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Abstract 

Background  Despite epidemiological evidence associating gallstone disease (GSD) with cardiovascular disease 
(CVD), a dilemma remains on the role of cholecystectomy in modifying the risk of CVD. We aimed to characterize 
the phenotypic and genetic relationships between GSD and two CVD events – stroke and coronary artery disease 
(CAD).

Methods  We first performed a meta-analysis of cohort studies to quantify an overall phenotypic association 
between GSD and CVD. We then investigated the genetic relationship leveraging the largest genome-wide genetic 
summary statistics. We finally examined the phenotypic association using the comprehensive data from UK Biobank 
(UKB).

Results  An overall significant effect of GSD on CVD was found in meta-analysis (relative risk [RR] = 1.26, 95% con-
fidence interval [CI] = 1.19–1.34). Genetically, a positive shared genetic basis was observed for GSD with stroke ( rg
=0.16, P = 6.00 × 10–4) and CAD ( rg=0.27, P = 2.27 × 10–15), corroborated by local signals. The shared genetic architecture 
was largely explained by the multiple pleiotropic loci identified in cross-phenotype association study and the shared 
gene-tissue pairs detected by transcriptome-wide association study, but not a causal relationship (GSD to CVD) 
examined through Mendelian randomization (MR) (GSD-stroke: odds ratio [OR] = 1.00, 95%CI = 0.97–1.03; GSD-CAD: 
OR = 1.01, 95%CI = 0.98–1.04). After a careful adjustment of confounders or considering lag time using UKB data, 
no significant phenotypic effect of GSD on CVD was detected (GSD-stroke: hazard ratio [HR] = 0.95, 95%CI = 0.83–1.09; 
GSD-CAD: HR = 0.98, 95%CI = 0.91–1.06), further supporting MR findings.
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Background
Gallstone disease (GSD) and cardiovascular disease 
(CVD) are both common and costly global public health 
issues, of which comorbidity has long been documented 
[1–4]. In a large meta-analysis of prospective studies 
involving over 1.2 million participants, an increased risk 
of CVD events has been reported among GSD patients 
(pooled hazard ratio [HR] = 1.23, 95% confidence interval 
[CI] = 1.16–1.30) [5]. Despite epidemiological evidence 
associating GSD with CVD, a critical clinical dilemma 
remains on the uncertainty being present over the role of 
cholecystectomy – the gold standard therapy for symp-
tomatic GSD – in modifying the risk of CVD. By per-
forming cholecystectomy, the deleterious effect of GSD 
on CVD risk has not been counteracted (compared to 
GSD patients without undergoing cholecystectomy) but 
rather increased (compared to general populations) [6]. 
Despite being drawn from observational studies rather 
than randomized controlled trials, this piece of evidence 
still reflects a potentially complex etiological interplay. 
It’s essential to acknowledge that these findings may be 
biased by distinct patient and disease characteristics 
between patients who undergo cholecystectomy versus 
those do not. Indeed, phenotypic associations derived 
from conventional observational designs can be subject 
to bias, confounding, and reverse causality, while limited 
accessibility to study samples or covariates further hin-
ders an accurate quantification of effects [4, 7, 8]. One 
way of addressing the discrepancies between epidemio-
logical and clinical results is to investigate the genetic 
underpinnings of related traits [9].

Both GSD and CVD are known to under genetic influ-
ences, with SNP (single-nucleotide polymorphisms) 
-heritability estimates of 25% and 40% [10–13], as well 
as a considerable number of disease-associated vari-
ants (GSD: N = 62; stroke: N = 23; coronary artery dis-
ease (CAD): N = 241) elucidated by recent genome-wide 
association studies (GWAS) [14–16]. Multiple common 
genetic loci (i.e., CYP7A1, NPC1L1, ABCG5/8, APOE, 
and FABP2) affecting both traits have also been identi-
fied, suggesting a potential intrinsic link underlying GSD 
and CVD [17–20].

To better elucidate the relationship between GSD and 
CVD, we first meta-analyzed currently available epide-
miological investigations of prospective design on GSD 

(or cholecystectomy) and incident CVD to quantify a 
crude overall phenotypic association. We then lever-
aged large-scale genome-wide genetic data as well as a 
complied analytical strategy – genome-wide cross-trait 
analysis – to determine shared and distinct genetic archi-
tecture. Such analysis features in several analytic aspects: 
genetic correlation analysis to estimate overall and local 
genetic correlation, cross-trait meta-analysis and tran-
scriptome-wide association study (TWAS) to identify 
potential pleiotropic loci, and Mendelian randomizations 
(MR) to make causal inferences [9]. Finally, capitalizing 
information from a large cohort of 0.5 million individuals 
(the UK Biobank study) with full accessibility to impor-
tant confounders, we carefully examined the phenotypic 
association between GSD and CVD. Leveraging these 
comprehensive genetic and observational data, our study 
aimed to extensively dissect the genetic and phenotypic 
relationships between GSD and CVD to inform clinical 
and public health interventions. The overall study design 
is shown in Fig. 1.

Methods
GWAS data sets
GSD GWAS
The hitherto largest GWAS of GSD was obtained from 
meta-analyzing data of UK Biobank (UKB) and FinnGen, 
comprising 550,437 European individuals (43,639 cases 
and 506,798 controls) [14]. Independent top-associated 
SNPs reaching genome-wide significance (P < 5 × 10–8) 
after removing SNPs in LD (r2 > 0.25 across a 250 kb win-
dow) were identified. We extracted relevant information 
of 62 GSD-associated index SNPs for instrumental vari-
ables (IVs) as well as downloaded full set summary statis-
tics. The effect size and relevant information of GSD IVs 
are shown in Additional file 1: Table S1.

CVD GWAS
Two most common CVD events, stroke and CAD, were 
included in our study. GWAS summary data of stroke 
was obtained from the multi-ancestry meta-analyz-
ing data of GIGASTROKE Consortium, among which 
1,308,460 were European individuals (73,652 cases 
and 1,234,808 controls) [15]. This meta-GWAS identi-
fied 23 independent genome-wide significant SNPs at a 
P-threshold of 5 × 10–8. GWAS summary data of CAD 

Conclusions  Our work demonstrates a phenotypic and genetic relationship between GSD and CVD, highlighting 
a shared biological mechanism rather than a direct causal effect. These findings may provide insight into clinical 
and public health applications.
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Fig. 1  Flowchart on the overall study design. Gallstone disease was set as exposure, and two CVD phenotypes (stroke and coronary artery 
disease) were included as outcomes. We first updated the epidemiological evidence between GSD and CVD. We then performed a comprehensive 
genome-wide cross-trait analysis to investigate the shared genetic architecture underlying both traits and dissected such shared genetic basis 
into pleiotropy and causality. Lastly, we used UK Biobank (UKB) data to explore the phenotypic association
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was conducted meta-analyzing data across nine studies, 
totaling 181,522 cases and 984,168 controls of predomi-
nantly European ancestry (> 95%) [16]. This meta-GWAS 
identified 241 significant independent SNPs (P < 5 × 10–8). 
For both GWASs, we extracted relevant information of 
these trait-associated index SNPs (23 stroke-associated 
index SNPs and 241 CAD-associated index SNPs) for 
reverse Mendelian randomization (MR) analysis as well 
as downloaded full set summary statistics for genome-
wide cross traits analysis.

A table detailing relevant information of each included 
dataset is presented (Additional file 1: Table S2). To con-
duct subsequent analysis, we performed pre-processing 
and quality control procedures on summary statistics as 
follows: 1) Retrieval of SNP (rs) ids; 2) Computation of 
Z-scores using log (OR)/SE when these were not avail-
able; 3) Exclusion of indels; and 4) Removal of duplicate 
SNPs. After applying variant filtering, the number of var-
iants left for analysis was 10,064,832 for GSD; 7,650,286 
for stroke; and 20,680,288 for CAD.

UK Biobank data
UKB is a large community-based cohort study involv-
ing more than 500,000 individuals aged 40 and 69 years 
across the UK between 2006 and 2010 [21]. At recruit-
ment, all participants gave informed consent to par-
ticipate and be followed up, among which we only 
considered 472,050 participants of white descent. We set 
GSD as exposure, ascertained as any hospital admission 
with an International Classification of Diseases, Ninth 
Revision (ICD- 9) codes or Tenth Revision (ICD-10) 
codes relating to GSD (ICD-9 codes 574–576, 997, and 
560; ICD-10 codes K80, K81, K85, K91, and K56) or with 
cholecystectomy Operative Procedures (OPCS) codes 
(OPCS 3 codes 522; OPCS4 codes J18) [14]. We focused 
on two most common CVD events – stroke and CAD as 
outcomes, which were defined as ICD-9 codes (430, 431, 
433, 434, and 436) and ICD-10 codes (I60, I61, I63, and 
I64) for stroke, as well as ICD-9 codes (410–414) and 
ICD-10 codes (I20-I25) for CAD.

We excluded participants with a history of CVD or 
cancer at baseline. Participants with less than two years 
of follow-up or a diagnosis of CVD within 2 years after 
developing GSD were also excluded to ensure a research-
quality follow-up and to reduce the possibility of reverse 
causation. In total, 440,550 participants were included in 
the GSD-stroke analysis and 422,085 in the GSD-CAD 
analysis.

Regarding the reverse association, we excluded par-
ticipants with history of GSD or cancer at baseline. 
Participants with less than two years of follow-up or a 
diagnosis of GSD within 2  years after developing CVD 
were also excluded, finally leaving 431,904 participants 

in the stroke-GSD analysis and 429,105 in the CAD-GSD 
analysis.

Statistical analysis
Meta‑analysis
To obtain the most current epidemiological evidence, we 
conducted a meta-analysis incorporating results of previ-
ously published cohort studies. Referring to the Preferred 
Reporting Items for Systematic Reviews and Meta-Anal-
ysis Protocols [22] and the Meta-analysis of Observa-
tional Studies in Epidemiology [23], we first conducted 
a systematic literature search before December 31, 2022. 
The detailed search strategy was shown in Additional 
file 1: Table S3. Articles were considered for inclusion if: 
(1) published in a peer-reviewed journal in English; (2) 
nested case–control or cohort study design; (3) the expo-
sure was GSD defined as the presence of gallstones or 
history of cholecystectomy, and the outcome of interest 
was CVD incidence (rather than death) including stroke, 
CAD, and other cardiovascular events; (4) risk estimates 
and their corresponding 95%CIs were reported. We 
excluded studies that were not published as full research 
articles (such as conference abstracts) or provided insuf-
ficient data.

We extracted the following information from each 
eligible publication: author, year, region, study design, 
sample size, Female (%), numbers of GSD, GSD diag-
nosis, CVD definition, years of follow-up, confounders 
adjustment, effect size, and quality assessment. The New-
castle–Ottawa Scale was used to evaluate the quality of 
included studies [24], ranging from score 1 (lowest qual-
ity) to score 9 (highest quality). The Cochran Q test and 
I2 statistic were used to assess heterogeneity among the 
included studies [25]. We pooled estimates using ran-
dom-effects inverse-variance model after accounting for 
heterogeneity between studies [26]. To explore the source 
of heterogeneity, we conducted subgroup analysis on the 
basis of follow-up years, sex, study design, and GSD diag-
nosis. Sensitivity analysis were performed to estimate the 
robustness of results by omitting one study at a time [27]. 
All analyses were undertaken in R version 3.3.6 using the 
“meta” package.

Global and local genetic correlation analyses
We performed pairwise genetic correlation analysis 
using cross-trait linkage disequilibrium score regression 
(LDSC) [28] and genetic covariance analyzer (GNOVA) 
[29]. For LDSC, we used pre-computed linkage disequi-
librium (LD) scores derived from ~ 1.2 million common 
SNPs in European ancestry represented in the HapMap3 
reference panel excluding the HLA region. We also uti-
lized a complementary method GNOVA to estimate 
genetic correlations, which demonstrated comparable 
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robustness to LDSC [30]. Both analyses could control for 
potential sample overlap, ensuring reliable results. We 
applied quality-control steps by using the script munge_
sumstats.py in both analyses. The genetic correlation 
estimate ( rg ) ranges from –1 to + 1, with –1 indicating a 
perfect negative correlation, and + 1 indicating a perfect 
positive correlation. For both analyses, a Bonferroni-cor-
rected P-value (P < 0.05/2, number of CVD phenotypes) 
was used to define statistical significance.

We estimated the pairwise local genetic correlation 
using SUPERGNOVA [31]. This algorithm partitions 
the whole genome into approximately 2,353 LD-inde-
pendent blocks and provides a precise quantification of 
the similarity between pairs of traits driven by genetic 
variations at each region. A Bonferroni-corrected P-value 
(P < 0.05/2,353) was used to define statistical significance.

Cross‑trait meta‑analysis
We next conducted a Cross-Phenotype Association 
(CPASSOC) analysis to identify potential pleiotropic loci 
[32]. CPASSOC provides two estimates, namely SHom and 
SHet, which effectively combine summary statistics across 
traits controlling for population structure and cryp-
tic relatedness. While SHom is the most powerful when 
genetic effect sizes are homogeneous, this assumption is 
often violated in the context of meta-analyzing multiple 
traits. As an extension of SHom, SHet maintains statistical 
power even in the presence of heterogeneity by assigning 
greater weights to larger trait-specific effect sizes. There-
fore, we adopted the SHet estimate in our analysis. We 
applied PLINK clumping function to obtain independent 
SNPs (parameters: –clump-p1 5e-8 –clump-p2 1e-5 –
clump-r2 0.2 –clump-kb 500) [33]. Among each trait pair, 
significant shared SNPs were defined as index variants 
satisfying PCPASSOC < 5 × 10–8 and Psingle-trait < 1 × 10–3 (for 
both traits). Particularly, a significant pleiotropic SNP 
satisfies the following conditions was further considered 
as a novel shared SNP: (1) was not driven by any single 
trait (5 × 10–8 < Psingle-trait < 1 × 10–3); and (2) was not in 
LD (r2 < 0.1) with any previously reported genome-wide 
significant SNPs of single-trait, and none of their neigh-
boring SNPs (± 500 kb) reached P < 5 × 10–8 in single-trait 
GWASs.

We used Ensemble Variant Effect Predictor (VEP) [34] 
for detailed functional annotation of identified significant 
pleiotropic SNPs. This approach facilitated the identi-
fication of candidate genes based on physical proximity 
to the pleiotropic SNPs, providing valuable insights into 
their functional implications.

Fine‑mapping credible set and colocalization analysis
We conducted a fine-mapping analysis using FM-sum-
mary (https://​github.​com/​haili​anghu​ang/​FMsum​mary) 

to identify a credible set of SNPs that were 99% likely to 
contain the causal SNP at each of the significant shared 
SNPs obtained from CPASSOC. This algorithm maps 
the primary signal and uses a flat prior with the steepest 
descent approximation, assuming at least one causal vari-
ant exists within a given region [35].

We performed a colocalization analysis using Coloc 
[36]. We extracted summary statistics for variants within 
500 kb of the index SNP at each shared locus, calculated 
the posterior probability for H4 (PPH4, the probability 
that both traits associated through sharing a single causal 
variant) and H3 (PPH3, the probability that the two traits 
associated with different causal variants). A locus was 
considered colocalized if PPH4 was greater than 0.8.

Transcriptome‑wide association study
To identify associations with regard to transcriptome 
gene expression in specific tissues, we conducted a 
transcriptome-wide association study (TWAS) using 
FUSION (http://​gusev​lab.​org/​proje​cts/​fusion/) based on 
49 Genotype-Tissue Expression (GTEx) version 8 tissue 
expression weights [37]. We first performed 49 TWASs 
for each trait and then intersected single-trait TWAS 
results to determine the shared gene-tissue pairs across 
traits. Bonferroni correction was applied within each tis-
sue to account for multiple comparisons.

Mendelian randomization analysis
We next conducted two-sample MR analysis to detect 
the putative causal relationship between GSD and CVD, 
and reported study design according to STROBE-MR 
(Additional file  1: Table  S4) [38]. Causal Analysis Using 
Summary Effect Estimates (CAUSE) was applied as our 
primary approach [39]. Complementary to CAUSE, 
inverse-variance weighted (IVW), MR-Egger regres-
sion and weighted median approach were performed to 
examine the robustness and consistency of results. We 
applied a Bonferroni correction to account for multiple 
comparisons in our MR analysis. A P-threshold of 0.05/2 
(number of CVD phenotypes) was defined as statistical 
significance.

We conducted several important sensitivity analyses to 
validify MR results, including (i) the exclusion of palin-
dromic IVs [40]; (ii) the exclusion of pleiotropic IVs; and 
(iii) the reverse-direction MR to rule out reverse causal-
ity. An effect estimate was determined as putative causal 
if it was statistically significant in CAUSE and remained 
directionally consistent across other analyses. MR anal-
yses were conducted using packages CAUSE (version 
1.2.0) and TwoSampleMR (version 0.5.6) in R (version 
4.2.1).

https://github.com/hailianghuang/FMsummary
http://gusevlab.org/projects/fusion/
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Observational analysis
Descriptive statistics were conducted to characterize the 
baseline UKB participants. Continuous variables were 
summarized as means and standard deviations, and cat-
egorical variables as frequencies and percentages. We 
constructed Cox proportional hazard regression models 
to estimate the HR and 95%CI among individuals with 
GSD compared to those without GSD for the time of 
follow-up. We used three sets of adjustments. Estimates 
in model 1 were adjusted only for sex, age, assessment 
center, and the top 40 genetic principal components. 
Estimates in model 2 were further adjusted for income, 
Townsend deprivation index, physical activity, smoking, 
drinking, sleep duration, hypertension, dyslipidemia, and 
waist-to-hip ratio (WHR). Estimates in model 3 were 
adjusted for, on top of model 2, type 2 diabetes mel-
litus (T2DM), and body mass index (BMI). In addition, 
a sensitivity analysis without the exclusion of less than 
two years of follow-up or a diagnosis of CVD within two 
years after developing GSD was performed. Finally, we 
repeated all these in following analyses including (i) lim-
iting the exposure to cholecystectomy alone; (ii) inves-
tigating the sex-specific relationship between GSD and 
CVD; (iii) ruling out the reverse-direction association 
between CVD and the risk of subsequent GSD. All analy-
ses were conducted using SAS version 9.4 (SAS Institute, 
Cary, NC). A two-sided P-value of less than 0.05 was 
considered statistically significant.

Results
Meta‑analysis
A total of 10 cohort studies (eight publications) were 
included in the analysis [4, 6–8, 41–44], with three stud-
ies examining the association between GSD and stroke, 
and eight studies investigating the relationship between 
GSD and CAD. The sample sizes ranged from 2,208 
to 487,373 participants. These studies were conducted 
across different regions, including Asia (n = 4), the United 
States (n = 4), and Europe (n = 2). The follow-up periods 
for these studies varied from 5 to 32  years. Of the 10 
included studies, seven were prospective cohort stud-
ies, while the remaining three were retrospective cohort 
studies. The diagnosis of GSD was established using self-
report questionnaires and medical records. The quality 
assessment scores for these studies ranged between 7 and 
9, indicating high quality (Additional file 1: Table S5).

Aggregating data from 8 existing cohort studies [4, 
6–8, 41–44], the updated meta-analysis including over 
1,670,058 participants derived a significant associa-
tion (relative risk [RR] = 1.26, 95% confidence interval 
[CI] = 1.19–1.34), despite a pronounced heterogeneity 
(P < 0.01, I2 = 88%) (Fig.  2). Sensitivity analysis omitting 

one study at a time yielded similar findings, with RRs 
ranging from 1.24 to 1.28 (all P < 0.05) (data not shown). 
Specific to a particular CVD event, participants from 3 
cohorts with a history of GSD had a 25% increased risk 
of stroke (RR = 1.25, 95% CIs = 1.17–1.35), whereas par-
ticipants from 8 cohorts with a history of GSD had a 21% 
increased risk of CAD (RR = 1.21, 95% CIs = 1.13–1.30) 
(Additional file  2: Figure S1). In subgroup analyses, a 
marked reduction in heterogeneity was observed within 
the subgroups based on GSD diagnosis or study design 
(Additional file 1: Table S6). Thus, it is postulated that the 
heterogeneity may be attributed to GSD diagnosis and 
study design.

Global and local genetic correlation
Both stroke ( rg=0.16, P = 6.00 × 10–4) and CAD ( rg=0.27, 
P = 2.27 × 10–15) showed a positive genetic correlation 
with GSD using LDSC, which remained consistent in 
GNOVA (GSD-stroke: rg=0.14, P = 8.20 × 10–6; GSD-
CAD: rg=0.27, P = 7.89 × 10–28), all withstood Bonferroni 
correction (Table 1).

Partitioning the whole genome into LD-independent 
regions, only one significant region was observed for 
GSD and stroke (19q13.33, harboring FUT2, a previ-
ous-reported locus for GSD and stroke). With regard to 
CAD, two significant local regions were found, including 
19q13.33 (the significant region reported in the GSD-
stroke analysis) and 4p16.3 (harboring HTT, a previ-
ous-reported locus for myocardial infarction) [14]. All 
estimates withstood multiple corrections (P < 0.05/2,353) 
(Fig. 3 and Additional file 1: Table S7).

Cross‑trait meta‑analysis and pleiotropic loci
In total, we identified five significant pleiotropic SNPs 
shared between GSD and stroke (Fig.  4 and Addi-
tional file  1: Table  S8), among which one was novel. 
The significant novel shared SNP was rs2627316 (PCPAS-

SOC = 4.78 × 10–8) located near ABHD17C, a locus 
involved in protein depalmitoylation by enabling palmi-
toyl-(protein) hydrolase activity [45].

For GSD and CAD, we found a total of 49 significant 
pleiotropic SNPs among which nine were novel (Fig.  4 
and Additional file 1: Table S9). The most significant novel 
shared SNP was rs59950280 (PCPASSOC = 1.33 × 10–10) 
located near HGFAC, encodes a member of the pepti-
dase S1 protein family, an enzyme activating hepatocyte 
growth factor (HGF), which further influence metabolic 
diseases and CVD [46]. The second most significant 
novel shared SNP was rs2853676 (PCPASSOC = 4.52 × 10–9), 
mapped to TERT, a gene known to encode for telomerase 
reverse transcriptase, which was closely related to CAD 
[47, 48]. The last significant novel shared SNP rs4149308 
(PCPASSOC = 5.33 × 10–9) was located near ABCA1, a gene 
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regulating cholesterol transporting [49], which was asso-
ciated with GSD and CAD [50, 51].

Detailed annotations of each variant are shown in 
Additional file 1: Table S10-S11.

Identification of causal variants and colocalization
For each CPASSOC-identified significant locus, we 
further determined a 99% credible set of causal SNPs 
using FM-summary (Additional file  1: Table  S12-S13). 
In general, we found 37 candidate causal SNPs across 
all loci shared by GSD and stroke, and 771 candidate 
causal SNPs shared by GSD and CAD. Particularly, one 
SNP (rs11244061) was identified as having a posterior 

probability of 1.00 in the 99% credible set shared by 
GSD and stroke, and 11 SNPs (rs28929474, rs4299376, 
rs7598542, rs7412, rs13427362, rs17424122, rs7590687, 
rs429358, rs964184, rs59950280, and rs603424) shared by 
GSD and CAD. Notably, SNPs rs59950280 and rs603424 
were also identified as novel shared loci in corresponding 
CPASSOC analysis.

We also performed colocalization analysis to deter-
mine whether pleiotropic SNPs driving the associations 
in two traits were the same or different. Fourteen of 49 
shared loci colocalized at the same candidate causal SNPs 
for GSD-CAD while no colocalization was observed for 
GSD-stroke. (Additional file 1: Table S14-S15).

Fig. 2  Forest plot of pooled relative risk of incident cardiovascular disease in participants with gallstone disease. Square represents the estimate 
of relative risk for each study; the horizontal line represents the 95% confidence intervals, and the diamond represents the overall estimate and its 
95% confidence intervals. RR, relative risk. GSD, gallstone disease; cardiovascular disease (CVD)

Table 1  Genome-wide genetic correlation between gallstone disease and cardiovascular diseases

rg genetic correlation, GNOVA genetic covariance analyzer, LDSC linkage disequilibrium score regression, gcov genetic covariance, se standard error, GSD gallstone 
disease, CAD coronary artery disease

Models Trait1 Trait2 rg rg_P gcov gcov_se

LDSC GSD Stroke 0.16 6.00 × 10–4 0.011 0.005

CAD 0.27 2.27 × 10–15 0.012 0.007

GNOVA GSD Stroke 0.14 8.20 × 10–6 0.009 0.002

CAD 0.27 7.89 × 10–28 0.016 0.001
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Transcriptome‑wide association study and shared genes
To investigate specific expression-trait associations 
that are likely shared by both traits, we further per-
formed TWAS using gene expression data available 
at 49 tissues. Numbers of 48 shared gene-tissue pairs 
were identified for GSD and CAD, but none was identi-
fied for GSD and stroke (Additional file  1: Table  S16). 
Most genes were identified specific to tissues of the 
digestive, endocrine, and cardiovascular systems. 
Among the number of 10 TWAS-significant genes, 
six were previously reported as susceptible to GSD 
and/or CAD (GWAS Catalog accessed by December 
20, 2022), including SPPL3, C12orf43, DAGLB, and 
UNC119B associated with lipid metabolism (closely 
relevant to GSD and CAD), SNRPD2 associated with 
CAD, and RAC1 associated with CAD and lipid metab-
olism. Notably, all of these genes were located at plei-
otropic loci identified in cross-trait meta-analysis, 
including RAC1, FAM220A, and DAGLB at 7p22.1; 
SPPL3, C12orf43, and UNC119B at 12q24.31; as well as 
SNRPD2, DM1-AS and DMPK at 19q13.32.

Mendelian randomization analysis
We conducted a two-sample MR to make a causal 
inference. As shown in Fig.  5, no causal effect of 
genetically predisposed GSD on stroke was observed 
(ORCAUSE = 1.00, 95%CI = 0.97–1.03). This estimate did 
not alter in IVW (OR = 0.99, 95%CI = 0.96–1.01), MR-
Egger regression (OR = 1.00, 95%CI = 0.96–1.04) or 
weighted median approach (OR = 0.98, 95%CI = 0.94–
1.01). Sensitivity analysis removing pleiotropic SNPs or 
palindromic SNPs revealed null findings. As for CAD, 
a consistent null result was observed (ORCAUSE = 1.01, 
95%CI = 0.98–1.04; ORIVW = 0.94, 95%CI = 0.89–0.99; 
ORMR-Egger = 0.92, 95%CI = 0.84–1.00; ORweighted 

median = 0.92, 95%CI = 0.89–0.95; ORpleiotropic IVs 

excluded = 1.03, 95%CI = 0.97–1.08; ORpalindromic Ivs 

excluded = 0.96, 95%CI = 0.90–1.03). In the reverse-direc-
tion MR, genetic predisposition to stroke or CAD did 
not seem to affect GSD risk (Additional file  2: Figure 
S2).

Fig. 3  Local genetic correlation between gallstone disease and cardiovascular diseases. Manhattan plot presenting region-specific P-values for local 
genetic correlation between (A) gallstone disease and stroke and (B) gallstone disease and coronary artery disease. Red dots represent loci showing 
significant local genetic correlation after multiple testing adjustments (P < 0.05/2,353)
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Observational analysis
To explore whether phenotypic association consistent 
with the genetic relationship, we conducted an obser-
vational analysis leveraging the comprehensive UKB 
data. The baseline characteristics of UKB participants 
are presented in Additional file  1: Table  S17-S18. In 
the analysis for the risk of incident stroke associated 
with GSD, participants were followed for 5,303,271 
person-years (12.0 ± 2.0  years), during which 382 GSD 
patients and 7,224 GSD-free individuals developed 
stroke (Table  2). Consistent with MR results, we did 
not find any significant association between GSD and 
risk of stroke in the crude model (Mode 1 HR = 1.07, 
95%CI = 0.97–1.19), neither in models where addi-
tional confounders were adjusted (Model 2 HR = 0.97, 
95%CI = 0.85–1.11; Model 3 HR = 0.95, 95%CI = 0.83–
1.09). Omitting the consideration of 2-year lag 
time (sensitivity analysis), however, we observed a 

significantly increased hazard of stroke among GSD 
patients (HR = 1.19, 95%CI = 1.06–1.34).

In the analysis for the risk of incident CAD associ-
ated with GSD, participants were followed for 4,995,202 
person-years (11.8 ± 2.3  years), during which 1,254 GSD 
patients and 24,709 GSD-free individuals developed 
CAD (Table  2). After adjusting for sex, age, assessment 
center, and the top 40 genetic principal components, 
GSD patients showed a significantly increased hazard 
of CAD (HR = 1.27, 95%CI = 1.20–1.35). With further 
adjustment in subsequent models, the effect diminished 
to null (Model 2 HR = 1.02, 95%CI = 0.95–1.10; Model 3 
HR = 0.98, 95%CI = 0.91–1.06), despite sensitivity analy-
sis showing a significant association in the fully adjusted 
model (HR = 1.23, 95%CI = 1.15–1.31).

Restricting exposure to cholecystectomy, we observed 
consistent null results (Additional file 1: Table S19). Simi-
larly, sex-specific analysis yielded consistent findings 

Fig. 4  Cross-trait meta-analysis between gallstone disease and cardiovascular diseases. In each circular Manhattan plot, the outermost circle 
shows the cross-trait meta-analysis results between (A) gallstone disease and stroke and (B) gallstone disease and coronary artery disease; 
from the periphery to the center, each circle shows the GWAS results on gallstone disease and cardiovascular diseases, respectively. Light blue 
indicates variants with genome-wide significance (P < 5 × 10–8) while dark blue indicates variants with P ≥ 5 × 10–8. According to their single-trait 
and cross-trait characteristics, SNPs are divided into two different types named “Known associated SNP” and “Novel shared SNP”,which are 
presented in grey and red, respectively. RSIDs of them are listed. The bar plot presents the numbers of two types of SNPs detected in the cross-trait 
meta-analysis between (C) gallstone disease and stroke and (D) gallstone disease and coronary artery disease



Page 10 of 15Zhang et al. BMC Medicine          (2023) 21:353 

(Additional file  1: Table  S20). In the reverse-direction 
analysis, an independent effect of CAD but not stroke on 
GSD was observed (Additional file 1: Table S21).

Discussion
Based on the significant association derived from our 
updated meta-analysis, we conducted comprehensive 
genetic and observational analyses to systematically 

Fig. 5  The estimated causal association between gallstone disease and cardiovascular diseases using two-sample Mendelian randomization. Boxes 
denote the point estimate of the causal effects between (A) gallstone disease and stroke and (B) gallstone disease and coronary artery disease. Error 
bars denote 95% confidence intervals. GSD, gallstone disease; CAD, coronary artery disease

Table 2  Observational associations between gallstone disease and cardiovascular diseases

Model 1: adjusted for sex, age, assessment center, and the top 40 genetic principal components

Model 2: adjusted for sex, age, assessment center, the top 40 genetic principal components, income, Townsend deprivation index, physical activity (IPAQ), smoking, 
drinking, sleep duration, dyslipidemia, hypertension, and waist-to-hip ratio (WHR)

Model 3: adjusted for sex, age, assessment center, the top 40 genetic principal components, income, Townsend deprivation index, physical activity (IPAQ), smoking, 
drinking, sleep duration, dyslipidemia, hypertension, WHR, body mass index (BMI), Type 2 diabetes mellitus (T2DM)

GSD gallstone disease, CAD coronary artery disease, HR Hazard ratio, CI Confidence interval

Exposure status Cases/person-years Model 1 Model 2 Model 3 Sensitivity analysis

HR (95%CI) P value HR (95%CI) P value HR (95%CI) P value HR (95%CI) P value

GSD → Stroke
  No 7,224/5,095,745 1.00 (ref ) 1.00 (ref ) 1.00 (ref ) 1.00 (ref )

  Yes 382/207,526 1.07 (0.97–1.19) 0.18 0.97 (0.85–1.11) 0.64 0.95 (0.83–1.09) 0.46 1.19 (1.06–1.34) 0.002

GSD → CAD
  No 24,709/4,810,395 1.00 (ref ) 1.00 (ref ) 1.00 (ref ) 1.00 (ref )

  Yes 1,254/184,808 1.27 (1.20–1.35)  < 0.001 1.02 (0.95–1.10) 0.54 0.98 (0.91–1.06) 0.62 1.23 (1.15–1.31)  < 0.001
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investigate the shared genetic architecture and the phe-
notypic association between GSD and CVD (stroke and 
CAD). From a genetic perspective, our work demon-
strated biological links underlying these complex traits, 
highlighting pleiotropy rather than causality. From a phe-
notypic perspective, the absence of associations between 
GSD and CVD risk further corroborates MR findings. 
Our work advances understanding to the complicated 
relationship underlying GSD and CVD, providing impor-
tant implications for the prevention and treatment of the 
two common conditions.

GSD and CVD shared a moderate global genetic 
basis in our study. Extending to local level, we further 
identified two significant local signals (19q13.33 and 
4p16.3) for GSD and CVD. Interestingly, the findings 
of SUPERGNOVA and CPASSOC analyses simultane-
ously discovered four pleiotropic genes (SULT2B1 and 
FAM83E, situated in the region 19q13.33; RGS12 and 
HGFAC, located in the region 4p16.3). These findings 
shed light on the shared biological mechanisms under-
lying GSD and CVD, encompassing cholesterol metabo-
lism [52], protein signaling [53], and protease activation 
[46]. The intrinsic connection between GSD and CVD 
reflected by the significant global and local genetic cor-
relations can be the result of shared biological mecha-
nisms (pleiotropy) and/or causal associations (causality). 
In our downstream MR analysis (the first GSD-CVD MR 
to date) performed to explore these alternatives, we iden-
tified no causal relationship. Meanwhile, based on the 
large-scale rich data from the prospective UKB cohort, 
we found no phenotypic association between GSD and 
CVD either, which collided with previous observational 
studies supporting an overall significant association. 
For example, our meta-analysis aggregating data from 8 
cohort studies reported an increased risk of CVD events 
among GSD patients (pooled RR = 1.26, 95% CI = 1.19–
1.34). One potential explanation of such discrepancy 
is reverse causality, for which prior studies rarely con-
sidered. By integrating evidence from various sensitiv-
ity analyses that account for reverse causality (including 
omitting 2-year lag time and reverse-direction analysis), 
our findings largely imply reverse causation as a source 
of bias in previous significant results of observational 
studies and highlights the importance of temporal rela-
tionships in epidemiological designs. An alternative 
interpretation is that most of the previous studies failed 
to fully adjust for common confounders, especially for 
important metabolic factors such as BMI, dyslipidemia, 
T2DM, and hypertension that often co-exist with both 
GSD and CVD [6–8, 41]. After a careful enrollment and 
adjustment on a wider range of established and poten-
tial confounders, the GSD-CVD effect attenuated to null 
in our observational analysis, highlighting a non-trivial 

influence from residual confounding. Collectively, our 
work demonstrates a negligible causal association. Future 
investigations are warranted to further establish or rule 
out our findings.

Contrary to the limited evidence observed for causal 
relationships, we identified multiple pleiotropic loci, 
suggesting that the previously reported phenotypic 
links could be largely explained by common biological 
mechanisms. Here, we highlight two interesting exam-
ples. ABHD17C, as the only significant novel pleiotropic 
locus shared by GSD and stroke, involved in synapse 
development and synaptic plasticity by regulating pro-
tein depalmitoylation, further affecting neuronal system 
disease [45, 54]. Furthermore, ABHD17C is also associ-
ated with blood pressure, which may potentially elu-
cidate the common mechanisms underlying GSD and 
CVD [55]. HGFAC was mapped by the most significant 
novel shared pleiotropic loci of GSD and CAD (index 
SNP: rs59950280), which was further corroborated by 
the findings of local genetic correlation (harbored in sig-
nificant local region 4p16.3) and fine mapping analysis 
(having a posterior probability of 1.00 in the 99% cred-
ible set). It encodes a member of the peptidase S1 protein 
family. Initially, the protein is synthesized as an inac-
tive single-chain precursor and subsequently undergoes 
endoproteolytic processing to be activated in a heterodi-
meric configuration. It acts as serine protease that con-
verts hepatocyte growth factor to the active form. The 
increased circulation of HGF has been reported to be 
related to a wide variety of CVDs and metabolic disease 
[46, 56].

On a gene-tissue pair level, our TWAS analysis fur-
ther revealed shared biological hypotheses between 
GSD and CAD. The three loci (7p22.1, 12q24.31, and 
19q13.32) identified in both CPASSOC and TWAS 
analysis implicate common biological mechanisms in 
GSD and CVD, involving lipid metabolism [57, 58], 
inflammatory responses [59], and cell signaling [60]. 
In addition to the digestive and cardiovascular sys-
tems where the pathophysiology is well-documented, 
the identification of enrichment in endocrine systems 
(e.g., pituitary and thyroid) from TWAS suggests the 
possibility of shared pathways extending to a wider 
range of organs. The hormones including Thyroxine 
(T4), Triiodothyronine (T3), and Thyroid-stimulat-
ing Hormone (TSH) secreted by the thyroid/pituitary 
glands may partially elucidate the underlying mecha-
nisms. On the one hand, the levels of free thyroxin 
and thyroid-stimulating hormone have been reported 
as markers of cardiovascular hemodynamic instabil-
ity, which is closely related to CVDs such as CAD and 
heart failure [61]; on the other hand, hyperthyroidism 
is also assumed to be a risk factor for GSD in animal 
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models and case report [62], more studies are needed 
to clarify the role of these hypothesized mechanisms., 
Therefore, rational intervention in the endocrine sys-
tem may also facilitate the treatment of GSD and CVD 
in clinical practice.

Taken together, our findings deliver important clini-
cal and public health implications. First, we provide 
evidence suggesting that GSD is very unlikely to pose 
a direct effect on the risk of CVD, implying that the 
treatment of GSD may not confer additional substantial 
cardiovascular health benefits, which partly supports 
the previous findings on that individuals with gall-
bladder removal did not benefit from a lowered CVD 
risk [6]. From a broader public health perspective, risk 
assessment of CVD in GSD patients is necessary, yet 
our study suggests it should be done in the same way 
as for the general population. Second, our genetic work 
demonstrates shared biological mechanisms underly-
ing GSD and CVD. Prospectively, the identification of 
specific pleiotropic variants and pathways regulating 
common pathological elements may help discover ther-
apeutic targets that would benefit both the prevention 
and treatment of GSD-CVD comorbidities. We hypoth-
esize that aggregating large-scale GWAS to identify 
shared genetic underpinnings may guide the develop-
ment of novel drugs or drug repurposing in the future.

Several limitations need to be acknowledged. First, 
the characteristics of GSD vary across races [63]. How-
ever, our findings were restricted to European ancestry 
population, limiting generalizability to other ethnici-
ties. For instance, contrary to European populations, 
the benefit impact of gallbladder therapy on CVD has 
been observed in Asian populations [64]. Additionally, 
sex-specific genetic analysis was also hampered due to 
limited GWAS data availability. Nevertheless, based on 
our phenotypic analyses, it appears that sex heteroge-
neity may not exert a substantial influence. Incorpo-
rating sex-specific GWAS data would be beneficial for 
future investigations. Second, additional stroke sub-
types were not included in our study due to the lim-
ited sample size; for instance, the cases of large artery 
stroke analyzed by Mishra A et  al. (N < 10,000) [15]. 
Future studies are warranted with a larger sample size 
of the subtype-specific stroke. Third, the power of our 
MR analyses could still be limited by sample size, case 
proportion, and heritability of IVs, causing the overall 
null findings. However, by utilizing the most updated 
GWAS, our overall statistical power was consider-
ably improved. We had 80% power at an α-level of 0.05 
to detect an association of 18% change for the risk of 
stroke and 2% change for the risk of CAD with GSD. 
Larger GWAS data are needed to validate our results in 
the future.

Conclusions
In conclusion, leveraging large-scale population-based 
prospective observational studies and summary statis-
tics from the hitherto largest GWAS, our study demon-
strates an intrinsic link underlying GSD and CVD (stroke 
and CAD). While GSD is not likely to elevate the risk of 
stroke and CAD, it shares biological mechanisms with 
these conditions. Clinically, the treatment of GSD may 
not directly confer additional substantial cardiovascular 
health benefits. Further studies are needed to confirm our 
findings and to clarify potential mechanistic pathways.
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