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Abstract 

Background We aimed to model total charges for the most prevalent multimorbidity combinations in the USA 
and assess model accuracy across Asian/Pacific Islander, African American, Biracial, Caucasian, Hispanic, and Native 
American populations.

Methods We used Cerner HealthFacts data from 2016 to 2017 to model the cost of previously identified prevalent 
multimorbidity combinations among 38 major diagnostic categories for cohorts stratified by age (45–64 and 65 +). 
Examples of prevalent multimorbidity combinations include lipedema with hypertension or hypertension with dia‑
betes. We applied generalized linear models (GLM) with gamma distribution and log link function to total charges 
for all cohorts and assessed model accuracy using residual analysis. In addition to 38 major diagnostic categories, our 
adjusted model incorporated demographic, BMI, hospital, and census division information.

Results The mean ages were 55 (45–64 cohort, N = 333,094) and 75 (65 + cohort, N = 327,260), respectively. We found 
actual total charges to be highest for African Americans (means $78,544 [45–64], $176,274 [65 +]) and lowest for His‑
panics (means $29,597 [45–64], $66,911 [65 +]). African American race was strongly predictive of higher costs (p < 0.05 
[45–64]; p < 0.05 [65 +]). Each total charge model had a good fit. With African American as the index race, only Asian/
Pacific Islander and Biracial were non‑significant in the 45–64 cohort and Biracial in the 65 + cohort. Mean residuals 
were lowest for Hispanics in both cohorts, highest in African Americans for the 45–64 cohort, and highest in Cauca‑
sians for the 65 + cohort. Model accuracy varied substantially by race when multimorbidity grouping was considered. 
For example, costs were markedly overestimated for 65 + Caucasians with multimorbidity combinations that included 
heart disease (e.g., hypertension + heart disease and lipidemia + hypertension + heart disease). Additionally, model 
residuals varied by age/obesity status. For instance, model estimates for Hispanic patients were highly underesti‑
mated for most multimorbidity combinations in the 65 + with obesity cohort compared with other age/obesity status 
groupings.

Conclusions Our finding demonstrates the need for more robust models to ensure the healthcare system can better 
serve all populations. Future cost modeling efforts will likely benefit from factoring in multimorbidity type stratified 
by race/ethnicity and age/obesity status.
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Background
The scarcity of economic models in multimorbidity 
research represents a serious challenge [1]. A significant 
limitation of current models is that most do not consider 
the varying costs of different disease combinations [2]. 
A better understanding of the burden of multimorbidity 
through cost assessment for various multimorbidity com-
binations will assist in targeting highest cost patients for 
intensive interventions [1]. Most high healthcare utiliz-
ers have at least two chronic conditions [3]. Among US 
adults, multimorbidity is estimated to have a prevalence 
of 58.4% [4]. Addressing the economic burden of multi-
morbidity is crucial to developing effective strategies for 
managing care.

Factoring in multimorbidity has been shown to explain 
these expenditures better than models based on popula-
tion characteristics (size and demographics) alone [5]. 
For example, in the case of diabetes, different comorbidi-
ties have a varying impact on cost [6]. Previous studies 
evaluating the impact of specific multimorbidity combi-
nations on expenditures thus far have focused on a few 
diseases [2]. The most prevalent multimorbidities in the 
USA represent a broad spectrum of diseases [7]. Effective 
care planning and resource management requires accu-
rately projecting patient costs for these disease combina-
tions [2, 8].

Modeling the associations of most prevalent multi-
morbidity combinations with healthcare expenditures is 
essential to further aging research because the majority 
of the 65 + population have two or more chronic condi-
tions and account for 47% of Medicare spending [9]. 
Interventions aimed at slowing the aging process need to 
target patients with multiple diseases to be effective [10]. 
Mercer et  al. (2016) found that multimorbidity-focused 
interventions are cost-effective for this patient popula-
tion [11].

Better modeling of expenditures is essential for improv-
ing the health of racial and ethnic minorities. Clay et al. 
found that among African American men, comorbidity 
clusters are associated with poor outcomes, including 
poor health-related quality of life, disability, and higher 
mortality rate. As these authors suggest, better mod-
eling of expenditures will be essential for improving the 
health of racial and ethnic minorities [12]. Multimorbidi-
ties exacerbate health inequalities as underserved popu-
lations are at greater risk for multimorbidity, increasing 
their disease burden [13]. Despite a clear need to better 
understand health disparities, research shows that even 
robust methods can be susceptible to bias. Predictive 
models derived from primarily homogenous populations 
may be poorly generalizable and can exacerbate racial/
ethnic disparities [14]. Cost estimates of multimorbid-
ity must address model racial/ethnic bias. To date, no 

large-scale study of the expenditures associated with 
common multimorbidity combinations has assessed the 
accuracy of model predictions across races and obesity 
status.

This research compares total healthcare expenditures 
for the most prevalent multimorbidity combinations 
across racial/ethnic groups. We also aim to determine if 
multimorbidity expenditure models have similar accuracy 
across racial/ethnic groups after adjustment for potential 
confounding factors. In addition, the study aims to assess 
for possible differences in total charges for 45–64 versus 
65 + patients as the incidence of chronic disease rises 
exponentially with age [15]. This study is among the first 
to model total charges associated with the most prevalent 
multimorbidity combinations by race/ethnicity. Our pre-
vious work identified the most prevalent multimorbidity 
combinations by race/ethnicity, serving as the foundation 
for this current research [7]. Our primary objectives are 
to identify the expected total charges associated with the 
most prevalent multimorbidity combinations by race/
ethnicity. Additionally, we sought to assess differences in 
expenditures for these multimorbidity combinations and 
assess differences in model accuracy by race/ethnicity.

Methods
Research design
This cross-sectional study employed de-identified data 
for 2016–2017 from the Cerner HealthFacts® data ware-
house. The dataset includes electronic health records 
(EHR) representing over 490 million patient encounters 
for over 70 million patients treated at hospitals and clin-
ics at 792 non-affiliated healthcare systems throughout 
the USA. Variable categories include encounter type, 
medical history, diagnoses, labs, prescriptions, patient 
demographics, clinic type, and procedures. Inclusion 
criteria for patients included the following: (1) age 45 + , 
(2) body mass index (BMI) value present and between 
18.5 and 206, (3) EHR-identified race category, (4) EHR-
identified gender, (5) patient encounters not missing total 
charges, and (6) an encounter with an International Clas-
sification of Diseases-10th Version-Clinical Modifica-
tion (ICD-10–CM) diagnosis code among the 38 broad 
diagnoses that make up the most prevalent multimor-
bidities in the USA. These diagnoses involved in preva-
lent multimorbidities were identified in our previous 
research and are listed in Additional file 1: Table S1 [7]. 
In our previous research, we identified disease combina-
tions, frequent above the threshold of 5%, shared by all 
races/ethnicities for each age/obesity level. The current 
work considers the economic impact of those multimor-
bidity combinations in their respective age/obesity level 
cohort. We aggregated ICD-10-CM sub-classifications 
of diseases into broad categories for all 38 diagnoses; 
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for example, I11.9 (hypertensive heart disease without 
heart failure) fell under the broader parental category 
I11 (hypertensive heart disease). Using a prevalence-
based approach for assessing multimorbidity validated 
through prior research, [16–18] we defined multimorbid-
ity as the presence of two or more ICD-10–CM diagnosis 
codes in an individual during the 2-year (i.e., 2016–2017) 
study period. Our upper BMI cutoff is based on the high-
est recorded BMI value was between 206 and 224, so we 
considered it valid if the BMI value was 206 or less [19, 
20]. Since our interest was addressing multimorbidi-
ties associated with obesity, underweight patients were 
excluded (BMI < 18.5) as they might have different mul-
timorbidity issues. The 2-year assessment period was 
employed to maximize the probability of identifying all 
major prevalent multimorbidities experienced by indi-
viduals during the study period. Since diseases might not 
be diagnosed at the same visit or within the same year, 
this longer period allowed us to capture more data than 
would a single year.

Ethical considerations
The data were de-identified and excluded the 16 identifia-
ble variables that necessitate Internal Review Board (IRB) 
approval for access. Because the study only employed 
de-identified data, the study was considered not human 
subjects’ research. Per the National Institutes of Health 
Office of Human Subjects Research policy, the University 
of Tennessee Health Science Center (UTHSC) Institu-
tional Review Board (IRB) determined that the research 
was exempt. We performed this research following all 
other relevant research requirements.

Independent variables
Demographic, multimorbidity, and healthcare utiliza-
tion variables were the primary independent variables. 
Demographic variables included race, age, gender, BMI, 
payer information, and rural or urban status. BMI was 
treated as a dichotomous variable, classifying patients 
with obesity (30 ≤ BMI < 206) and without obesity 
(18.5 ≤ BMI < 30). When assessing the financial burden 
across races in adults aged (45–64) and 65 + , controlling 
for factors impacting disease severity and socioeconomic 
issues affecting cost is critical [21]. Therefore, we assessed 
payer status, rurality, length of stay, and the Elixhauser 
Comorbidity Index (ECI) score. Hospital information 
and healthcare usage variables included the number of 
inpatient and outpatient visits, emergency visits, teaching 
hospital status, care-type status, and total hospital admis-
sion days, if any. Because ethnicity is not a separate varia-
ble in the Cerner HealthFacts database, Hispanic is listed 
as a racial category. Other racial categories included 
Caucasian, African American, Biracial, Asian/Pacific 

Islander, and Native American. Patients were stratified 
into two cohorts [age 45–64] and [age 65 +]) according to 
their age at the beginning of the study. Only patients with 
an EHR-identified gender (i.e., male and female) were 
included in the study. Additional file 1: Table S2 clarifies 
the remaining variables.

Dependent variable
Our primary dependent variable was the sum of total 
charges for all encounters over the 2-year study period for 
each patient. Healthcare utilization information included 
the total charges for each encounter. We categorized 
patient encounters into one of three categories: inpatient, 
outpatient, or emergency visit. We chose our dependent 
variable to be total charges since it is the amount that 
reflects the expense of the service received before any 
discounts or negotiations. Arora et  al. (2015) described 
the challenge of answering the question “how much does 
healthcare cost?” and divided healthcare expenditures 
into three categories: price or charge, cost, and reim-
bursement [22]. Price or charge is defined as the amount 
billed by a provider for a healthcare service. Hospitals in 
the USA use a price list called chargemaster that includes 
a list of all billable services before any discounts or nego-
tiation to arrive at the price charged, which varies across 
hospitals [23, 24]. The definition of cost varies with per-
spective. For the provider, the cost is simply the expense 
incurred to deliver healthcare services to the patient; for 
the payer, it is the amount that they will pay providers 
for these services; and for the patient, it is the amount 
they pay out-of-pocket for healthcare services rendered. 
Finally, reimbursement is defined as the amount paid a 
provider by a third party (the payer) for the services ren-
dered to the patient. Due to different agreements and 
negotiations between hospital providers and payers, cost 
and reimbursement can vary across patients receiving the 
same service from the same hospital [22, 25].

Missing data
Due to their minimal numbers, we deleted hospitals with 
no census division or rural/urban status information. 
We imputed hospitals with teaching facility informa-
tion missing by adding the most prevalent category [26]. 
We excluded encounters with $0 listed for total charges 
from the study. According to the Cerner HealthFacts® 
database data dictionary, total charges of $0 indicate that 
the administrative staff did not enter the billing informa-
tion into the database. We compared demographics for 
sources with missing cost data and those with cost data 
present; the demographics were not statistically differ-
ent. For ease of interpretation, the patient record was 
removed from the study if a patient was treated in two 
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different census divisions or if the patient was treated in a 
rural and an urban hospital.

Statistical analysis
We examined the distribution of our dependent variable, 
total charges over the 2 years. We checked for skewness 
and outliers. Having so many variables, we also tested 
for multicollinearity, a linear relationship between two 
or more variables [27]. We used a generalized variance 
inflation factor (GVIF) analysis to identify variables with 
high multicollinearity, which is appropriate for a mix of 
categorical and numerical variables [28, 29]. We removed 
the variable with the highest GVIF^(1/2Df) score using 
the car R package [30]. We repeated this process until no 
variable had a score above two, a conservative threshold 
for considering multicollinearity [29].

We used regression analysis to compare the total 
charges of the most prevalent multimorbidity combi-
nations by race/ethnicity. A generalized linear model 
(GLM) with gamma distribution and log link function 
was applied to estimate the total charges based on the 
morbidity variables [31, 32]. ECI rank was categorized 

into three categories based on quantile range: low, 
medium, and high, indicating comorbidity severity. We 
ran a 3-way ANOVA test on the model residuals to deter-
mine whether there was an interaction effect between 
BMI and race, as a combined effect, and ECI ranks on 
total charges (the dependent variable).

Results
Demographics
In this study, most patients in both age cohorts were 
female. Tables  1 and 2 show the breakdown of demo-
graphics by race for the 45–64 and 65 + cohorts, respec-
tively. The percentages were calculated relative to the 
whole patient population. The average age for the 45–64 
cohort (333,094 patients) was 55  years and for the 
65 + cohort (327,260 patients) was 75 years.

Outcomes
The breakdown of visit type, mean emergency room 
visits, mean ECI score, mean admission days, and 
mean charges for the 45–64 and 65 + cohorts are 
shown in Table  3. The Cerner HealthFacts® database 

Table 1 Demographics of the 45–64 cohort

Race Prevalence
n (%)

Gender Payer info Area status

Female
n (%)

Male
n (%)

Medicaid/
Medicare/
Title V
n (%)

Other
n (%)

Unknown
n (%)

Urban
n (%)

Rural
n (%)

African American 44,595 (13) 26,260 (8) 18,335 (6) 12,145 (4) 28,597 (9) 3853 (1) 40,203 (12) 4392 (1)

Asian/Pacific Islander 3976 (1) 2341 (1) 1635 (< 1) 504 (< 1) 2864(1) 608(< 1) 2,925 (1) 1051 (< 1)

Biracial 346 (< 1) 189 (< 1) 157 (< 1) 43 (< 1) 257 (< 1) 46 (< 1) 265 (< 1) 81 (< 1)

Caucasian 278,676 (84) 150,101 (45) 128,575 (39) 55,010 (17) 209,433 (63) 14,233 (4) 227,618 (68) 51,058 (15)

Hispanic 485 (< 1) 274 (< 1) 211 (< 1) 78 (< 1) 369 (< 1) 38 (< 1) 422 (< 1) 63 (< 1)

Native American 5016 (2) 2784 (1) 2232 (1) 1393 (< 1) 3524 (1) 99 (< 1) 2735 (1) 2281 (1)

Total 333,094 (100) 181,949 (55) 151,145 (45) 69,173 (21) 245,044 (74) 18,877 (6) 274,168 (82) 58,926 (18)

Table 2 Demographics of the 65 + cohort

Race Prevalence
n (%)

Gender Payer info Area status

Female
n (%)

Male
n (%)

Medicaid/
Medicare/
Title V
n (%)

Other
n (%)

Unknown
n (%)

Urban
n (%)

Rural
n (%)

African American 23,529 (7) 14,381 (4) 9148 (3) 17,655 (5) 4004 (1) 1870 (1) 21,174 (6) 2355 (1)

Asian/Pacific Islander 3729 (1) 2309 (1) 1420 (< 1) 2426 (1) 635 (< 1) 668 (< 1) 2277 (1) 1452 (< 1)

Biracial 1601 (< 1) 84 (< 1) 76 (< 1) 54 (< 1) 61 (< 1) 45 (< 1) 94 (< 1) 66 (< 1)

Caucasian 297,299 (91) 164,042 (50) 133,257 (41) 241,109 (74) 47,966 (15) 8224 (3) 243,273 (74) 54,026 (17)

Hispanic 220 (< 1) 111 (< 1) 109 (< 1) 141 (< 1) 68 (< 1) 11 (< 1) 187 (< 1) 33 (< 1)

Native American 2323 (1) 1352 (< 1) 971 (< 1) 1779 (1) 513 (< 1) 31 (< 1) 1265 (< 1) 1058 (< 1)

Total 327,260 (100) 182,279 (55) 144,981 (45) 263,164 (81) 53,247 (16) 10,849 (3) 268,270 (81) 58,990 (19)
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included data from 1,500,580 45–64 patients and 
1,213,069 65 + patients for the period 2016–2017. 
We excluded some of the ICD-9-CM diagnosis codes 
and removed patient encounters with missing total 
charges for a total of 647,801 patients remaining 
in the 45–64 cohort and 534,534 patients remain-
ing in the 65 + cohort. Patients excluded due to not 
having a morbidity, BMI, race, gender, or age value 
totaled 189,213 in the 45–64 cohort and 98,222 in 
the 65 + cohort. In the 45–64 cohort, 68,856 patients 
were excluded due to duplicate hospital information, 
and 60,388 in the 65 + cohort. After excluding patients 
based on this inclusion/exclusion criteria, 333,094 
patients were 45–64, and 327,260 remained. A com-
plete breakdown of our exclusion/inclusion criteria on 
the patient population is displayed in Additional file 1: 
Fig. S1.

Due to the skewness of the dependent variable 
(mean total charges), we performed an outlier test 
and used the interquartile method to eliminate outli-
ers. After testing for collinearity, we removed the total 
number of morbidities variable from the analysis, as 
it was considered an aliased coefficient in the model, 
meaning that this particular variable was equivalent 
to one or more variable(s). We determined the unad-
justed and adjusted models’ residuals for the 45–64 
and 65 + cohorts using a generalized linear model with 
Gamma distribution and log link function (Additional 
file  1: Fig. S1) and assessed model performance by 
inspecting the residuals’ quantile–quantile (Q-Q) plots 
in R. Due to the skewness of the dependent variable, 
total charges, these models did not fit the data well. To 
obtain a better-fitting model, we tested log and expo-
nential transformations. We then inspected the resid-
uals’ Q-Q plots to measure the model performance 
(Additional file 1: Fig. S2 and Additional file 1: Fig. S3). 
We selected the exponential model as optimal for this 
dataset, since it exhibited the least sum of square error 
(SSE) in both cohorts [33].

The model
The healthcare total charges model in the 45–64 and 
65 + cohorts had adjusted R-squared values of 0.3906 
and 0.4695, respectively. Tables 4 and 5 show the model 
estimates for key demographic and patient hospital uti-
lization factors. African American was selected as the 
index race. The Asian/Pacific Islander and Biracial vari-
ables (Table 4) were not significant in the 45–64 cohort. 
The Caucasian, Hispanic, and Native American races 
had negative total charges estimates. In the 65 + cohort 
(Table  5), the Biracial variable was not significant. The 
Asian/Pacific Islander and the Caucasian races had posi-
tive total charges estimates, while the Hispanic and the 
Native American races had negative estimates. Additional 
file 1: Tables S3 and S4 include model estimates for hos-
pital-related variables and the 38 diagnoses that comprise 
the most prevalent multimorbidities across race/ethnicity 
in the USA. For each model, all diagnosis estimates were 
significant. All diagnosis estimates for the 45–64 cohort 
(Additional file  1: Table  S3) were positive except heart 

Table 3 Outcomes of the 45–64 and 65 + cohorts

Race The 45–64 cohort The 65 + cohort

Mean E.R. 
visits

Mean ECI 
score

Mean hospital 
admission days

Mean charges Mean E.R. 
visits

Mean ECI 
score

Mean hospital 
admission days

Mean charges

African American 1 2 1 $78,544 1 6 2 $176,274

Asian/Pacific Islander 1 2 0 $54,410 1 4 1 $167,949

Biracial 0 2 0 $47,238 1 4 1 $140,628

Caucasian 1 1 0 $55,704 1 4 1 $146,224

Hispanic 0 1 0 $29,597 0 3 1 $66,911

Native American 1 2 0 $50,496 1 4 1 $111,522

Table 4 The 45–64 cohort total charge model estimates

*** Indicates p-value < 0.05

Demographics (variable) Estimate P-value Significance

Age  − 0.001  < 0.001 ***

Race/Asian Pacific Islander 0.006 0.188 ‑

Race/Caucasian  − 0.006  < 0.001 ***

Race/Native American  − 0.015  < 0.001 ***

Race/Biracial  − 0.018 0.175 ‑

Race/Hispanic  − 0.154  < 0.001 ***

Male  − 0.010  < 0.001 ***

BMI 0.000  < 0.001 ***

Length of stay 0.014  < 0.001 ***

Payer/unknown 0.035  < 0.001 ***

Payer/other  − 0.007  < 0.001 ***

ECI 0.008  < 0.001 ***

Emergency visits 0.028  < 0.001 ***

Outpatient visits 0.003  < 0.001 ***
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failure, vitamin D deficiency, and chronic kidney disease, 
which were all slightly negative. Hospital teaching status 
was not a significant predictor. For the 65 + cohort (Addi-
tional file 1: Table S4), all diagnoses were positive except 
vitamin D deficiency and chronic kidney disease. Living 
in the South Atlantic region was not a significant predic-
tor for healthcare charges for this cohort.

The overall mean of the absolute value of the model 
residuals and the standard deviations for the 45–64 and 
65 + cohorts are shown in Table  6. The model best pre-
dicted the total charges for the Hispanic race and was 
least accurate for the African American race. This table 
also displays extreme standard deviation values for the 
model’s residuals. All standard deviations were greater 
than the mean, and some races exhibited remarkably 
high standard deviations.

The actual vs. the estimated mean total charges over 
the study period (2016–2017) for the most prevalent 
multimorbidity combinations shared by all races in the 
45–64 and 65 + cohorts, respectively, are shown in Fig. 1. 

The multimorbidity combinations varied by age and obe-
sity status as they represent the multimorbidities fre-
quent at or above 5% for all racial/ethnic groups within 
each cohort based on our previous work. The variance 
between the actual and estimated mean total charges 
for the hypertension + GERD multimorbidity combina-
tion in the 45–64 cohort with obesity was almost dou-
ble. In the 65 + cohort with obesity, hypertension + heart 
disease, lipidemia + hypertension + heart disease, and 
lipidemia + heart disease multimorbidities exhibited the 
highest variance between the actual and estimated mean 
total charges with values that were also almost double. In 
general, the mean total charges and the variance between 
actual and estimated mean total charges were higher in 
the 65 + cohorts than in the 45–64 cohorts.

The mean residuals by race for each of the most prev-
alent multimorbidity combinations in both cohorts 
with and without obesity are shown in Fig.  2. Due to 
many prevalent multimorbidity combinations in the 
65 + cohorts, we examined the residuals by race for only 
the top seven most prevalent. The mean model residu-
als for the shared multimorbidity patterns by race in the 
45–64 cohort without obesity are shown in Fig. 2a. The 
model overestimated the total charges for both shared 
multimorbidities for the African American race and 
one shared multimorbidity for the Hispanic race, and it 
underestimated the total charges for the Caucasian race. 
The best estimates were for the Native American race. In 
contrast, the mean model residuals for the shared mul-
timorbidity patterns by race in the 45–64 cohort with 
obesity (Fig. 2b) indicated that the model highly overes-
timated the total charges for the GERD + hypertension 
multimorbidity pattern in the African American race. 
The model underestimated all of the total charges for 
the multimorbidity patterns for the Hispanic race, while 
the estimates for the Native American race fluctuated 
between over- and underestimation.

The mean model residuals for the shared multimor-
bidity patterns by race in the 65 + cohort without obe-
sity are shown in Fig.  2c. The total charge estimates 

Table 5 The 65 + cohort total charge model estimates

*** Indicates p-value < 0.05

Demographics (variable) Estimate P-value Significance

Age 0.001  < 0.001 ***

Race/Asian Pacific Islander 0.123  < 0.001 ***

Race/Caucasian 0.015  < 0.001 ***

Race/Biracial  − 0.028 0.550 ‑

Race/Native American  − 0.046 0.001 ***

Race/Hispanic  − 0.369  < 0.001 ***

Male  − 0.007 0.005 **

BMI  − 0.001  < 0.001 ***

Length of stay 0.025  < 0.001 ***

Payer/unknown 0.042  < 0.001 ***

Payer/other  − 0.075  < 0.001 ***

ECI 0.018  < 0.001 ***

Emergency visits 0.024  < 0.001 ***

Outpatient visits  − 0.008  < 0.001 ***

Table 6 Mean model residuals for the 45–64 and 65 + cohorts

Race 45–64 cohort 65 + cohort

Mean residuals Standard deviation Mean residuals Standard deviation

African American 175,514 19,636,829 157,118 646,311

Asian/Pacific Islander 45,864 108,516 120,527 271,469

Biracial 40,425 77,686 109,464 180,946

Caucasian 47,112 515,279 205,310 20,528,300

Hispanic 27,569 65,028 56,234 134,076

Native American 70,938 1,673,968 83,095 161,816
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for the African American race were overestimated or 
highly overestimated, while those for almost all of the 
Asian/Pacific Islander race were highly underestimated. 
The model also overestimated two patterns for the His-
panic race and highly underestimated the remainder. 

In contrast, the mean model residuals for the shared 
multimorbidity patterns by race in the 65 + cohort with 
obesity (Fig.  2d) indicated that the model underesti-
mated all of the total charge estimates for the Asian/
Pacific Islander race. The Hispanic race exhibited the 

Fig. 1 Actual and estimated mean total charges for the most prevalent multimorbidity combinations by race in the 45–64 and 65 + cohorts, 
with and without obesity. Abbreviations: BackP, severe back pain; GERD, gastroesophageal reflux disease; HD, heart disease; HypT, hypertension; Lip, 
lipidemia; LimbP, pain in limb, hand, foot, fingers, and toes; T2D, type 2 diabetes mellitus
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most highly underestimated patterns, while those for 
the Caucasian race had one triad pattern that was sig-
nificantly overestimated (− 316,995). The model esti-
mated two multimorbidity patterns for the African 

American race better than others but overestimated the 
remaining patterns. The remaining patterns were either 
highly overestimated or underestimated.

Fig. 2 Mean model residuals for shared multimorbidity patterns by race in the 65 + and 45–64 cohorts with and without obesity. * =  − 1,749,059 
residual value, ** =  − 316,995 residual value (these values were too large to display in the figure). Abbreviations: BackP, severe back pain; CKD, 
chronic kidney disease; GERD, gastroesophageal reflux disease; HD, heart disease; HypT, hypertension; Lip, lipidemia; LimbP, pain in limb, hand, foot, 
fingers, and toes; OJD, other joint disorder; T2D, type 2 diabetes mellitus
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The model estimated the mean total charges for the 
hypertension + GERD multimorbidity pattern as much 
higher than the actual charges. The mean model resid-
ual for the same cohort was highly overestimated for 
the African American race. The model also estimated 
the mean total charges for the lipidemia + hyperten-
sion + heart disease triad multimorbidity pattern as much 
higher than the actual charges. The mean model residual 
for the same cohort was highly overestimated for the 
Caucasian race. The multimorbidities with heart disease 
also showed extreme differences in actual vs. estimated 
mean total charges and an extreme over or underestima-
tion for the mean model residuals of certain races.

The variability of mean model residuals for the Afri-
can American race increased with obesity in the 
45–64 cohort, yet variability decreased with obesity 
in the 65 + cohort. The model best estimated the lipi-
demia + hypertension multimorbidity pattern for this 
race across all cohorts. The Asian/Pacific Islander race 
model residuals were more extreme for patients in the 
65 + cohort without obesity than those with obesity. 
Although the Asian/Pacific Islander race exhibited nega-
tive model estimates compared to the African American 
race, when the mean model residuals were categorized as 
a function of multimorbidity, some combinations were 
better estimated than others. For the Caucasian race, the 
variability of mean model residuals was comparable by 
weight class in the 45–64 cohort, but it was more accu-
rate for patients without obesity in the 65 + cohort. The 
most accurate overall model estimates were for the Native 
American race, although variability in mean model resid-
uals increased with obesity and aging. The mean model 
residuals also increased substantially by age group for the 
African American, Hispanic, and Native American races.

We conducted a post hoc sensitivity analysis to 
determine if some groups’ small numbers caused the 
extreme average residual values. We tested this hypoth-
esis by re-running our models with the smaller groups 
(Native American and Hispanic) combined. Additional 
file 1: Fig. S4 displays the results. The extreme values 
remain extreme, and two additional multimorbidities 
(HypT_HD and Lip_HD) had extreme values for the 
Caucasian group in the 65 + with obesity cohort.

Since BMI and race as a combined effect were not 
significant (p-value = 0.870) when analyzed by 3-way 
ANOVA, we removed this interaction so that only ECI 
rank was significant (p-value = 0.0353) for the 45–64 
cohort. For the 65 + cohort, BMI and race as a com-
bined effect were not significant (p-value = 1.000,) and 
only ECI rank was significant (p-value < 0.001).

Discussion
This study adds significantly to previous literature by elu-
cidating the complex relationships between multimor-
bidity and costs across racial groups [34, 35]. The well-fit 
cost models developed through this study show that the 
accuracy of estimating cost varies across race and by 
multimorbidity, age group, and obesity status. However, 
it exhibited varying patterns of over- or underestimating 
total charges for specific racial groups. This suggests that 
more robust methods will be necessary to ensure accu-
rate cost capture, particularly for vulnerable populations. 
Capturing such a complex interplay is challenging. While 
this type of modeling has some limitations, it can help 
to identify the costs associated with multimorbidities to 
help project future patient costs. This study also showed 
that aging does not have a straightforward relationship 
with cost estimates for certain races. For example, Afri-
can Americans were the index race in both models. The 
Caucasian race had a negative total charges estimate for 
the 45–64 cohort and a positive total charges estimate for 
the 65 + cohort.

While previous literature notes that levels and most 
prevalent categories of multimorbidity vary by race [36], 
our research shows that the relationship between cost 
and multimorbidity is inconsistent for each racial group. 
Specific total charge estimates for some multimorbidity 
patterns were more inaccurate for some groups. Addi-
tionally, our study demonstrated that some racial groups 
could be driving the overall inaccuracy of cost estimates 
for specific multimorbidity combinations. For exam-
ple, the average estimated total charges for hyperten-
sion + GERD significantly deviated from the actual total 
charges. Residual analysis indicated that these estimates 
were significantly overestimated for the African Ameri-
can population in particular. As multimorbidity is asso-
ciated with higher outpatient and inpatient utilization 
of healthcare services, [37] the importance of accurately 
modeling cost cannot be overstated. Given the serious-
ness of the inequalities in healthcare access and out-
comes by race, [38] it is crucial that we generate accurate 
models across racial groups. Our findings provide neces-
sary information on understanding the complexity of the 
relationship between cost and multimorbidity. Research-
ers modeling multimorbidity and cost must analyze esti-
mates for specific patterns stratified by race to know how 
much specific estimates can be trusted.

Our results indicate that the pattern of model accuracy 
across the obesity category varies by race. These find-
ings can help the research community identify areas for 
improved modeling to better estimate costs for patient 
populations. Except for one multimorbidity combina-
tion (hypertension + GERD), multimorbidities in the 
patient population with obesity exhibited less extreme 
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average residuals in the African American group in both 
the 45–64 and 65 + cohorts. We observed a similar rela-
tionship in the 65 + Asian population. On the other hand, 
the Hispanic population exhibited more extreme residu-
als in the absence of obesity. We observed a similar trend 
in the 65 + Native American and Caucasian populations. 
In some instances, this could be attributed to differences 
in the type of multimorbidities in distinct groups, but we 
also observed this trend in cases where the multimor-
bidity is the same (e.g., lipidemia + heart disease in the 
65 + cohort). Our results demonstrate the importance 
of stratification by weight category for improved model 
accuracy.

Limitations
The cross-sectional design of our study restricts our com-
prehension of multimorbidity, race, age, BMI, and ECI as 
risk factors that impacting patients’ mean total charges. 
The results could not produce a single model consist-
ent in predicting total charges across races in the same 
weight and age groups. The Cerner HealthFacts data-
base contains patient records with missing charges due 
to information not being transferred to the data ware-
house. Consequently, we excluded these records from 
our study. However, as noted in the “Methods” section, 
this data is likely missing at random. A non-trivial per-
cent of patients had missing data in the following catego-
ries: BMI, race, gender, or age. These variables are likely 
to have some missing not at random data which may 
bias our estimates. Some of this data could be missing 
at random as, for example, not all HealthFacts sites pro-
vide BMI values. The Uniform Hospital Discharge Data 
Set (UHDDS) definitions and regulations drive hospital 
reporting requirements for race and ethnicity data, which 
may not accurately reflect these categories [39]. The 
Cerner HealthFacts database categorized the Hispanic 
ethnicity as a race, yet these patients could identify as a 
member of the Native American, Black, White, or Asian 
races or could be Biracial. Our exclusion of patients with 
unknown race, gender, BMI, or age data substantially 
reduced our sample, which could impact specific groups 
disproportionally. For the 45–64 cohort’s model, the 
Asian/Pacific Islander and Biracial races were insignifi-
cant, nor was the Biracial racial category significant for 
the 65 + cohort’s model, which is most likely because we 
had small samples for these two races. Healthcare expen-
ditures at the end of life can differ significantly from the 
cost of general medical care. This study was not able to 
include these expenditures since we do not have out-of-
hospital death information.

Despite these limitations, our study is unique because 
it included the Biracial and the Native American groups, 
which are often not studied. Also, the study population 

reflects a nationwide sample selected from all corners of 
the nation and is representative of the patient group that 
doctors generally treat in a clinical setting.

If building a model for the most prevalent multimorbidity 
combinations by race is so challenging, how accurate will 
expenditure models be for multimorbidities that are not 
shared by all racial groups and how can we evaluate them? 
Although the model we developed was a good fit for the 
data we accessed, its variability in predicting total charges 
by race demonstrated that we need more robust models 
that accurately predict total healthcare charges for all racial 
groups. In particular, multimorbidity and race need to be 
studied more comprehensively in this regard.

Conclusions
This is the first study to identify total charges’ trends 
across Asian/Pacific Islander, African American, Biracial, 
Caucasian, Hispanic, and Native American populations 
for the most prevalent multimorbidity combinations. We 
also demonstrated that our model was inconsistent in 
its ability to predict total charges by race based on mul-
timorbidity patterns. In general, the total charges were 
either over- or underestimated across multimorbidity 
patterns, and in some cases, the model predictions were 
far from the expected values. This highlights the diffi-
culty in modeling total charge estimates for diseases that 
may interact in a multimorbidity, since they do not have 
a simple additive effect. This demonstrates the need to 
develop more robust models to ensure the healthcare sys-
tem can better serve all populations. Improved modeling 
of underserved populations is necessary, and multimor-
bidity and race need to be studied more comprehensively.
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