation based on 
k-nearest neighbors [22], which could make positive sam-
ples as large as negative samples on training set. The pro-
cess was implemented by “imblearn” package in Python. 
Finally, we conducted Z-score normalization on all data-
sets, in which the mean and standard deviation values 
were calculated by the data of training set.

The framework of DRING
With the physical examination data, we presented a com-
putational framework for identifying the diabetic patients 
with NFG, as shown in Fig. 1. At first, we preprocessed 
three datasets of D1, D2, and D3 as introduced above, 
in which D1 was divided into training set, validation set, 
and test set by 6:1:3, while D2 and D3 as independent test 
set were used for the evaluation of final model. In view 
of the class-imbalance of datasets, we used an oversam-
pling method on the training set. Then, multiple widely 

Fig. 1  Overview of the DRING approach
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used machine learning methods including logistic regres-
sion (LR), random forest (RF), supported vector machine 
(SVM), and deep neural network (DNN) were exploited 
to construct the predictor. Next, we applied feature selec-
tion methods on the most superior one of four predictors 
to improve the feasibility of tool and assessed the perfor-
mance with independent test sets. Finally, feature impor-
tance analysis was used to screen relevant variables with 
the incidence of diabetes. And we devised a framework 
for identifying the risk factors of diabetes at individual 
level and developed an online tool for boosting its clinical 
practice.

Model construction
In preliminary, in order to build the predictive model, 
four machine learning methods were employed, includ-
ing LR, RF, SVM, and DNN. LR is a variation of linear 
regression prominently used in classification tasks [23], 
which finds the best fit to describe the linear relation-
ship between responsible variables and input features 
and then covert the output to the probability by a sig-
moid function. RF is composed of numerous decision 
trees, which are practically a collection of if–then con-
dition [24] The decision tree recursively split the data 
into subset based on the best feature and criterion until 
the stopping criterion is met. In RF, each decision tree 
is independently trained on random subset of samples 
and features, which reduces the risk of overfitting. The 
final decision is voted by all trees improving the over-
all accuracy and the robustness of the model. SVM, one 
of the most popular machine learning methods, classi-
fies the samples by finding a hyperplane on the feature 
space to maximize the margin of points from different 
classes [25]. It can handle non-linearly separable data 
by using various kernels such as linear, polynomial, and 
radial basis function realizing the original feature space 
into high-dimensional space. The LR, RF, and SVM mod-
els were constructed by scikit-learn package in Python 
3.8. And default parameters were used in the process of 
training models. DNN [26] contains input layer, hidden 
layer, and output layer, where there are plenty of neurons 
in each layer and the neurons from different layers are 
connected. For DNN, the connection is generally linear 
transformation followed by an activation function. Here, 
we used the ReLU function to activate the linear neurons 
and softmax function to output the prediction result. 
In addition, we used the dropout and L2 regularization 
strategy in the hidden layers to prevent the presence 
of overfitting. Moreover, the residual blocks also were 
added into the DNN for simplifying the training process. 
The DNN was implemented by Pytorch package. In this 
study, DNN model achieved the best performance when 
the number of layers at 6 and initial learning rate with 

0.0018. Loss on the training set and validation set was 
depicted in Additional file  1: Fig. S1. And we chose the 
model with the best performance on validation set for 
further optimization.

Model evaluation
Currently, machine learning models for classification 
task are evaluated by multiple well-established metrics, 
for example, sensitivity, accuracy, and area under the 
receiver operating characteristic curve (AUC), etc. Given 
the seriously unbalanced classes of validation set and test 
set, here, we exploited sensitivity, specificity, balanced 
accuracy, AUC, and area under the precision-recall curve 
(PR-AUC) to evaluate models, which were calculated as 
following formulas.

TP , that is, true positive, is the number of correctly 
classified diabetes patients. FP , false positive, denotes the 
number of normal subjects who were predicted as dia-
betes. TN  , true negative, represents the number of cor-
rectly classified health subjects. FN  , false negative, is the 
number of diabetes patients who were classified as health 
individuals. And all above metrics range from 0 to 1.

Feature selection and feature importance analysis
Although the predictive model based on 27 features had 
a considerable performance, there still exist several possi-
ble redundant information or noise features affecting the 
decision making. To maximize the effective information 
of features and simplify the model, we used manual cura-
tion and max relevance and min redundancy (mRMR) 
[27] to extract key features for the final model. Towards 
manual curation, we firstly selected the features with sig-
nificant difference between the positive samples and the 
negative samples. To enhance the stability of the predic-
tive model, we removed the features resulting in severe 
collinearity. As a result, 13 features were retained. For 
consistency’s sake, the number of feature subset was set 
to 13 when performing mRMR analysis. In addition, fea-
ture selection was executed on the training set for reduc-
ing the risk of overfitting. Analysis of feature importance 
can interpret the prediction model and discover the most 
relevant features with diabetes. Here, the importance of 

(1)Sensitivity = TPR =
TP

TP + FN

(2)Specificity = TNR =
TN

TN + FP

(3)Balancedaccuracy =
TPR+ TNR

2
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each feature was measured by its corresponding weight 
coefficient of the LR model.

Construction of the DRING webserver
We developed an online tool, DRING (http://​www.​cui-
lab.​cn/​dring), based on the predictive models with 13 
features filtered by manual curation and mRMR, where 
the former is the preferred option. The backend develop-
ment of website was implemented by Python 2.7, and the 
interactive pages were constructed on the combination of 
HTML5, Boostrap 4, and JavaScript.

Screening the personalized risk factor
Feature importance analysis can help to explain the 
model; however, it fails to explore the risk factors for inci-
dent diabetes at individual level. To find out the poten-
tial risk factor for a specific individual, we learnt from 
the permutation feature importance (PFI) algorithm [24, 
28], which is designed for quantifying the importance for 
each of the variables of a dataset. Here, we adapted PFI to 
assess the contributions of the features derived from an 
individual. Specifically, it contains the following 4 steps: 
(1) given a feature vector, we firstly create a series of ran-
dom permutation for one of features based on the input 
dataset; (2) then, we calculate the prediction results for 
each of new feature vectors; (3) the contribution of the 
permutated feature is defined as formula 4:

Pr is the risk score for diabetes calculated with the 
initial feature vector, here referred to the predictive 
probability of diabetes; Pi is the prediction result of ith 
permutation, and k is the number of permutations; (4) 
perform the above steps iteratively for each of features. 
Here, we set k to 100,000. The feature with a higher value 
implies more contribution to the risk of diabetes.

Results
We first collected the physical examination data from 
First Affiliated Hospital of Wannan Medical College 
between 2015 and 2018 year, where 61,059 samples with 
NFG satisfied our inclusion criterion. Nearly 1% (603) 
of participants were recognized as the diabetes based 
on the HbA1c level with threshold of 6.5%, and Table 1 
depicted the characteristics of NFG individuals with and 
without diabetes. The diabetes group showed an aver-
age BMI higher by 1.08 and an average age older more 
than 10.6 years compared to the healthy group. The top 5 
features with significant difference between diabetes and 
normal samples were fasting blood glucose (FBG), age, 
BMI, absolute lymphocyte count (ALC), and white blood 
cell count (WBC), respectively (Fig.  2), and other 11 

(4)P = |Pr −
1

k

k

i=1
Pi|

features showing significant difference were described in 
Additional file 1: Fig. S2. The result indicates the consid-
erable potential of demographic and blood test indexes to 
distinguish diabetes patients in the population with NFG.

Comparison of the performance of multiple machine 
learning methods on prediction of diabetes risk 
for individuals with NFG
The performance of multiple machine learning methods 
including LR, RF, SVM, and DNN on validation set was 
shown in Table 2. LR model showed the maximum AUC 
of 0.899 and the PR-AUC of 0.106. We observed a rela-
tively low PR-AUC in all models, which ascribes to the 
unbalanced class of validation set with over 100-fold dis-
crepancy between diabetes and normal samples. And the 
PR-AUC of LR was far superior to random performance 
which equals to the proportion of positive samples. 
Meanwhile, LR model also significantly outperformed 

Table 1  Statistics of characteristics of the diabetic and non-
diabetic individuals with and normal fasting glucose

Characteristics Diabetes Non-diabetes

N 603 60,456

Sex (men %) 58.21% 51.86%

Age 57.49 ± 10.72 46.84 ± 11.93

Height 162.28 ± 8.62 163.77 ± 8.28

Body mass index (BMI) 25.94 ± 3.61 23.86 ± 3.14

Fasting blood glucose (FBG) 5.61 ± 0.43 5.03 ± 0.48

White blood cell count (WBC) 6.72 ± 2.03 6.02 ± 1.7

Neutrophil (NEU %) 57.31 ± 8.9 58.59 ± 8.12

Absolute neutrophil count (ANC) 3.89 ± 1.48 3.57 ± 1.34

Lymphocyte (LYM %) 33.63 ± 8.51 32.69 ± 7.55

Absolute lymphocyte count (ALC) 2.24 ± 1.09 1.93 ± 0.59

Monocyte (MONO %) 6.25 ± 1.64 6.15 ± 1.61

Absolute monocyte count (AMC) 0.42 ± 0.15 0.37 ± 0.13

Eosinophil (EOS %) 2.47 ± 2.13 2.24 ± 1.91

Absolute eosinophil count (AEC) 0.17 ± 0.16 0.14 ± 0.14

Basophil (BASO %) 0.33 ± 0.29 0.33 ± 0.29

Absolute basophil count (ABC) 0.01 ± 0.03 0.01 ± 0.03

Hemoglobin (HGB) 139.5 ± 14.28 140.13 ± 16.29

Hematocrit (HCT) 0.42 ± 0.04 0.42 ± 0.04

Mean corpuscular volume (MCV) 90.05 ± 5.2 90.74 ± 5.23

Mean corpuscular hemoglobin (MCH) 29.81 ± 2.06 30.14 ± 2.11

Red cell distribution width (RDWSD) 13.41 ± 0.91 13.25 ± 1.02

Platelets (PLT) 193.64 ± 62.72 191.83 ± 56.69

Mean platelet volume (MPV) 11.51 ± 1.72 11.37 ± 1.65

Platelet distribution width (PDW) 16.22 ± 1.93 16.14 ± 1.97

Thrombocytopenia (PCT) 0.22 ± 0.06 0.21 ± 0.06

Red blood cell count (RBC) 4.69 ± 0.5 4.66 ± 0.5

Mean corpuscular hemoglobin con-
centration (MCHC)

330.91 ± 10.04 331.95 ± 11.23

http://www.cuilab.cn/dring
http://www.cuilab.cn/dring
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the others in respect of sensitivity at 85.0% and balanced 
accuracy scores at 83.0% while RF displayed the high-
est specificity score (99.9%). To maximize the identifica-
tion of diabetes patients, the LR algorithm were finally 
selected for further constructing the predictive model. 
The results of fivefold cross-validation on the training 
set showed an AUC of 0.906, PR-AUC of 0.879, sensitiv-
ity of 85.9%, and balanced accuracy of 83.4%. Further-
more, the LR model also showed a reliable performance 
(AUC = 0.872, PR-AUC = 0.092) on the test set, as shown 
in Fig.  3A and B. The sensitivity and balanced accuracy 
on test set was 77.9% and 79.5%, respectively. The results 
suggested the potential of demographics and blood 

Fig. 2  The top 5 features exhibiting the most significant differences between diabetic and non-diabetic individuals with normal fasting glucose

Table 2  Comparison of performance of four machine learning 
methods

The values of AUC, PR-AUC, recall, specificity, and balanced accuracy are range 
from 0 to 1, with a higher value indicating a better performance

RF random forest, SVM supported vector machine, DNN deep neural network, LR 
logistic regression, AUC​ area under the curve of receiver operating characteristic, 
PR-AUC​ are under the curve of precision-recall

AUC​ PR-AUC​ Recall Specificity Balanced 
accuracy

RF 0.860 0.071 0.017 0.999 0.508

SVM 0.801 0.051 0.333 0.942 0.638

DNN 0.844 0.082 0.417 0.948 0.685

LR 0.899 0.106 0.850 0.811 0.830

Fig. 3  Performance of predictive model on the validation set and the test set from D1 dataset. A ROC curve. B Precision-recall curve
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routine indexes on discriminating the diabetic patients 
and normal individuals with NFG.

Feature selection for constructing the final classifier
A high correlation of several pairs of features has been 
observed (Additional file 1: Fig. S3), for example, hemo-
globin (HGB) and hematocrit (HCT), neutrophil (NEU), 
and lymphocyte (LYM), which could introduce the 
redundant information affecting the decision making and 
stability of the model. Thus, manual curation and max 
relevance and min redundancy (mRMR) were applied to 
search for an optimal feature space. As a result, half of 
the features (i.e., 13 features) from manual curation and 
mRMR were hold to re-construct the LR models, respec-
tively (Table  3), where 9 shared features were observed 
(P-value = 0.041, Fisher’s exact test). The top 4 features 
selected by manual curation and mRMR are consistent, 
which are FBG, BMI, absolute lymphocyte count (ALC), 
and age. For either method, the model constructed with 
13 features showed slight improvement compared with 
that of with 27 features on validation set, achieving the 
AUC of 0.906 and PR-AUC of 0.111 on manual curation 
and the AUC of 0.910 and PR-AUC of 0.116 on mRMR 
(Fig. 4A and B). And on test set, the AUC and PR-AUC of 
the model were 0.872 and 0.090 by manual curation and 
0.876 and 0.093 by mRMR with moderately advancement 
than that of 27 features. Similarly, the models established 
with two methods both increased the sensitivity and bal-
anced accuracy on test set, with maximum 3.9% increase-
ment and maximum 1.4% increasement, respectively 
(Fig. 4C). Then, we further evaluated the models with two 
newly recruited independent test sets (D2 and D3). As a 
result, the AUC values of two models were both over 0.95 
on D2 and were nearly 0.90 on D3 (Fig. 4D). Moreover, 
we found a high Youden’s index, also called as J index, on 

D2 with 0.904 by manual curation and 0.923 by mRMR. 
The model based on manual curation, in which PR-AUC 
is 0.214 on D2 and 0.167 on D3, performed better than 
that of mRMR, with the PR-AUC of 0.199 on D2 and 
0.115 on D3 (Fig.  4E). As to sensitivity, specificity, and 
balanced accuracy, the model based on manual cura-
tion also overwhelmed that based on mRMR (Fig.  4F). 
We observed that the worst false positive rate was 31.7% 
performed by the model of mRMR on D2, which only 
comprised 369 samples with three diabetes patients (the 
positive sample) and represented an extremely imbal-
anced condition. Other specificity scores were all over 
80.0%. Together, the model displayed superior perfor-
mance on the independent test sets, which demonstrated 
the core features are sufficiently outstanding to detect the 
missed diabetic patients in NFG population.

Feature importance ranking
To explore which features contribute most to the diabetic 
risks, we used the weights in LR model constructed with 
13 features from manual curation to rank the features, 
as described in Fig. 5. And the feature importance of the 
predictor based on mRMR was depicted in Additional 
file 1: Fig. S4. As a result, the top 5 variables were FBG, 
age, sex, ALC, and BMI. Previous studies have demon-
strated that diabetes risk increases as FBG level increases 
even within the normal range [29], thereby the process 
of decision making depends heavily on the FBG level 
although all data were only derived from the samples with 
NFG. Moreover, it is well established that age and BMI 
are risk factors for the diabetes occurrence. Interestingly, 
we observed that sex had a high importance value even 
more than BMI, which suggests an apparent difference 
on the risk of diabetes between men and women. In addi-
tion, ALC, absolute monocyte count (AMC), and mean 

Table 3  The subset of features for the final model selected by mRMR and manual curation

mRMR Manual curation Rank

Fasting blood glucose (FBG) Fasting blood glucose (FBG) 1

Absolute lymphocyte count (ALC) Age 2

Age Body mass index (BMI) 3

Body mass index (BMI) Absolute lymphocyte count (ALC) 4

Eosinophil (EOS) White blood cell count (WBC) 5

Red cell distribution width (RDW) Absolute monocyte count (AMC) 6

Platelets (PLT) Red cell distribution width (RDW) 7

White blood cell count (WBC) Absolute eosinophil count (AEC) 8

Height Mean corpuscular hemoglobin (MCH) 9

Neutrophil (NEU) Sex 10

Basophil (BASO) Height 11

Mean corpuscular hemoglobin concentration (MCHC) Neutrophil (NEU) 12

Mean corpuscular volume (MCV) Mean corpuscular volume (MCV) 13
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Fig. 4  Feature selection for the final model using mRMR and manual curation. A ROC curve of the models constructed by mRMR- and manual 
curation- selected features on the validation set and the test set of dataset D1. B Precision-recall curve of above models. C Comparison of sensitivity, 
specificity, and balanced accuracy on test set between the model constructed before and after feature selection. D ROC curve of models using 
selected features on the two newly recruited independent test sets. E Precision-recall curve of above models. F Comparison of other metrics 
on the two newly recruited independent test sets
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corpuscular volume (MCV) also showed the moderately 
predictive capability of the risk for diabetes in population 
with NFG. Neutrophil (NEU) and white blood cell count 
(WBC) also showed relative higher weights on the model 
with mRMR.

Screening of personalized risk factors
Then, we developed a framework to reveal the diabetic 
risk factors at individual level based on the principle of 
permutation feature importance (PFI), which would 
guide the personalized early intervention. The selected 
case was from the external validation set-2, who showed 
the characteristic as following, absolute eosinophil count 

(AEC): 0.23, age: 69, ALC: 2.29, AMC: 0.51, BMI: 26.04, 
FBG: 5.76, height: 158.0, mean corpuscular hemoglobin 
(MCH): 29.7, MCV: 89, NEU: 56.50, red cell distribution 
width (RDW): 13, sex: female, and WBC: 7.05. And this 
individual was predicted as a diabetic patient correctly, 
with the probability of 0.977. To explore her risk factor 
of diabetes, we calculated the contribution of all features 
as described in Fig. 6. As a result, the major risk factors 
for her incident diabetes are age, FBG, and BMI, although 
her FBG level was seemingly pretty normal. In addition, 
we noted that higher age and BMI indeed increasing her 
diabetes risk. The result provides the indexes need to be 
preferentially intervened for individuals. Finally, we have 

Fig. 5  Feature importance ranking of the models constructed by the features from manual curation method

Fig. 6  Screening of risk factors for incident diabetes on a case study
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ensembled this module in the DRING webserver for ease 
of application.

Discussion
Considering that there exists a small proportion of dia-
betes patients with normal fasting glucose level who 
could be missed during screening, we assessed the abil-
ity of common risk factors to detect the missed diabetic 
patients in population with normal fasting glucose (NFG) 
and thus constructed DRING, a machine learning model 
for predicting the diabetic individuals with NFG based on 
physical examination data of over 60,000 samples derived 
from three Chinese cohorts. DRING showed more than 
0.9 of AUC and 75% of sensitivity on newly recruited 
independent test set. For enhancing the interpretability 
of DRING, potential characteristics related to diabetes 
except for fasting blood glucose contains BMI, age, ALC, 
and sex by feature importance ranking analysis. Moreo-
ver, the analysis for exploring the personalized risk fac-
tors of diabetes was proved to be practical with a case 
study. Two models and the framework of screening per-
sonalized risk factors were integrated into DRING web-
server, which requires only 13 features as input to predict 
the risk of diabetes. To accommodate different require-
ments for specificity levels, the webserver offers users a 
range of choices to customize the specificity levels.

With the increase of data volume, machine learning tech-
niques have the potential to revolutionize diabetes screen-
ing by enabling more accurate risk stratification and timely 
interventions. The performance of ML-based methods 
is influenced by the availability of the number of samples 
and features. For instance, the combination of ML tech-
niques and electronic health record data could enhance the 
effectiveness of diabetes screening and improving patient 
outcomes. One of the challenging issues in utilizing ML 
techniques is selecting the most suitable method to achieve 
optimal performance on a given dataset. Nearly all machine 
learning techniques have been applied on the diabetes risk 
prediction [16], while no single method that consistently 
outperforms other methods across diverse datasets. Dinh 
et  al. reported that the model of predicting diabetes with 
eXtreme Gradient Boost (XGBoost) performed best than 
those of RF, SVM, and LR based on the National Health 
and Nutrition Examination Survey (NHANES) dataset [30]. 
With the Pima Indian Diabetes Database (PIDD), which is a 
widely used dataset in diabetes recognition with machine 
learning, a study constructed 24 classifiers such as deci-
sion tree, LR, discriminant analysis, k-nearest neighbors, 
and ensemble learners and found the best accuracy score 
of 77.9% was produced by the LR model [31]. Jahangir and 
his colleagues devised automatic multilayer perceptron 
model achieving an accuracy of 88.7% on PIDD [32], while 
they did not train other machine learning models using 

processed data. The difference in performance between 
these two studies may not solely depend on the ability of 
machine learning models but also the dataset partitioning 
and preprocessing could impact the results. A recent study 
conducted a systematic analysis among 71 studies of clini-
cal prediction models and concluded that no evidence of 
superior performance of other machine learning methods 
over LR [33]. Our results have also shown that LR model 
obtains a higher AUC and balanced accuracy in identify-
ing the diabetes from population with NFG. This could be 
attributed to the fact that complex models are not suitable 
when using a limited number of features. The factors, such 
as the size of the dataset, interpretability, and the balance of 
precision and complexity, collectively determine the opti-
mal choice of models.

There is typically no specific guideline that needs to be 
strictly followed when employing artificial intelligence 
models for diabetes screening, except for the initial step 
of sample definition, that is, defining positive and negative 
samples. The definition of normal fasting glucose level var-
ies among different guidelines, for example, the American 
Diabetes Association (ADA) uses FBG of 5.6  mmol/L as 
the definition of normal fasting glucose, while the thresh-
old is set to 6.1 mmol/L according to the WHO or Inter-
national Diabetes Federation (IDF). Here, we screened the 
samples with NFG by the criterion of WHO and found 
the fasting blood glucose (FBG) level for most diabetes 
patients is approximate to 6.0 (Fig. 1A). In our cohorts, it 
was observed that the number of diabetes patients sharply 
decreased when the threshold for NFG was lowered. Spe-
cifically, less than half of the individuals were classified as 
diabetes when NFG level was set at 5.69 (Additional file 1: 
Fig. S5). Accordingly, we recommended the FBG of 5.69 
as the alarming line of diabetes for Chinese, that is, a per-
son should notice the sugar intake and go for a thorough 
diabetes-focused examination in case his fasting glucose 
is more than 5.69. Although it was questioned when the 
justification for lowering the threshold of normal fasting 
glucose recommended by ADA [34], the warning line of 
normal fasting glucose needs timely adjustment for people 
from different races or regions considering the significant 
difference in diet, lifestyle, and environment.

The risk factors are diverse for incident diabetes. We 
employed clinical basic information and blood routine test 
indicators to train the prediction model. In contrast, most 
other methods for prediction the risk of diabetes rely on 
the basic information including diabetes family history and 
blood pressure combined with biochemical markers such 
as triglycerides and total cholesterol [15, 35, 36] and rarely 
include the features of blood routine test. Except for the 
well-known factors such as BMI and age [35, 37], the analy-
sis of feature importance ranking showed that absolute lym-
phocyte count (ALC), mean corpuscular volume (MCV), 
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white blood cell count (WBC), and neutrophil (NEU) also 
are important for identifying the diabetes patients (Fig.  5 
and Additional file 1: Fig. S4). Twig et al. had revealed that 
WBC was an independent risk factor for incident diabetes in 
young men [38]. The inclusion of more diabetes-associated 
variables and higher resolution data is likely to improve the 
accuracy of the predictive model. Quincy et al. presented a 
diabetes risk stratification model integrating physiological, 
biochemical, and genomics data and achieved superior test-
ing accuracies [39]; however, its practicality is weakened due 
to the difficulty in data acquisition.

The strength of this study lies in that it is the first predic-
tion model specially designed to identify diabetes patients 
who are at high risk of being missed according to our 
knowledge, which serves as a valuable supplement to exist-
ing diabetes risk prediction models. The model has also 
been integrated into the online tool, facilitating its poten-
tial clinical application. However, a key limitation of this 
study is that it is challenging to assert the generalization 
of the prediction model on global population. Diabetes is 
influenced by various factors such as race and environ-
ment, although our method was validated and tested on 
multiple cohorts, all of which were Chinese populations; 
thus, its performance in other populations remains uncer-
tain. The generalization of the current method needs to be 
assessed through more external validation datasets, espe-
cially those involving other ethnic populations. Secondly, 
there exist various prediction models for diabetic risk 
assessment at present, but it is still incomparable between 
DRING and other methods because DRING is extensively 
used for distinguishing the diabetes patients with NFG 
and healthy individuals. Third, the precision of current 
method is relatively low, which is markedly impacted by 
the severely imbalanced distribution of diabetes and nor-
mal individuals. The ratio of positive to negative samples 
is over 1:100. Thus, even with the inclusion of over 60,000 
samples in our study, the number of diabetes samples is 
only around 600. It is undoubtable that this scenario aligns 
with the real-world condition represented by infrequent 
cases of diabetes patients with NFG and major healthy 
individuals with NFG. In the future, the model of predict-
ing diabetes risk for the population with NFG introduc-
ing more crucial features such as waist-to-hip ratio, blood 
pressure, and common biochemical indicators might 
enhance its precision. Last but not the least, conducting a 
comprehensive health technology assessment is necessary 
to promote our method serving as a decision-making sup-
port system in diabetes diagnosis.

Conclusions
The present study assessed the ability of common physi-
cal examination indexes to stratify the risk of diabetes and 
provided a prediction tool called DRING for identifying the 

diabetes individuals with normal fasting glucose based on 
routine clinical information. The outcome obtained from 
three independent cohorts indicates the clinical reliability 
of DRING in the future, which allows early diagnosis and 
interventions for those individuals most likely to be missed 
and thus improves care and management of diabetes.
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