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Abstract 

Background Clinical prediction models are widely used in health and medical research. The area under the receiver 
operating characteristic curve (AUC) is a frequently used estimate to describe the discriminatory ability of a clinical 
prediction model. The AUC is often interpreted relative to thresholds, with “good” or “excellent” models defined at 0.7, 
0.8 or 0.9. These thresholds may create targets that result in “hacking”, where researchers are motivated to re-analyse 
their data until they achieve a “good” result.

Methods We extracted AUC values from PubMed abstracts to look for evidence of hacking. We used histograms 
of the AUC values in bins of size 0.01 and compared the observed distribution to a smooth distribution from a spline.

Results The distribution of 306,888 AUC values showed clear excesses above the thresholds of 0.7, 0.8 and 0.9 
and shortfalls below the thresholds.

Conclusions The AUCs for some models are over-inflated, which risks exposing patients to sub-optimal clinical deci-
sion-making. Greater modelling transparency is needed, including published protocols, and data and code sharing.

Keywords Prediction model, Area under curve, Diagnosis, Prognosis, Hacking, Statistics, Receiver operating 
characteristic

Background
Clinical prediction models estimate an individual’s risk of 
being diagnosed with a disease or experiencing a future 
health outcome [1, 2]. A clinical prediction model uses 
multivariable analysis methods to estimate the risk of 
experiencing an outcome based on individual-level vari-
ables, for example, a model predicting a patient’s risk of 

death after admission to intensive care using data from 
their medical history and test results [3].

Researchers are motivated to build clinical prediction 
models because of their potential to support decision-
making. Clinical decisions can be based on the model’s 
estimated probabilities or risk categories defined by 
probability cut-points to give qualitative interpretations, 
e.g. low and high risk [4]. Decisions guided by model 
probabilities or categories may rule out low-risk patients 
to reduce unnecessary treatments or identify high-risk 
patients for additional monitoring.

The number of published clinical prediction models 
has increased in recent years. A validated search strategy 
in MEDLINE [5] shows that an average of 4200 publi-
cations related to clinical prediction modelling are now 
being published weekly (searched 20 January 2023).

Despite being a popular study design, clinical predic-
tion models are often poorly executed. Factors driving 
poor model quality include inadequate sample sizes, 
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inappropriate exclusions, poor handling of missing 
data, limited model validation, and inflated estimates of 
performance [6–11]. A review of prediction models for 
COVID-19 found only 7 of the 606 published models 
were potentially useful for practice [12]; other reviews 
have identified shortcomings in model development 
that introduce bias into model predictions [13, 14]. 
Design failings are often compounded by poor report-
ing, despite the availability of expert-led guidance to 
improve transparency [1, 15, 16].

Rigorous testing of clinical prediction models is 
essential before considering their use in practice [17]. 
A good prediction model will have a strong discrimi-
nation, which is a model’s ability to separate patients 
based on their estimated risk. The area under the 
receiver operating characteristic curve (AUC) is an 
overall measure of model discrimination. It the proba-
bility that a model predicts a higher risk for a randomly 
selected patient with the outcome of interest than a 
randomly selected patient without the outcome of 
interest [18]. If the model has good discrimination and 
gives estimated risks for all patients with the outcome 
that are higher than all patients without, then the AUC 
will be 1. If the model discrimination is no better than 
a coin toss, then the AUC will be 0.5. The AUC is also 
known as the AUROC, c-statistic for binary outcomes, 
and c-index for time-to-event outcomes.

Qualitative descriptors of model performance for 
AUC thresholds between  0.5 and 1 have been pub-
lished, for example:

• “0.7 to 0.8 is considered acceptable, 0.8 to 0.9 is 
considered excellent, and more than 0.9 is consid-
ered outstanding” [19].

• “The area under the ROC curve (AUC) results were 
considered excellent for AUC values between 0.9 
and 1, good for AUC values between 0.8 and 0.9, 
fair for AUC values between 0.7 and 0.8, poor for 
AUC values between 0.6 and 0.7 and failed for AUC 
values between 0.5 and 0.6” [20].

• “Areas under the curve (AUCs) of 0.6 to 0.7, 0.7 to 
0.8, 0.8 to 0.9 and > 0.9 were considered acceptable, 
fair, good and excellent for discrimination, respec-
tively” [21].

Additional examples are in Additional file  1. These 
thresholds have no clear origin, but they are likely used 
because they transform the AUC from a number into a 
qualitative rating of performance. The thresholds have 
no scientific basis and are arbitrarily based on digit 
preference, often occurring at 0.7, 0.8 and 0.9 [22]. Pre-
vious research has examined the labels applied to AUC 

values in 58 papers and recommended that AUC values 
should be presented without labels [23].

Thresholds may create targets that some research-
ers will strive to achieve. We hypothesised that some 
researchers have engaged in questionable research prac-
tices or “hacking” to create models with estimated AUCs 
that better commonly used thresholds, including (1) re-
analysing data and creating multiple models to get an 
AUC value over a threshold and (2) selectively reporting 
the best AUC value from many models [24]. Assuming 
the AUC has multiple thresholds (0.7, 0.8 and 0.9), we 
expected the distribution of AUC values would be undu-
lating rather than smooth, with excess values just above 
the thresholds. We describe some ways a prediction 
model can be “hacked” in Table 1, but note this is not an 
exhaustive list.

The use of thresholds when reporting results from sta-
tistical analysis is not new. Well-known examples include 
0.05 for the statistical significance of hypothesis tests and 
an 80% power to justify sample size calculations [30]. 
Related research has examined the enormous excess of 
p-values just below the widely used 0.05 threshold, which 
is caused by multiple data dredging techniques, including 
re-analyses of data and selective reporting [26, 31–33]. 
Recent research has also shown the same problem for 
Cronbach’s alpha at the “acceptable” threshold of 0.7 [34].

Methods
Data extraction
We aimed to find abstracts that included an area under 
the curve value or the related c-index for survival and 
c-statistic for binary outcomes [35]. These estimates have 
a variety of names, including “area under the receiver 
operating characteristic curve” or the acronyms “AUC” 
and “AUROC”. We included all AUCs regardless of the 
study’s aim and therefore included model development 
and validation studies. We did not consider other com-
monly reported metrics for evaluating clinical prediction 
models.

We examined abstracts published in PubMed because it 
is a large international database that includes most health 
and medical journals. To indicate its size, there were over 
1.5 million abstracts published on PubMed in 2022. The 
National Library of Medicine make the PubMed data 
freely and easily available for research. We downloaded 
the entire database in XML format on 30 July 2022 
from https:// ftp. ncbi. nlm. nih. gov/ pubmed/ basel ine/.

We started with all the available PubMed data. Our 
exclusion criteria were as follows:

• Entries with an empty abstract or an abstract of 10 
words or fewer

https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/
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• Pharmacokinetic studies, which often use area under 
the curve statistics to refer to dosages and volumes 
that are unrelated to prediction models

• Meta-analyses or pooled analyses, as we were inter-
ested in original research

• Tutorial papers, as these may not report original findings

Our inclusion criterion was abstracts with one or more 
AUC values.

We created a text-extraction algorithm to find AUC 
values using the team’s expertise and trial and error. 
We validated the algorithm by randomly sampling 300 
abstracts with a Medical Subject Heading (MeSH) of 
“Area under curve” that had an abstract available and 
quantifying the number of AUC values that were cor-
rectly extracted. We also examined randomly selected 
results from the algorithm that equalled the thresholds of 
0.7, 0.8 or 1, with 300 abstracts per threshold examined. 
We report the validation in more detail in the results, but 
note here that the algorithm could not reliably extract 
AUC values that were exactly  1. AUC values equal to 1 
were therefore excluded.

Challenges in extracting the AUC values from abstracts 
included the frequent use of long lists of statistics, includ-
ing the sensitivity and specificity; unrelated area under 
the curve statistics from pharmacokinetic studies; refer-
ences to AUC values as a threshold (e.g. “The AUC ranges 
between 0.5 and 1”); and the many different descriptors 
used, including “area under the curve”, “receiver operat-
ing characteristic curve”, and related acronyms.

AUC values reported as a percent were converted to 0 
to 1. We removed any AUC values that were less than 0 
or greater than or equal to 1.

We categorised each AUC value as a mean or the lower 
or upper limit of the confidence interval, for example, 
“0.704 (95% CI 0.603 to 0.806)” would be a mean, lower 
and upper limit, respectively.

For the specific examples from published papers in the 
results, we give the PubMed ID number (PMID) rather 
than citing the paper.

R version 4.2.1 was used for data extraction and analy-
sis [36]. The code and analysis data are available online: 
https:// github. com/ agbar nett/ area_ under_ curve [37].

Statistical analysis
Our hypothesis was that there would be an excess of 
AUC values just above the thresholds 0.7, 0.8 and 0.9. To 
examine this, we used a histogram with bins of (lower, 
upper], with lower thresholds of 0, 0.01 to 0.99, and an 
upper threshold that was + 0.01 greater. For example, the 
bin of (0.69, 0.70] included every AUC greater than 0.69 
and less than or equal to 0.70. We excluded AUCs with 
a decimal place of 1 (e.g. “0.8”), as these results would 
create spikes in the histogram that were simply due to 
rounding.

We do not know what the distribution of AUC values 
from the health and medical literature would look like 
if there was no AUC-hacking. However, we are confi-
dent that it should be relatively smooth with no inflex-
ion points. An undulating distribution, especially near 
the thresholds (0.7, 0.8 and 0.9), would be a strong sign of 
AUC-hacking, potentially caused by re-analysing the data 
to get a more publishable but inflated AUC.

We estimated the shape of a smooth distribution using 
a natural spline with 4  degrees of freedom fitted using 
a Poisson distribution [38]. We created residuals by 

Table 1 Examples of how a clinical prediction model can be hacked to get a better AUC value that is likely to be over-inflated as 
the model is over-fitted. Some of these approaches create multiple results from which the best result can be selected, often without 
disclosing the multiple results. Some hacking may be unintentional as researchers believe they are following standard practice. Some 
approaches can be acceptable when combined with appropriate validation, but the number of models fitted should always be 
disclosed and should be pre-defined in a protocol or pre-registration [1]

- Selectively choosing data sets (from those that are available to the researcher) to build and evaluate a model

- Collecting more data until a desirable AUC value is reached [25, 26]

- Fitting multiple, potentially hundreds, of models based on subsets of potential predictors [26]

- Trialling different cut-points when dichotomising continuous predictors until a “good” AUC is achieved [27]

- Including predictors that are proxies of the outcome or that work via reverse causality, for example, using blood tests taken after the outcome

- Changing the outcome variable, for example to a proxy of the original diagnostic outcome [26]

- Trialling alternative methods for imputing missing data [26]

- Removing observations that are difficult to fit [25, 26]

- Trialling different modelling approaches, e.g. logistic regression models and classification trees [28]

- Rounding up an AUC value to pass a threshold, for example reporting 0.79 as 0.8 [25]

- Choosing the “best” random seed for split sample validation or a model’s hyper-parameters [29]

- Not using internal validation, so the model performance is evaluated in the same data used to develop the model

https://github.com/agbarnett/area_under_curve
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subtracting the observed counts from the smooth fit. A 
similar approach was used to identify departures from 
a smooth distribution for a large sample of Cronbach’s 
alpha statistics [34].

During data collection, we noted that many abstracts 
gave multiple AUC values from competing models. To 
examine the best model per abstract, we plotted the dis-
tribution using the highest AUC value per abstract. This 
subgroup analysis examined whether the best presented 
models were often just above the thresholds.

We used a subgroup analyses that used only AUC val-
ues from the results section of structured abstracts. This 
potentially increased the specificity of the extracted AUC 
values, as those from the introduction, methods and dis-
cussion sections were more likely to be general references 
to the AUC rather than results.

To investigate the role of publication bias, we used a 
subgroup analysis of only papers published in the journal 
PLOS ONE which welcomes “negative” results and does 
not select based on impact or novelty [39].

Results
The flow chart of included abstracts is shown in Fig. 1.

The number of examined abstracts was over 19 million, 
and 96,986 (0.5%) included at least one AUC value. The 
use of AUC values has become more popular in recent 
years (see Additional file 2: Fig. S1). The median publica-
tion year for the AUC values was 2018, with first to third 
quartile of 2015 to 2018.

For abstracts with at least one AUC value, the median 
number of AUC values was 2, with a first to third quar-
tile of 1 to 4 (see Additional file 3: Fig. S2). There was a 
long tail in the distribution of AUC values, with 1.1% of 
abstracts reporting 20 or more AUC values. These high 
numbers were often from abstracts that compared multi-
ple models. The total number of included AUC values was 
306,888. There were 92,529 (31%) values reported as lower 
or upper confidence limits and the remainder as means.

The distribution of AUC mean values (excluding con-
fidence intervals) and residuals from the smoothed fit 
to the distribution are in Fig. 2. There are clear changes 
in the distribution around the thresholds of 0.7, 0.8 and 
0.9. There is a large excess of AUC values just above 0.7, 
followed by a deficit before 0.8. There is a large jump 
in the number of AUCs just above 0.8 compared with 
(0.79, 0.80]. A similar excess is observed for AUC val-
ues just above 0.9. The frequencies in the histogram and 
residuals are worth noting, as they indicate thousands of 
unexpected results. There were 2106 (1.0%) AUC values 
presented to 1 decimal place that were excluded from the 
histogram.

The distribution from the largest AUC mean value per 
abstract excluding confidence intervals is shown in Fig. 3. 

The strong changes in the distribution at the thresholds 
observed in Fig. 2 remain.

The distribution for AUC values from the results sec-
tion only is in Additional file 4: Fig. S3; the shape of the 
distribution is similar to that using all AUC values. The 
distributions for the lower and upper limits of the con-
fidence interval were generally smoother than the mean; 
see Additional file 5: Fig. S4. However, there was a nota-
ble excess at (0.56, 0.57] for the lower interval.

The distribution for AUC values published in 
PLOS ONE show a similar pattern to the full sample, with 
many more AUC values just above the 0.8 threshold (see 
Additional file 6: Fig. S5).

Validation
We validated our algorithm against 300 manually entered 
abstracts. For 192 abstracts, there were no AUC values in 
the abstract, and the algorithm correctly identified these 
absences for 93%. Some errors were because the abstracts 
were selected using the MESH term “Area under the 
curve” meaning that many pharmacokinetic studies 
were included. For the 108 abstracts with an AUC, the 

Fig. 1 Flow chart of included abstracts. PK, pharmacokinetic
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algorithm identified 98% correctly. See Additional file  7 
for details.

For abstracts where either the algorithm or manual 
entry found one or more AUC values, we made a Bland–
Altman plot of the number of AUC values extracted (see 
Additional file  7: Fig.  S6). The 90% limits of agreement 
were – 2 to 0. On average, the algorithm missed more 
AUC values than the manual entry, a discrepancy that 
was generally due to non-standard presentations. We are 
comfortable with this difference, as we would rather lean 

towards missing valid AUC values than wrongly includ-
ing invalid AUC values.

We used a regression model to examine differences in 
the AUC values extracted by the algorithm and manual 
entry. AUC values that were wrongly included by the 
algorithm were smaller on average than the AUC values 
that were correctly included. This is because the values 
extracted were often describing other aspects of the pre-
diction model, for example, the Brier score, sensitivity 
and specificity.

Fig. 2 Histogram of AUC mean values (top panel) and residuals from a smooth fit to the histogram (bottom panel). The dotted line in the top panel 
shows the smooth fit
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The validation helped identify MESH terms that iden-
tified pharmacokinetic studies that were excluded from 
our main analysis. In a second validation, we manu-
ally checked 100 randomly sampled abstracts that the 
algorithm identified as not having an AUC statistic and 
another 100 randomly sampled abstracts that the algo-
rithm identified as having an AUC statistic. All abstracts 
identified as not having an AUC statistic were correctly 
classified (95% confidence interval for negative predic-
tive value: 0.964 to 1.000). All but one abstract identified 

as having an AUC statistic was correct (95% confidence 
interval for positive predictive value: 0.946 to 1.000).

In a third validation, we manually checked 300 AUC 
values extracted by our algorithm at the thresholds 0.7, 
0.8 and 1. The results led us to exclude AUC values of 1, 
because these could not be accurately extracted. At the 
thresholds of 0.7 and 0.8, there were some errors due 
to qualitative descriptions of the thresholds instead of 
actual results. For comparison with the rounded thresh-
olds (0.7 and 0.8), we manually checked 300 AUC values 

Fig. 3 Histogram of the largest AUC mean value per abstract (top panel) and residuals from a smooth fit to the histogram (bottom panel). The 
dotted line in the top panel shows the smooth fit
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at 0.81. These checks had fewer errors as they were more 
often AUC values and were not being used as descriptive 
thresholds. We do not believe that the errors undermine 
our main point about AUC-hacking. The greater errors at 
the thresholds mean that the numbers at 0.7, 0.8 and 0.9 
in Fig. 2 should likely be smaller, making for a larger gap 
between the thresholds and values exceeding the thresh-
old, which would be stronger evidence of poor practice.

To investigate the excess at (0.56, 0.57], we manually 
extracted the AUC values from 300 abstracts where our 
algorithm found an AUC value of 0.57 and another 300 
from 0.58 as a nearby comparison with no excess. The 
error proportions from the algorithm were relatively low 
(see Additional file 7: Table S3), indicating that the excess 
at 0.57 was not due to errors.

Evidence of poor practice
Although documenting poor practice was not our goal, 
whilst reading abstracts, we encountered mistakes, poor 
reporting, and potential spin. Some papers had mistakes 
in their results, for example a 95% confidence interval for 
the AUC from 0 to 1 (PMID34795784) and upper lim-
its over 1 (PMID34880677); others used excessive deci-
mal places (PMID34456583). Some abstracts displayed a 
poor understanding of the AUC value, including authors 
declaring a “highest” AUC of 0.5 which is equivalent to a 
coin toss (PMID28708299); an upper confidence interval 
of an AUC value that was under 0.5, possibly because the 
disease label was mistakenly reversed (PMID28795781); 
the AUC being misinterpreted as a direct measure 
of sensitivity or specificity (PMID34674968); and the 
AUC being misinterpreted as a regression coefficient 
(PMID19410507). There were instances of potential 
spin [11, 40], with relatively low AUC values under 0.75 
described as “excellent” (PMID35222547).

Discussion
P-hacking has been observed in large parts of the lit-
erature [31, 33, 41, 42], so it is disappointing but not 
surprising to see hacking in AUC values. The discon-
tinuities in the AUC distribution around the thresh-
olds of 0.7, 0.8 and 0.9 shown by our analysis are not 
as egregious as the previously observed p-value dis-
continuity at 0.05. This is likely because AUC-hacking 
is spread over multiple thresholds, and because the 
p-value is often the most important statistic to some 
authors, as demonstrated by the verbal gymnastics 
applied to “non-significant” p-values [43].

There was a surprising shortfall of AUC values at (0.54, 
0.55] and excess at (0.56, 0.57]. This pattern could also be 
due to hacking, as estimates up to 0.55 could be viewed 
by some researchers as too close to 0.5, indicating model 
predictions that are no better than random (values under 

0.55 would be presented as 0.5 if rounded to one decimal 
place). This would explain the distinct lack of lower con-
fidence limits at (0.54, 0.55] (Additional file 5: Fig. S4), as 
some researchers would be unhappy with a confidence 
interval that was not statistically significant when com-
pared with the null hypothesis at 0.5. Multiple re-analyses 
options are available to tweak the lower confidence limit 
over the threshold, including adding predictors to the 
model or removing attested outliers (see Table 1) [44].

The implications of hacked analyses for the literature 
and evidence-based medicine is that some clinical pre-
diction models will have less utility for health systems 
than promised. This is potentially serious if models have 
been translated into practice based on “excellent” AUC 
values that were hacked. Decisions about patient care will 
be compromised, with potentially missed diseases and 
unnecessary interventions. Hacking likely explains some 
of the reduction in model performance when published 
prediction models are externally validated [45], with the 
inflated AUCs values regressing to the mean.

Hacking may be lessened by using protocols, analy-
sis plans, and registered reports [46, 47]. However, the 
uptake of registered reports has been modest, and proto-
cols do not completely prevent important changes to the 
analysis [48–50]. Despite this poor uptake and practice, 
it is possible that protocols and registered reports will be 
an important part of future best practice, and they can 
help build trust in research, together with data and code 
sharing [51].

Our results indicate that some researchers have priori-
tised reporting a “good” result in their abstract that will 
help them publish their paper. By doing so, the wider 
issues of what is needed to produce a high-quality pre-
diction model are downplayed. An AUC value alone can-
not determine if a model is “acceptable” or “excellent”. As 
a measure of model discrimination, the AUC represents 
just one aspect of prediction model performance. Other 
important aspects include the model’s calibration, the 
costs and implications of false negatives and false posi-
tives, and whether a model is worthwhile for practice 
[52–56].

We found evidence that some researchers do not 
understand the AUC value, with errors in the presenta-
tion and interpretation of the AUC. Researchers have 
easy access multiple software tools to create AUC values, 
but may be unwilling to spend time learning the theory 
that underpins prediction models, leaving them with a 
poor understanding of a model’s limitations [57].

Evidence of hacking in practice is available from recent 
surveys which have reported relatively high instances 
of researchers engaging in questionable practices and 
fraud. A survey of Australian researchers reported many 
were aware of instances where colleagues had made up 
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data (10%), altered data (8%), selectively excluded data 
(27%) or trialled iterative statistical analysis until finding 
a model that yielded a “significant” result (45%) [58]. A 
survey of Dutch researchers reported 8% admitted to fal-
sifying or manipulating data [59]. A survey of US statisti-
cians reported that 22% had been asked in the last 5 years 
to remove or alter data to better support the hypothesis, 
and 48% had been asked to stress only the “significant” 
findings [60]. The widespread use of these poor practices 
creates a biased evidence base and is misinforming health 
policy.

Limitations
We did not examine other commonly reported perfor-
mance metrics used to evaluate clinical prediction model 
performance. It is possible that values such as model sen-
sitivity and specificity may also be influenced by “accept-
able” thresholds.

We only used AUC values given in abstracts and did 
not examine the full text. Some papers may have only 
presented their best results in the abstract and given 
a more complete picture in the full text. However, an 
analysis of p-values found that the distribution was simi-
larly blighted by p-hacking when using p-values from 
the abstract or full text [32], and study of spin in pre-
diction models found its occurrence was similar in the 
abstract and full text [11]. It is likely that the highest AUC 
value presented in the abstract is also the highest in the 
full text, so the “best” model would be captured in the 
abstract, and the “best” AUC value is the one most likely 
to be created by hacking.

In addition to hacking, publication bias likely also plays 
a role in the selection of AUC values, with higher values 
more likely to be accepted by peer reviewers and journal 
editors. Our subgroup analysis of PLOS  ONE abstracts 
(Additional file  6: Fig.  S6) provides some evidence that 
the “hacking” pattern in AUC values is due to author 
behaviour not journal behaviour.

We used an automated algorithm that provided a large 
and generalisable sample but did not perfectly extract all 
AUC values. In particular, we were not able to reliably 
extract AUC values of 1, and this is an important value 
as it is the best possible result and could be a target for 
hacking. We believe that the errors and exclusions in the 
data are not large enough to change our key conclusion, 
which is that AUC-hacking has occurred.

Conclusions
Clinical prediction models are growing in popular-
ity, likely because of increased patient data availability 
and accessible software tools to build models. How-
ever, many published models have serious flaws in their 
design and presentation. Our results show another 

serious issue, as the AUCs for some models have been 
over-inflated, and we believe this is due to hacking. 
Publishing overly optimistic models risks exposing 
patients to sub-optimal clinical decision-making. An 
urgent reset is needed in how clinical prediction mod-
els are built, validated and peer-reviewed. Actionable 
steps towards greater transparency are as follows: the 
wider use of protocols and registered reports, following 
expert reporting guidance, and increased data and code 
sharing.
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