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Abstract 

Background Multiple myeloma (MM) is a severely debilitating and fatal B-cell neoplastic disease. The discovery 
of disease-associated proteins with causal genetic evidence offers a chance to uncover novel therapeutic targets.

Methods First, we comprehensively investigated the causal association between 2994 proteins and MM 
through two-sample mendelian randomization (MR) analysis using summary-level data from public genome-wide 
association studies of plasma proteome (N = 3301 healthy individuals) and MM (598 cases and 180,756 controls). 
Sensitivity analyses were performed for these identified causal proteins. Furthermore, we pursued the exploration 
of enriched biological pathways, prioritized the therapeutic proteins, and evaluated their druggability using the KEGG 
pathway analysis, MR-Bayesian model averaging analysis, and cross-reference with current databases, respectively.

Results We identified 13 proteins causally associated with MM risk (false discovery rate corrected P < 0.05). Six 
proteins were positively associated with the risk of MM, including nicotinamide phosphoribosyl transferase (NAMPT; 
OR [95% CI]: 1.35 [1.18, 1.55]), tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE1; 1.14 [1.06, 
1.22]), neutrophil cytosol factor 2 (NCF2; 1.27 [1.12, 1.44]), carbonyl reductase 1, cAMP-specific 3’,5’-cyclic phospho-
diesterase 4D (PDE4D), platelet-activating factor acetylhydrolase IB subunit beta (PAFAH1B2). Seven proteins were 
inversely associated with MM, which referred to suppressor of cytokine signaling 3 (SOCS3; 0.90 [0.86, 0.94]), Fc-
gamma receptor III-B (FCGR3B; 0.75 [0.65,0.86]), glypican-1 (GPC1; 0.69 [0.58,0.83]), follistatin-related protein 1, protein 
tyrosine phosphatase non-receptor type 4 (PTPN4), granzyme B, complement C1q subcomponent subunit C (C1QC). 
Three of the causal proteins, SOCS3, FCGR3B, and NCF2, were enriched in the osteoclast differentiation pathway 
in KEGG enrichment analyses while GPC1 (marginal inclusion probability (MIP):0.993; model averaged causal effects 
(MACE): − 0.349), NAMPT (MIP:0.433; MACE: − 0.113), and NCF2 (MIP:0.324; MACE:0.066) ranked among the top three 
MM-associated proteins according to MR-BMA analyses. Furthermore, therapeutics targeting four proteins are cur-
rently under evaluation, five are druggable and four are future breakthrough points.

Conclusions Our analysis revealed a set of 13 novel proteins, including six risk and seven protective proteins, causally 
linked to MM risk. The discovery of these MM-associated proteins opens up the possibility for identifying novel thera-
peutic targets, further advancing the integration of genome and proteome data for drug development.
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Background
Multiple myeloma (MM) is a hematologic neoplasm 
caused by the malignant proliferation of clonal plasma 
cells. In 2019, more than 155,688 people were diag-
nosed with multiple myeloma worldwide, and approxi-
mately 100,000 deaths are attributed to MM per year 
[1]. Various pharmacological strategies have been 
developed against MM, including proteasome inhibi-
tors, immunomodulatory agents, and alkylating agents, 
which have successfully increased patient survivorship 
[2]. However, most patients still experience relapse 
and resultant mortality due to drug resistance; there-
fore, the 5-year survival rate of MM patients in high-
risk populations remains 50% or lower [3]. Hence, it 
is imperative to find novel therapeutic targets for the 
development of new anti-multiple myeloma agents.

Proteins are versatile biologically active compounds 
involved in the regulation of multiple cellular and phys-
iological functions. A new generation of proteomics 
technologies has enabled the identification of ectopic 
protein expressions and further exploration of poten-
tial biomarkers and therapeutic targets for cancer [4]. 
For example, by employing a quantitative proteomics 
approach, Chen et al. recognized proteinase inhibitor 9 
(SERPINB9) as a promising novel therapeutic target for 
bortezomib-resistant recurrent and relapsed MM [5]. 
More recently, a proteomic profiling analysis revealed 
that cyclin-dependent kinase 6 (CDK6) upregulation 
is a targetable resistance mechanism for lenalidomide, 
highlighting the expanding importance of proteomic 
research in MM [6]. However, most such studies were 
restricted to small sample sizes and/or limited protein 
species. And it is important to note that the causal 
relevance of associations from these nonrandomized 
observational studies remains largely unresolved due to 
their susceptibility to confounders or reverse causation.

Mendelian randomization (MR) is a popular 
approach for causal inferences by using genetic variants 
as instrumental variables (IVs) that mimic a lifetime 
randomized controlled trial [7]. It exploits the natural 
random allocation of genetic variants at conception, 
so results from MR are much less likely to be biased 
by reverse causation or residual confounding. With 
the development of genome-wide association studies 
(GWASs) on human plasma proteome, an optimiza-
tion framework by integrating genomic and proteomic 
databases for biomarker discovery has emerged [8]. In 
particular, MR studies leveraging protein quantitative 
trait loci from variants have contributed to elucidating 
novel targets for breast cancer [9], lung cancer [10], and 
ovarian cancer [11], which suggests that the analytical 
method is empirically validated and reliable.

We therefore applied a proteome-wide MR analysis by 
combing the high-throughput proteomes with genetic 
data to assess the causal effects of the circulating proteins 
on the risk of MM. Furthermore, to explore the clini-
cal utility of these proteins, we branch out the existing 
research and give out a three-step parallel approach: (i) 
revealing their roles in the etiology of MM; (ii) disentan-
gling the prioritization of these proteins; and (iii) evaluat-
ing the druggability of potential target proteins.

Methods
Study design
The flow diagram summarizing the methodology of the 
study is depicted in Fig.  1 and the detailed information 
of the data source is displayed in Additional file 1: Table. 
S1. Firstly, we leveraged the two-sample MR method to 
explore the causal relationships between 2994 plasma 
proteome and the risk of MM using summary-level data 
from publicly GWASs of plasma proteome in INTERVAL 
study (N = 3301) [12] and MM in FinnGen consortium 
(598 cases and 180,756 controls) [13]. Three assumptions 
are required for the MR method: (1) the single nucleotide 
polymorphism (SNP) selected as the genetic instrument 
is robustly associated with the exposure (“relevance”); (2) 
the SNP is not associated with confounders (“exchange-
ability”); and (3) SNP affect the outcome only through 
the exposure (“exclusion restriction”) [14]. False discov-
ery rate (FDR) correction was used to account for mul-
tiple testing. Second, we further explore the enriched 
pathways, priority of therapeutic targets for MM, and 
druggability in these causal proteins. To be specific, the 
Kyoto encyclopedia of genes and genome (KEGG) path-
way analysis was performed to identify significantly 
enriched pathways in the causal proteins and MR-Bayes-
ian model averaging (MR-BMA) was leveraged to rank 
causal proteins by their marginal score. To evaluate clini-
cal development activity of candidate drugs targeting 
the candidate proteins, we comprehensively queried an 
updated list of druggable genes [15], the ChEMBL [16] 
database, and a clinical trials registry website.

Plasma proteome GWAS data
The publicly available proteome GWAS dataset was 
derived from summary statistics of 2994 blood pro-
teomes in 3301 healthy individuals of European ancestry 
from INTERVAL study [12]. For selection of individuals, 
Sun et  al. randomly selected two non-overlapping sub-
cohorts of 2731 and 831 from INTERVAL study and 3301 
participants remained for analysis after genetic quality 
control. In the published GWAS study, relative concen-
trations of plasma proteins were measured by a multi-
plexed, aptamer-based approach (SOMAscan assay) and 
the reliability of protein measurements was validated 
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using several subsequent experiments and replication of 
known associations with non-genetic factors. After qual-
ity control process, 3283 SOMA aptamers (SOMAmers) 
were left and mapped to 2994 unique plasma proteins 
in the final GWAS. In each sub-cohort, rank-inverse 
normalized protein residuals from linear regression of 
log-transformed protein levels on age, sex, duration 
between blood draw and processing, and the first three 
principal components were used as phenotypes and an 
additive genetic model was used to test genetic associa-
tions between 10.6 million imputed SNPs and levels of 
2994 plasma proteins. Lastly, association results from 
the two sub-cohorts were combined using fixed-effects 
meta-analysis.

MM GWAS data
GWAS data of MM used for primary analysis was 
extracted from summary statistics of 181,354 individu-
als of European ancestry from the FinnGen consortium 
(R5 release, https:// finng en. gitbo ok. io/ docum entat ion/v/ 
r5/) [13]. The FinnGen Study is a Finnish, nationwide 
GWAS meta-analysis of 9 biobanks, which was non-
overlapped with the samples of plasma proteome GWAS. 
The biobanks have been linked with longitudinal digital 
health record data from national health registries. The 
GWAS of MM in the FinnGen Study included 598 cases 
and 180,756 individuals without cancers as controls. The 
MM was defined according to the international classifi-
cation of diseases-10 (ICD-10) and ICD-9 in the record 
of hospital discharge registry and cause of death registry. 

The genetic associations between SNPs and MM were 
adjusted for age, sex, 10 principal components, and geno-
typing batch.

Another summary-level data on MM for sensitivity 
analysis was derived from a GWAS of 405,018 individuals 
of European ancestry from UK Biobank (552 cases and 
404,466 controls) [17, 18]. MM was defined by electronic 
health records-derived ICD billing codes 204.4. Scal-
able and accurate implementation of generalized mixed 
model (SAIGE) with adjustment for genetic relatedness, 
sex, birth year, and the first 4 principal components was 
performed to test the genetic associations. There was also 
no overlap since samples of MM and plasma proteins 
were obtained from different cohorts.

Selection of genetic instruments
To satisfy the assumptions of MR (Fig. 1), a set of crite-
ria was drawn up. First, SNPs used as genetic instruments 
for each plasma protein were selected by a genome-wide 
significant level (P < 5 ×  10–8). If the number of SNPs 
for the protein is less than 3, we adopted a suggestive 
genome-wide P-value threshold (P < 5 ×  10–6) to identify 
enough SNPs (at least 3) in common between proteins 
and MM. Second, SNPs with linkage disequilibrium (LD) 
 R2 > 0.001 within 10  Mb were excluded to ensure the 
independence of the SNPs. Third, SNPs with F-statis-
tics < 10 were excluded to minimize instrument bias [19]. 
Fourth, we examined whether any of these SNPs were 
associated with confounders (age at recruitment, BMI, 
alcohol consumption, smoking, and physical activity) 

Fig. 1 A flow chart of the study design and a schematic illustration of two-sample MR. BMI, body mass index; FDR, false discovery rate; GSMR, 
generalized summary-data-based Mendelian randomization; KEGG, Kyoto encyclopedia of genes and genome; MM, multiple myeloma; MR-BMA, 
MR-Bayesian model averaging; SNPs, single-nucleotide polymorphisms

https://finngen.gitbook.io/documentation/v/r5/
https://finngen.gitbook.io/documentation/v/r5/
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and outcomes at a P-value of Bonferroni level (0.05/num-
ber of SNPs) using the publicly available GWAS sum-
mary data. The associations of these SNPs with alcoholic 
drinks per week and smoking initiation were extracted 
from GWAS and sequencing consortium of alcohol and 
nicotine use (GSCAN) consortium [20]. Summary-level 
data of BMI and physical activity were derived from a 
meta-analysis of GWASs (~ 700,000 individuals) from 
genetic investigation of anthropometric traits (GIANT) 
consortium and UK Biobank and a GWAS (377,234 indi-
viduals) from UK Biobank, respectively [21, 22]. Given 
MM always occurs in old age, older populations have the 
competing risk of mortality and MM, which could create 
survival bias [23]. To alleviate the bias, we excluded the 
SNPs associated with survival which were proxied by age 
at recruitment, as described previously [24]. The associa-
tions of these SNPs with age at recruitment were derived 
from the MR-Base platform, including 361,194 individu-
als from UK Biobank [25]. Detailed information regard-
ing these GWAS datasets is displayed in Additional 
file  1: Table. S1. Since no SNP were selected as genetic 
instruments for MM using the genome-wide significant 
threshold (P < 5 ×  10–8), we also applied a less stringent 
threshold of 5 ×  10–6 to obtain more SNPs for MM, as 
described before [24]. The remaining steps for the selec-
tion of genetic instruments for MM adhere to the afore-
mentioned criteria.

Statistical analysis
Power analysis
A priori statistical power was calculated by a web appli-
cation (https:// shiny. cnsge nomics. com/ mRnd/) [26]. 
Assuming an alpha level of 5%, and a proportion of MM 
cases (1%), our analyses had a power of > 80% to detect a 
causal effect of OR = 1.30, when the protein explained by 
the SNPs (R2) is at least 5%.

Two‑sample MR of plasma proteins on MM and sensitivity 
analyses
If a genetic instrument (SNP) was missing from the MM 
GWAS, the SNP was replaced by a proxy SNP in high LD 
R2 > 0.80 using LDlink (https:// ldlink. nci. nih. gov/) [27]. 
Inverse-variance weighted (IVW) with random-effects 
method was leveraged to estimate causal effects of 2994 
plasma proteins on the risk of MM. Random-effects IVW 
method was performed to take into account potential 
heterogeneity [28]. To account for multiple testing across 
2994 plasma proteins analyses, an FDR-corrected P-value 
threshold of < 0.05 was established, which we used as a 
heuristic to define evidence for the association between 
protein and the risk of MM.

We conducted a series of sensitivity analyses to assess 
the robustness of our findings. First, we performed 

additional MR methods on our significant results 
from the IVW analyses, including MR-Egger, weighted 
median, and generalized summary-data-based MR 
(GSMR). MR-Egger was used to assess the presence of 
pleiotropic effects on MM, and the intercept distinct 
from zero provides evidence for pleiotropic effects [29]. 
An I2GX was calculated to quantify the suitability of MR-
Egger method and an I2GX less than 0.9 indicates the 
presence of considerable risk of bias in the MR-Egger 
analysis [30]. Weighted median provided a robust result 
although half of genetic instruments are invalid or pleio-
tropic [31]. GSMR used the heterogeneity in dependent 
instruments (HEIDI)-outlier method to exclude out-
lier or heterogenous genetic instruments and accounts 
for LD among SNPs using the reference dataset for LD 
estimation [32]. In this study, the genotype data of Euro-
peans from phase 3 of the 1000 Genomes project was 
used as the reference dataset. Additionally, Steiger fil-
tering method was performed to identify whether there 
are reverse causal SNPs (i.e., those explaining more vari-
ance in the outcome than the exposure) [33]. The reverse 
causal SNPs violate the MR assumption of “exclusion 
restriction”. Second, we repeated the primary analysis 
using summary-level data of MM from UK Biobank and 
combined the primary results and results of UK Biobank 
using fixed-effects meta-analysis. Third, we leveraged 
two-sample MR method to assess whether clinically 
diagnosed MM showed evidence of causally impact-
ing levels of significant proteins, rather than vice versa. 
Finally, where applicable, we performed two-sample MR 
using only SNPs in the cis-region of the gene encoding 
the protein (defined as within ± 1Mb window from the 
gene) to investigate whether the significant associations 
identified in our study were being driven by cis-regulator 
SNPs. Wald ratio method was used for one SNP and IVW 
method was conducted for more than one SNP.

KEGG pathway analysis
KEGG is an open and widely used database integrating 
information on genomes, biological pathways, diseases, 
and drugs. KEGG pathway analysis was performed to 
mine pathways enriched in the list of significant pro-
teins. To account for multiple testing, the FDR corrected 
P-value on the pathway less than 0.05 was significant.

MR‑BMA method
MR-BMA is a novel multivariable MR paradigm that 
ranks risk factors by the probability of that risk factor 
being a causal determinant of the outcome and selects 
causal risk factors for outcomes in a Bayesian framework 
from a high-dimensional set of related and potentially 
highly correlated candidate risk factors [34]. To overcome 
the high correlation of plasma proteins and “measured 

https://shiny.cnsgenomics.com/mRnd/
https://ldlink.nci.nih.gov/
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pleiotropy” caused by other significant proteins, MR-
BMA was leveraged to identify the dominating proteins 
over the others and assess which candidate causal pro-
teins should be prioritized for MM, as described before 
[34–36]. We integrated the significant protein-associ-
ated SNPs (according to the aforementioned criteria) as 
instrumental variables in MR-BMA because we wanted 
to disentangle their causal roles. In MR-BMA, the mul-
tivariable MR analysis using weighted regression was 
undertaken in multiple combinations of proteins, includ-
ing all single protein, all pairs of proteins, and all triples. 
The goodness-of-fit of the regression model was assessed 
by posterior probability of that combination being the 
true causal proteins. Then, a score was assigned to each 
protein that was calculated by adding the posterior prob-
abilities of models including that protein, which is called 
marginal inclusion probability (MIP) and represented the 
probability of that protein being a causal determinant of 
MM. Model-averaged causal effect (MACE) for each pro-
tein was calculated and represent conservative estimates 
of the direct causal effect of a protein on the MM aver-
aged across these models. Empirical P-values for MIP of 
each protein are calculated using a permutation method, 
with adjustment for multiple testing via the false-dis-
covery rate (FDR) correction. Subsequently, Cochran’s 
Q-statistic was used to identify outlying SNPs and Cook’s 
distance was used to identify influential SNPs in the 
visited MR-BMA models (posterior probability > 0.02). 
Finally, we re-run the MR-BMA analysis omitting influ-
ential SNPs and outliers as our primary analysis, as sug-
gested previously [34, 35].

Evaluation of druggability
We evaluated the druggability of the candidate tar-
get proteins by querying a list of druggable genes [15], 
ChEMBL database (release 27) [16], and https:// www. 
Clini calTr ials. gov website; 4479 druggable genes were 
shown in the list and assembled in three tiers, including 
targets of approved drugs and drugs in clinical devel-
opment (tier 1), proteins closely related to drug targets 
or with associated drug-like compounds (tier 2), and 
extracellular proteins and members of key drug-target 
families (tier 3) [15]. ChEMBL is a large, open-access 
bioactivity database (https:// www. ebi. ac. uk/ chembl), 
and we retrieved the ChEMBL to obtain information on 
compound name, molecule type, action type, and clini-
cal development activity of the targeted proteins. Addi-
tionally, we searched https:// www. Clini calTr ials. gov to 
obtain the name and clinical phase of protein targeted 
drug, if applicable.

All analyses were two-sided and conducted using Two-
SampleMR (version 0.5.6), GSMR (version 1.0.9) and 
clusterProfiler (version 3.14.3) packages in R software 

(version 3.6.3). R-code for MR-BMA was sourced from 
https:// github. com/ verena- zuber/ demo_ AMD.

Results
Causal effect of plasma proteins on MM
Of the 2994 proteins being studied, the primary MR 
analysis showed causal relationships between 13 plasma 
proteins and the risk of MM (PFDR < 0.05; Fig. 2). Accord-
ing to the criteria of genetic instrument selection, we 
selected 3 to 16 SNPs to genetically proxied 13 proteins 
(Additional file 1: Table. S2). Of note, the suppressor of 
cytokine signaling 3 (SOCS3) had the most significant 
MR result (OR [95% CI]: 0.90 [0.86, 0.94]; PFDR < 0.001; 
Figs.  2 and 3). Except for SOCS3, primary MR analy-
sis also showed genetically predicted higher levels of six 
proteins were associated with lower risk of MM, includ-
ing protein tyrosine phosphatase non-receptor type 4 
(PTPN4; 0.87 [0.82, 0.92]; PFDR < 0.001), granzyme B 
(GZMB; 0.90 [0.86, 0.94]; PFDR = 0.003), follistatin-related 
protein 1 (FSTL1; 0.68 [0.57, 0.81]; PFDR = 0.007), glypi-
can 1 (GPC1; 0.69 [0.58,0.83]; PFDR = 0.017), Fc-gamma 
receptor III-B (FCGR3B; 0.75 [0.65,0.86]; PFDR = 0.024), 
and complement C1q subcomponent subunit C (C1QC; 
0.93 [0.89, 0.96]; PFDR = 0.043; Fig. 3 and Additional file 1: 
Table. S3). Genetically predicted higher levels of six pro-
teins were associated with a higher risk of MM, including 
nicotinamide phosphoribosyl transferase (NAMPT; 1.35 
[1.18, 1.55]; PFDR = 0.005), Tyrosine kinase with immu-
noglobulin-like and EGF-like domains 1 (TIE1; 1.14 
[1.06, 1.22]; PFDR = 0.043), carbonyl reductase 1 (CBR1; 
1.46 [1.26, 1.69]; PFDR < 0.001), cAMP-specific 3’,5’-cyclic 
phosphodiesterase 4D (PDE4D; 1.29 [1.16, 1.43]; 
PFDR = 0.002), platelet-activating factor acetylhydrolase IB 
subunit beta (PAFAH1B2; 1.43 [1.27, 1.61]; PFDR < 0.001), 
and neutrophil cytosol factor 2 (NCF2; 1.27 [1.12, 1.44]; 
PFDR = 0.040; Fig. 3 and Additional file 1: Table. S3).

Pathway analysis
A KEGG pathway analysis was conducted. Three of 13 
causal proteins were significantly enriched in the path-
way of osteoclast differentiation (hsa04380; PFDR = 0.020), 
including SOCS3, FCGR3B, and NCF2.

MR‑BMA analysis to rank causal proteins on MM
We applied MR-BMA in 13 causal proteins to disentangle 
their causal roles. We integrated the genetic instruments 
of 13 proteins and pruned the SNPs at an LD threshold of 
r2 < 0.001, leaving 75 SNPs for MR-BMA analysis (Addi-
tional file  1: Table. S4). After initially performing the 
MR-BMA method, ten models with posterior probabil-
ity larger than 0.02 were selected to calculate Cochran’s 
Q statistic and Cook’s distance for each SNP. An influen-
tial SNP (rs10919543) was identified (Additional file  1: 

https://www.ClinicalTrials.gov
https://www.ClinicalTrials.gov
https://www.ebi.ac.uk/chembl
https://www.ClinicalTrials.gov
https://github.com/verena-zuber/demo_AMD
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Table. S5) and no outliers were identified (Additional 
file  1: Table. S6). After removing the influential SNP, 
MR-BMA analysis was repeated and the top 10 models 
ranked according to their posterior probability were pro-
vided in Additional file  1: Table. S7. GPC1 (MIP:0.993; 
MACE: − 0.349; PFDR = 0.013), NAMPT (MIP: 0.433; 
MACE: − 0.113; PFDR = 0.022), and NCF2 (MIP: 0.324; 
MACE: 0.066; PFDR = 0.022) are ranked in top-three 
among the 13 proteins (Table  1). It is noted that MR-
BMA is designed to rank the causal importance of the 
13 proteins. As such, when the PFDR is greater than 0.05, 

it does not imply the absence of causality between those 
proteins and MM risk. Instead, it indicates that the rank 
of the subsequent 10 proteins remains uncertain.

Druggability and clinical‑phase drug for candidate protein 
targets
We comprehensively searched a list of druggable genes 
[15], the ChEMBL (release 27) database [16], and the 
clinical trial registry website to evaluate the druggabil-
ity and drug development of the 13 candidate proteins. 
We categorized candidate targets into three statuses, 

Fig. 2 Volcano plot showing effects of human plasma proteins on the risk of multiple myeloma. Data are expressed as odds ratios (OR) estimated 
by the inverse variance-weighted (IVW) method. The red dots represent the plasma proteins was significant positively associated with the risk 
of multiple myeloma (PFDR < 0.05). The blue dots represent the plasma proteins significant was inversely associated with the risk of multiple 
myeloma (PFDR < 0.05). The black dashed line represents the association threshold of FDR corrected P-value < 0.05. C1QC, complement C1q 
subcomponent subunit C; CBR1, carbonyl reductase 1; FCGR3B, Fc-gamma receptor III-B; FSTL1, follistatin-related protein 1; FDR, false discovery 
rate; GPC1, glypican 1; GZMB, granzyme B; NAMPT, nicotinamide phosphoribosyl transferase; NCF2, neutrophil cytosol factor 2; PAFAH1B2, 
platelet-activating factor acetyl hydrolase IB subunit beta; PDE4D, cAMP-specific 3’,5’-cyclic phosphodiesterase 4D; PTPN4, protein tyrosine 
phosphatase non-receptor type 4; SOCS3, suppressor of cytokine signaling 3; TIE1, Tyrosine kinase with immunoglobulin-like and EGF-like domains 
1; SNP, single nucleotide polymorphism
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including approved, in development (in the phase of 
clinical trials), and druggable (listed as druggable tar-
gets). Notably, NAMPT-targeted drug DAPORINAD 
is entering phase I/II trials for cutaneous T-cell Lym-
phoma, melanoma, and B-cell chronic lymphocytic 
leukemia (Table 2). Additionally, NAMPT-target drugs 
TEGLARINAD, ATG-019, and KPT-9274 were all in 
the phase I trial for non-Hodgkin’s lymphoma or acute 
myeloid leukemia (Table  2). FCGR3B-targeted drug 
IMGATUZUMAB was currently being evaluated in 
clinical trials for colorectal neoplasms, head and neck 
neoplasms, and non-small-cell lung and PED4D inhibi-
tor was currently being evaluated in clinical trials for 
Alzheimer’s disease, fragile X syndrome, and depres-
sion (Table  2). Although no ongoing trials for FSTL1, 
CBR1, GZMB, GPC1, and C1QC, they are potential 
druggable targets (Table 2). NCF2, PTPN4, SOCS3, and 
PAFAH1B2 are not currently listed as potential drug 
targeted according to the druggable gene list, ChEMBL 
database, and clinical trial registry website. However, 
enforced expression of SOCS3 is proposed as a poten-
tial treatment for triple-negative breast cancer and 
hepatocellular carcinoma [37, 38].

Sensitivity analysis
To further increase robustness of the findings, we per-
formed a set of sensitivity analyses. First, GSMR method 
showed consistent results with primary MR analysis 
(Additional file  1: Table. S3). Although MR-Egger and 
weighted methods showed no evidence of the associa-
tions between certain proteins and MM, the directions 
of the effects were consistent with the primary results, 
indicating the primary results were not substantially 
altered (Additional file  1: Table. S3). Moreover, I2

GX for 
MR-Egger estimates of NAMPT, FSTL1, CBR1, PTPN4, 
PAFAH1B2, and GPC1 is less than 90%, indicating MR-
Egger estimates for the effect of six proteins on MM to 
be biased. MR-Egger intercept test indicated no evi-
dence of horizontal pleiotropy (all P-values for inter-
cept > 0.05; Additional file  1: Table. S3). Furthermore, 
GSMR method detected no HEIDI-outliers, indicating 
no evidence of pleiotropy (Additional file  1: Table. S3). 
In addition, all IVs showed the correct causal direction in 
the Steiger filtering analysis (i.e., IVs explain more vari-
ance in the exposure than the outcome; Additional file 1: 
Table. S2). Second, MR-IVW analysis of 13 proteins on 
MM was performed using the GWAS of MM from UK 

Fig. 3 Mendelian randomization results of causal risk proteins on the risk of multiple myeloma. FDR P-value indicates the P-value was adjusted 
for multiple testing using false-discovery rate (FDR) method. C1QC, complement C1q subcomponent subunit C; CBR1, carbonyl reductase 1; 
FCGR3B, Fc-gamma receptor III-B; FSTL1, follistatin-related protein 1; FDR, false discovery rate; GPC1, glypican 1; GZMB, granzyme B; NAMPT, 
nicotinamide phosphoribosyl transferase; NCF2, neutrophil cytosol factor 2; PAFAH1B2, platelet-activating factor acetyl hydrolase IB subunit beta; 
PDE4D, cAMP-specific 3’,5’-cyclic phosphodiesterase 4D; PTPN4, protein tyrosine phosphatase non-receptor type 4; SOCS3, suppressor of cytokine 
signaling 3; TIE1, Tyrosine kinase with immunoglobulin-like and EGF-like domains 1; SNP, single nucleotide polymorphism
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Biobank. With the exception of FSTL1, the effect direc-
tions of the other 12 proteins on MM in the UK Biobank 
were consistent with the primary results obtained from 
FinnGen consortium (Additional file  1: Table  S8). Simi-
larly, fixed-effects meta-analysis showed combined 
effects of 12 proteins on MM was significant and consist-
ent with the primary results (P < 0.05), except for FSTL1 
(P = 0.579; Additional file  1: Table. S8). Third, we inves-
tigated the causal relationships between MM and 13 
proteins. According to the criteria of genetic instrument 
selection, we selected 8 SNPs for MM (Additional file 1: 
Table. S9). IVW showed no evidence of relationships 
between genetic predisposition to MM and 13 proteins, 
and MR-Egger, weighted median, and GSMR also showed 
concordant results (Additional file 1: Table. S10). Finally, 
we performed MR analyses using only cis-SNPs from all 
significant proteins. Out of 13 proteins, only six proteins 
have at least one cis-SNP and could therefore be ana-
lyzed. The results showed CBR1, GZMB, GPC1, C1QC, 
and FCGR3B were causally associated with the risk of 
MM (Additional file  1: Table. S11). All other significant 
associations might be driven by trans-SNPs.

Discussion
In the present study, a pipeline composed of analytical 
techniques was utilized to analyze 2994 circulating pro-
teins in relation to MM. The primary two-sample MR 

analysis revealed that 13 proteins were causally corre-
lated with MM risk, with 6 showing positive associations 
(NAMPT, TIE1, CBR1, PDE4D, PAFAH1B2, and NCF2) 
and 7 showing inverse associations (FSTL1, PTPN4, 
SOCS3, GZMB, GPC1, C1QC, and FCGR3B). These 
included association with MM has been implicated else-
where, such as NAMPT [39], PDE4D [40], PAFAH1B2 
[41], SOCS3 [42], and GZMB [43]. The next step was the 
KEGG enrichment analysis, which showed that three of 
the causally associated proteins, SOCS3, FCGR3B, and 
NCF2, were enriched in the osteoclast differentiation 
pathway. Subsequently, MR-BMA analysis indicated that 
NAMPT, GPC1, and NCF2 ranked among the top three 
MM-associated proteins. At last, a list of 4 in-develop-
ment protein-targeted drugs and 5 druggable proteins 
supported the incorporation of genomics and proteomics 
in the drug development programs again. Taken together, 
these findings exemplify the utility of genetic analysis in 
identifying both known and novel loci and pathways with 
causal implications for MM.

The etiology of MM is intricate, encompassing the dys-
function of multiple genes and signaling pathways as well 
as the abnormal regulation of cellular processes. Multi-
ple lines of evidence have underscored a bidirectional 
prosurvival regulatory loop exists between osteoclasts 
(OCs) and MM cells in the bone marrow microenviron-
ment [44]. On one hand, OCs exert immunomodulatory 
effects via upregulating various inhibitory checkpoint 
molecules and immune-suppressive cytokines, contrib-
uting to the immunosuppressive microenvironment in 
MM [45]. On the other hand, MM cells drive OCs forma-
tion and activation while hampering OCs generation and 
function. This cascade leads to bone resorption, impedes 
osteoblast activity, ultimately resulting in bone destruc-
tion and osteoporosis [46]. Therefore, numerous studies 
are exploring signaling molecules in OCs differentiation 
as potential therapeutic avenues for MM treatment, with 
denosumab serving as an illustrative example due to its 
effective capability in delaying and mitigating bone-
related events [47, 48]. Our results consistently point to 
an enrichment of proteins associated with OCs differen-
tiation, specifically SOCS3, FCGR3B, and NCF2, in MM. 
SOCS3, as a member of the suppressor family of cytokine 
signaling, acts to inhibit the activation of the Janus kinase 
(JAK)-signal transducer and activator of transcription 
(STAT) pathway. By negatively regulating the central 
JAK-STAT pathway, SOCS3 can further orchestrate bone 
cell growth, differentiation, and maintenance [49, 50]. 
Similarly, FCGR3B is the only inhibitory member of the 
FcγR immunomodulator family. Recent evidence sug-
gests that cross-regulation of immunoreceptor tyrosine-
based activation motif and Fc-γ receptors could promote 
the suppression of spleen tyrosine kinase activation, 

Table 1 Top 10 causal proteins ranked by the marginal inclusion 
probability in the MR-BMA after model diagnostics

Marginal inclusion probability for the protein, representing the probability of 
that protein being a causal determinant of MM risk. Model-averaged causal 
effect represents the average causal effect across models including that protein. 
Empirical P-values are computed using 1000 permutations and adjusted for 
multiple testing using false-discovery rate (FDR) procedure

CBR1 carbonyl reductase 1, FSTL1 follistatin-related protein 1, FDR false discovery 
rate, GPC1 glypican 1, NAMPT nicotinamide phosphoribosyl transferase, NCF2 
neutrophil cytosol factor 2, PAFAH1B2 platelet-activating factor acetyl hydrolase 
IB subunit beta, PDE4D cAMP-specific 3’,5’-cyclic phosphodiesterase 4D, PTPN4 
protein tyrosine phosphatase non-receptor type 4, SOCS3 suppressor of cytokine 
signaling 3, TIE1 tyrosine kinase with immunoglobulin-like and EGF-like domains 
1, SNP single nucleotide polymorphism

Proteins Marginal 
inclusion 
probability

Model‑
averaged 
causal effect

Empirical 
P‑value

FDR P‑value

GPC1 0.993  − 0.349 0.001 0.013

NAMPT 0.433 0.113 0.005 0.022

NCF2 0.324 0.066 0.005 0.022

PDE4D 0.309 0.079 0.063 0.174

FSTL1 0.165  − 0.048 0.122 0.243

CBR1 0.157 0.049 0.131 0.243

TIE1 0.136 0.016 0.067 0.174

PTPN4 0.041  − 0.008 0.988 1.000

PAFAH1B2 0.031  − 0.005 0.997 1.000

SOCS3 0.028  − 0.003 0.948 1.000
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thus leading to the inhibition of osteoclast differentia-
tion [51]. Finally, the gene encoding NCF2 also encodes 
the niacinamide adenine dinucleotide phosphate oxidase 
complex, thereby indirectly inducing osteoclast differen-
tiation [52]. Collectively, our results lend support to the 
causal roles of these proteins and corroborate the signifi-
cance of osteoclast differentiation in the etiology of MM.

Furthermore, given the interrelated nature of protein 
characteristics, a MR-BMA analysis was conducted to 
identify the priority causal proteins. It should be noted 
that the primary objective of this methodology is to 
detect causal risk factors among a high-dimensional 
set of candidates rather than to unbiasedly estimate the 
magnitude of their causative effects [34]. So, our results 
highlight the need for prioritization of NAMPT, GPC1, 
and NCF2 as they may be more proximal to the occur-
rence of MM. In detail, NAMPT serves as a rate-lim-
iting enzyme in the salvage pathway of nicotinic acid 
dinucleotide synthesis [53]. In line with our findings, 

a recent study found that OT-82 exhibits a potent 
effect on MM, which can be attributed to its ability to 
induce cell death through the inhibition of NAMPT 
[54]. In addition, NAMPT is currently in clinical tri-
als for hematological malignancies such as lymphoma, 
non-Hodgkin’s lymphoma, and acute myeloid leukemia. 
For NCF2, early studies specified that NCF2 is over-
expressed in gastric cancer and promotes the progres-
sion of gastric cancer by activating the NF-kB signaling 
pathway [55]. Recently, there is emerging evidence that 
high expression of NCF2 is associated with poor prog-
nosis in patients suffering from acute myeloid leukemia 
[56]. So, with its involvement in osteoclast differentia-
tion as mentioned above, NCF2 is poised to play a vital 
role in the underlying mechanisms of MM. For GPC1, 
the available literature provides conflicting information 
on the role of GPC1. The previous perception of GPC1 
as a biomarker for prostate cancer has been challenged 
by recent findings that reveal its complex, paradoxical 

Table 2 Summary of druggability and clinical development activity for multiple myeloma associated with causal associations on 
Mendelian randomization analysis

C1QC complement C1q subcomponent subunit C, CBR1 carbonyl reductase 1, FCGR3B Fc-gamma receptor III-B, FSTL1 follistatin-related protein 1, FDR false discovery 
rate, GPC1 glypican 1, GZMB granzyme B, NAMPT nicotinamide phosphoribosyl transferase, NCF2 neutrophil cytosol factor 2, PAFAH1B2 platelet-activating factor acetyl 
hydrolase IB subunit beta, PDE4D cAMP-specific 3’,5’-cyclic phosphodiesterase 4D, PTPN4 protein tyrosine phosphatase non-receptor type 4, SOCS3 suppressor of 
cytokine signaling 3, TIE1 tyrosine kinase with immunoglobulin-like and EGF-like domains 1, SNP single nucleotide polymorphism
a Data from druggable list [15]
b Data from ChEMBL release 27 [16] (compound ID in brackets)
c Data from https:// www. Clini calTr ials. gov (clinical trial ID in brackets)

Target Status Compound name Molecule type Action type Clinical development activities

NAMPT In development DAPORINADb

(CHEMBL566757)
Small molecule Inhibitor Phase I/II trials: cutaneous T-cell Lymphoma, 

melanoma, B-cell chronic lymphocytic 
leukemia

In development TEGLARINADb

(CHEMBL1181731)
Small molecule Inhibitor Phase I trial: lymphoma

In development ATG-019c Small molecule Inhibitor Phase I trial: non-Hodgkin’s lymphoma 
(NCT04281420)

In development KPT-9274c Small molecule Inhibitor Phase I trial: non-Hodgkin’s lymphoma, 
acute myeloid leukemia (NCT02702492)

TIE1 In development CP-459632b

(CHEMBL3545300)
Small molecule Inhibitor -

FSTL1 Druggablea - Antibodya - -

CBR1 Druggablea - Small  moleculea - -

GZMB Druggablea - Small  moleculea - -

PDE4D In development ZATOLMILASTb

(CHEMBL4541964)
Small molecule Inhibitor Phase II trials: Alzheimer’s disease, fragile X 

syndrome, depression

GPC1 Druggablea - Antibodya - -

C1QC Druggablea - Antibodya - -

FCGR3B In development IMGATUZUMABb

(CHEMBL2109389)
Antibody Cross-linking agent Phase I/II trials: colorectal neoplasms, head 

and neck neoplasms, non-small-cell lung

NCF2 Not currently listed as druggable - - - -

PTPN4 Not currently listed as druggable - - - -

SOCS3 Not currently listed as druggable - - - -

PAFAH1B2 Not currently listed as druggable - - - -

https://www.ClinicalTrials.gov
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role in the regulation of prostate cancer cell prolifera-
tion and migration [57]. Thus, despite being considered 
as a potential target for cancer therapy in some solid 
tumors, the actual application of targeting GPC1 has 
not been realized. Furthermore, new evidence suggests 
that GPC1 expression in bone marrow-derived stromal 
cells exerts inhibitory effects on cancer cells, making 
GPC1 a promising target for the development of anti-
cancer therapies targeting fibroblast cells [58]. None-
theless, the involvement of these proteins in MM may 
be substantial and merits further research attention.

In addition to the above proteins, the significance 
of other proteins in MM should not be disregarded. 
According to our druggable list, there are ongoing efforts 
to develop drugs that specifically target TIE1 and PDE4D. 
TIE1 is a tyrosine kinase receptor expressed by endothe-
lial and hematopoietic cells and is functionally involved 
in major vascular diseases like atherosclerosis and tumor 
angiogenesis [59]. Despite the lack of precise informa-
tion on clinical applications, numerous studies view TIE1 
inhibitors as a potential therapeutic approach for antian-
giogenic treatment [59, 60]. PDE4D, a primary cAMP-
hydrolyzing enzyme in cells, is also a promising drug 
target. Studies have demonstrated therapeutic benefits 
of PDE4D inhibitors in the treatment of Alzheimer’s dis-
ease, Huntington’s disease, schizophrenia, and depression 
[61]. However, recent studies have indicated that target-
ing PDE4D can be used for the treatment of ER positive 
breast cancer [62], prostate cancer [63], or hepatocel-
lular carcinoma [64]. Future research could explore the 
potential of PDE4D inhibitors for the treatment of MM. 
Furthermore, our findings indicate that CBR1, FSTL1, 
C1QC, and GZMB possess potential for pharmacologi-
cal and clinical utilization and may be targeted through 
the use of small molecules or antibodies. The association 
of CBR1 with cancer has been extensively studied, espe-
cially with the recent discovery of its high expression in 
Philadelphia-like B-line acute lymphoblastic leukemia 
[65]. Likewise, it has been demonstrated that FSTL1 
can suppress the proliferation of nicotine-induced lung 
cancer cells [66], and C1QC has proven valuable for the 
diagnosis of skin cutaneous melanoma with improved 
overall survival [67]. Furthermore, GZMB, as a crucial 
component in natural killer cells, has made a signifi-
cant contribution to the treatment of MM [43]. Finally, 
the limited research on PAFAH1B2 or PTPN4 hinders 
the acquisition of extensive knowledge on their effects 
on MM. Nonetheless, PAFAH1B2 expression has been 
reported as a prognostic marker for MM in validation 
analysis [41] while PTPN4 has been found to serve as an 
upstream therapeutic target in the treatment of prostate 
cancer [68], indicating the potential for the two proteins 
as future research entry points.

Our study has several advantages. We innovatively 
explored a prospective way to intervene with circulat-
ing proteins to lower MM risk by studying the enriched 
pathway, the priority of therapeutic targets, and drug-
gability of the potential causal proteins. Benefiting from 
the large-scale and non-overlapped GWASs data of pro-
teome and MM, we could incorporate more functional 
proteins into our study and obtain more powerful MR 
estimates. Further, during the actual execution, a state-
of-art method MR-BMA was conducted to probe the 
prioritized proteins and existing databases were com-
prehensively searched to depict the druggability profile 
of target proteins. We gained an advantage by applying 
a suggestive genome-wide P-value threshold (5 ×  10–6) 
during the selection of genetic instruments, enabling the 
inclusion of a broader range of analyzable candidate pro-
teins compared to the conventional standard of 5 ×  10–8 
[24, 69]. Lastly, the bidirectional MR analysis adds 
strength to the robustness of our findings by indicating 
that reverse causation is unlikely to have influenced the 
observed associations.

Several limitations need to be considered when inter-
preting our findings. First, our study was conducted using 
overall MM without specifying disease subtypes charac-
terized by the immunoglobulin. Given the etiologic and 
prognostic heterogeneity within each subtype symptom, 
it is desirable to identify subtype-specific causal proteins. 
However, such analyses are currently constrained by the 
limited availability of genetic data underlying each MM 
subtype. Second, the causal estimation of several proteins 
on MM was not fully confirmed by MR-Egger method 
and weighted median method. However, it is impor-
tant to highlight that the direction of estimates mostly 
aligns with the primary MR method (i.e., IVW method), 
and additional assessments such as Steiger filtering, 
GSMR HEIDI-outlier test, MR-Egger intercept test, and 
Cochran’s Q test did not reveal any evidence of invalid 
SNPs. Consequently, despite the lack of corroboration, 
these collective results serve to reinforce the robustness 
of our findings. These results still enhance the robustness 
of our findings. Third, MR is not perfectly analogous to a 
randomized controlled trial (RCT). Therefore, effects of 
potential causal proteins on MM derived from MR analy-
ses may differ in magnitude from those anticipated in 
an RCT, and should be interpreted as life-course effects. 
But that does not contradict our intention to employ MR 
as an expedited approach to complement clinical tri-
als and enhance their reliability. Fourth, the non-linear 
effects of some proteins on MM risk cannot be excluded. 
It is intriguing to consider the possibility that a protein 
may impact MM risk at extremely low or high levels, but 
detecting such effects in practical clinical settings can 
be challenging. Fifth, it is possible that the null effects 
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of certain proteins on MM we observed may have been 
a consequence of inadequate statistical power due to the 
power of 80% to detect an OR of at least 1.30, considering 
R2 = 5%, while the proportion of variance explained by 
SNPs for certain proteins is less than 5% [12]. In addition, 
the only protein with a difference between the FinnGen 
Consortium and the UK Biobank dataset, FSTL1, should 
also be further investigated in a larger MM cohort. Thus, 
replication in larger studies of MM would be worthwhile. 
Finally, our analysis was confined to European ethnicity, 
and race issues frequently lead to the underuse of treat-
ment and unintended interruptions in MM treatment 
[70]; thus, we need to be careful in generalizability of our 
findings to other ethnic groups.

Conclusions
To summarize, our analysis identified six risk proteins 
(NAMPT, TIE1, CBR1, PDE4D, PAFAH1B2, NCF2) 
and seven protective proteins (FSTL1, PTPN4, SOCS3, 
GZMB, GPC1, C1QC, FCGR3B) that are causally asso-
ciated with MM risk. Additionally, we shed light on the 
role of these proteins in MM, prioritized the identified 
proteins, and evaluated their feasibility for drug devel-
opment. These findings hold promise for advancing the 
integration of genome and proteome data to discover 
new drug targets for the treatment of MM. Further stud-
ies were warranted to explore the mechanisms through 
which the potentially causal proteins influence the risk of 
MM.
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