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Abstract 

Background  The gut mycobiome of patients with lung adenocarcinoma (LUAD) remains unexplored. This study 
aimed to characterize the gut mycobiome in patients with LUAD and evaluate the potential of gut fungi as non-inva-
sive biomarkers for early diagnosis.

Methods  In total, 299 fecal samples from Beijing, Suzhou, and Hainan were collected prospectively. Using internal 
transcribed spacer 2 sequencing, we profiled the gut mycobiome. Five supervised machine learning algorithms were 
trained on fungal signatures to build an optimized prediction model for LUAD in a discovery cohort comprising 105 
patients with LUAD and 61 healthy controls (HCs) from Beijing. Validation cohorts from Beijing, Suzhou, and Hainan 
comprising 44, 17, and 15 patients with LUAD and 26, 19, and 12 HCs, respectively, were used to evaluate efficacy.

Results  Fungal biodiversity and richness increased in patients with LUAD. At the phylum level, the abundance 
of Ascomycota decreased, while that of Basidiomycota increased in patients with LUAD. Candida and Saccharomyces 
were the dominant genera, with a reduction in Candida and an increase in Saccharomyces, Aspergillus, and Apiotri-
chum in patients with LUAD. Nineteen operational taxonomic unit markers were selected, and excellent performance 
in predicting LUAD was achieved (area under the curve (AUC) = 0.9350) using a random forest model with outcomes 
superior to those of four other algorithms. The AUCs of the Beijing, Suzhou, and Hainan validation cohorts were 
0.9538, 0.9628, and 0.8833, respectively.

Conclusions  For the first time, the gut fungal profiles of patients with LUAD were shown to represent potential non-
invasive biomarkers for early-stage diagnosis.
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Background
Lung cancer remains the leading cause of cancer-related 
deaths and a major public health issue worldwide. Non-
small cell lung cancer (NSCLC) accounts for approxi-
mately 85% of all lung cancer cases. Adenocarcinoma 
is the most common histological subtype of NSCLC [1, 
2]. Five-year survival rates in patients with lung cancer 
are heavily influenced by the disease stage at diagnosis. 
Patients diagnosed with distant metastatic tumors (stage 
IV) have a 5-year survival rate of only 5.2% compared 
with 57.4% for small, localized tumors (stage I). Despite 
advances in detection and treatment, approximately 57% 
of patients are still initially diagnosed at an advanced 
stage (stage III/IV) with a poor prognosis [3], and predic-
tive biomarkers for early detection remain unsatisfactory. 
Thus, exploring novel early diagnostic markers is war-
ranted to prompt early intervention and improve long-
term outcomes.

The gut microbiome profoundly influences human 
health and is involved in multiple chronic disorders 
[4–6]. The interaction between gut microbiota and the 
lung, the “gut–lung axis,” has been extensively stud-
ied, although the mechanisms by which the gut micro-
biota affects lung immunity are still unclear [7, 8]. Gut 
microbial dysbiosis has been linked to a number of lung 
diseases and disorders, including asthma and chronic 
obstructive pulmonary disease [9, 10]. Both human epi-
demiological evidence and animal studies suggest that 
early-lifetime dysbiosis of gut microbiota increases the 
risk of allergic respiratory diseases [11–14]. Although the 
interactions between microbiota dysbiosis and cancer 
development and progression as well as cancer therapy 
has been extensively studied [15–17], research to date has 
mainly focused on bacteria, whereas fungi have largely 
been overlooked due to their relatively low abundance 
(less than 0.1% of all microorganisms in the gut) as well 
as a lack of well-characterized reference genomes [18, 
19], meaning that new diagnostic and preventive strate-
gies are not being pursued.

The fungal microbiome plays an important role in 
maintaining intestinal homeostasis and the host immune 
system despite the low abundance of fungi [18]. As a 
consequence of the significant technological develop-
ment in bioinformatics methodologies, fungi populating 
the human gut are increasingly being identified and an 
increasing number of studies have provided insights into 
the association between gut fungi and different diseases 
[20, 21]. Cancer–mycobiome interactions have recently 
attracted considerable interest, as alterations in gut fungi 
are specific to different cancer types. In patients with 
colorectal cancer, an alteration in the gut mycobiome 
includes decreases in Saccharomycetes and Pneumocys-
tidomycetes and the enrichment of Malasseziomycetes 

[19, 22]. Fungal abundance in patients with pancreatic 
ductal adenocarcinoma (PDAD) undergoes a more than 
3000-fold increase compared with that in healthy con-
trols. Malassezia spp. are abundant in patients with 
PDAD, and its enrichment accelerates tumor growth 
[23, 24]. In addition, it has been established that specific 
tumor tissues are characterized by distinct fungal DNA 
profiles. For example, high levels of Candida are detected 
in gastrointestinal cancer tissues and are predictive of 
poor survival [25]. Thus, fungal dysbiosis plays a pivotal 
role in the pathogenesis, progression, and prognosis of 
cancer and might serve as a non-invasive diagnostic or 
prognostic biomarker. To our knowledge, no studies have 
been conducted to characterize the gut mycobiome of 
patients with LUAD, particularly from the perspective 
of using fungal signatures as non-invasive diagnostic 
biomarkers.

Machine learning (ML) technology, a powerful tool that 
can process vast amounts of data, has been widely used 
in cancer medicine and shows excellent performance 
with high accuracy in the predictive and diagnostic 
fields [26, 27]. Supervised and unsupervised algorithms 
are the main types of ML applied, the former being the 
most widely adopted in analysis of the gut microbiome, 
performed with a view toward identifying microbial bio-
markers for prediction of disease risk [28].

Here, we characterized the gut mycobiomes of patients 
with LUAD using internal transcribed spacer (ITS) 2 
sequencing and applied ML technology to construct a 
diagnostic model for early-stage LUAD based on selected 
operational taxonomic units (OTUs). Considering that 
the mycobiome composition is influenced by multiple 
factors, including gender, age, diet, lifestyle, medication 
(antibiotics or immunosuppressive drugs), and geog-
raphy [29], validation cohorts from different regions in 
China were used to evaluate the utility of the gut fungal 
signature as a non-invasive biomarker while minimizing 
the influence of confounding factors.

Methods
Study design
In total, 299 participants, comprising 181 patients with 
LUAD and 118 healthy controls (HCs) from Beijing, 
Suzhou, and Hainan, were recruited. The discovery 
cohort comprised of 105 patients with LUAD and 61 HC 
participants from Beijing. The internal validation cohort 
comprised of 44 patients with LUAD and 26 HCs from 
Beijing. External validation cohort 1 from Suzhou com-
prised 17 patients with LUAD and 19 HCs. External vali-
dation cohort 2 from Hainan comprised 15 patients with 
LUAD and 12 HCs. Samples from Beijing were randomly 
divided into a discovery cohort and an internal validation 
cohort (7:3) using the R software [30]. The analysis of gut 
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mycobiome diversity and composition was conducted in 
matching cohort of 56 patients with LUAD and 56 HCs 
among the Beijing participants matched for age, gender, 
and BMI. The generation of matching cohort was per-
formed by Propensity Score in the R project Nonrandom 
package (version 1.1), to control for confounding factors 
among the statistical age, gender, and BMI differences 
between the two groups (Fig. 1). The key inclusion crite-
ria were as follows: (1) age ≥ 18 years, (2) pathologically 
diagnosed with LUAD by the surgical specimen, (3) a 
diagnosis of LUAD at pathological stage II or earlier, and 
(4) provision of informed consent. Patients were excluded 
if they (1) presented with other pathological types of lung 
cancer or other malignancies or with a previously diag-
nosed malignancy, (2) had been administered antibiot-
ics or probiotics within eight weeks before the study, (3) 
had undergone chemotherapy, immunotherapy, or any 

traditional Chinese medicinal treatments, or (4) provided 
incomplete information. The demographic data and clini-
cal characteristics of patients were obtained from the 
patients’ electronic medical records or patient descrip-
tions based on direct interviews or follow-up by tel-
ephone. Basic information pertaining to the participants 
in different cohorts are presented in Table S1 (Additional 
file 1: Table S1) and Table S2 (Additional file 1: Table S2). 
The study was approved by the Ethics Committee of 
the Chinese People’s Liberation Army General Hospital 
(S2022-407–01).

ITS amplification and bioinformatics analysis
Stool samples were collected prospectively in sterile 
boxes, transported to the laboratory on ice, and then 
stored at − 80 °C. DNA was extracted using HiPure 
Stool DNA Kits (Magen, Guangzhou, China) according 

Fig. 1  Study design and flowchart. We enrolled 181 patients with LUAD and 118 HCs from Beijing, Suzhou, and Hainan and prospectively 
collected fecal samples for ITS 2 sequencing. We characterized fungal biodiversity in the matching cohort from Beijing. OTU markers were obtained 
in the discovery cohort and established a prediction model for LUAD using five supervised ML algorithms. Validation cohorts from Suzhou 
and Hainan were used to evaluate efficacy
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to the manufacturer’s instructions. DNA content and 
purity were assessed using a NanoDrop 2000 (Thermo 
Fisher Scientific, Waltham, MA, USA). DNA was stored 
at − 20 °C until use. Fungal ITS2 amplification was 
performed using the primers ITS3_KYO2 (5′-GAT​
GAA​GAA​CGY​AGY​RAA​-3′) and ITS4 (5′-TCC​TCC​
GCT​TAT​TGA​TAT​GC-3′) [31]. PCR amplification of 
genomic DNA was performed using 20-μL reaction 
mixtures under the following conditions: an initial 
denaturation at 95  °C for 5 min, followed by 33 cycles 
at 95 °C for 1 min, 60 °C for 1 min, and 56 °C for 1 min, 
and a final extension at 72  °C for 7 min (Additional 
file 2: Table S3). The amplicons were run on 2% agarose 
gels and purified using an AxyPrep DNA Gel Extraction 
Kit (Axygen Biosciences, Tewksbury, MA, USA) prior 
to library pooling and quantified using a StepOnePlus 
Real-Time PCR System (Thermo Fisher Scientific). 
The purified amplicons were then subjected to a sec-
ond round PCR using 50-μL reaction mixtures under 
the following conditions: 95  °C for 5  min, followed 
by 12  cycles of 95  °C for 1  min, 60  °C for 1  min, and 
72°C for 1 min, and a final extension at 72°C for 7 min 
(Additional file  2: Table  S4). Purified amplicons were 
pooled at equimolar concentrations and paired-end 
sequenced (read type PE250) on the Illumina NovaSeq 
platform (Illumina, San Diego, CA, USA) using stand-
ard protocols.

Chao1 and Shannon indices were calculated using 
QIIME [32] (version 1.9.1). Alpha index comparison 
between groups was calculated using the Wilcoxon rank 
test in the R project Vegan package (version 2.5.3). Prin-
cipal coordinate analysis (PCoA) of the Bray–Curtis dis-
tance and Adonis statistical analysis were carried out in 
the R project Vegan package (version 2.5.3) and plotted 
in the R project ggplot2 package (version 2.2.1). The Wil-
coxon rank-sum test was used to identify differences in 
the mycobiomes of the HC and LUAD groups.

OTU‑based construction of machine learning models
UPARSE [33] (version 9.2.64) was used to cluster OTUs 
with a 97% similarity cut-off value into the same opera-
tional classification unit. OTU features selected with the 
Boruta package (version 8.0.0) in R were used for ML 
model construction. To construct a prediction model for 
early-stage LUAD, the mlr3 R package (version 0.14.1) 
was used for five common ML algorithms: random forest 
(RF), k-nearest neighbors (KNN), naïve Bayes (NBs), sup-
port vector machine (SVM), and logistic regression (LR). 
The best model was determined by comparing the accu-
racy of the five ML algorithms. A classification error loss 
function (“ce”) in the R package “iml” (version 0.11.1) was 
used to calculate the importance of 19 OTUs.

Statistical analysis
SPSS 25.0 software (IBM, Armonk, NY, USA) was used 
for the statistical analysis of basic information of par-
ticipants. A two-sided chi-square test or Fisher’s exact 
test was used to compare categorical variables between 
the two groups, whereas a two-sided t-test was used for 
normally distributed continuous variables, and a two-
sided Wilcoxon rank-sum test was used for non-nor-
mally distributed continuous variables. A 1:1 propensity 
score-matched pair method combined with covariate 
adjustment was used to balance the unbalanced base-
line conditions of the matching cohort, resulting in 
matched pairs with no difference in age, gender and BMI. 
P-value < 0.05 was considered significant.

Results
Diversity of gut fungi in patients with LUAD compared 
with healthy controls
Differences in fungal richness and diversity between the 
LUAD and HC groups were assessed. The α-diversity was 
evaluated using Chao1 (Fig.  2A) and Shannon indices 
(Fig. 2B), and the results showed that biodiversity in the 
LUAD group was significantly higher than that in the HC 
group (Chao1, P = 0.0043; Shannon index, P = 0.0217). A 
Venn diagram is used to show the distribution of com-
mon and endemic OTUs between the two groups based 
on OTU abundance (Fig. 2C). A total of 155 OTUs were 
shared between the two groups, with 165 and 127 OTUs 
unique to the LUAD and HC groups, respectively. The 
number of OTUs in the LUAD group was higher than 
that in the HC group, indicating that the fungal diversity 
in patients with LUAD was higher than that in HCs. The 
β-diversity was used to evaluate differences in microbial 
community compositions between the two groups using 
the Bray–Curtis distance (Fig.  2D). PCoA showed that 
individuals in the LUAD group were well distinguished 
from those in the HC group, demonstrating that the fun-
gal communities in the two groups were considerably dif-
ferent (Adonis R2 = 0.0279, P = 0.0040).

Gut mycobiome composition at phylum and genus level
The mycobiome composition was evaluated at various 
taxonomic levels. Considerable variations in abundance 
at both the phylum and genus levels were observed 
between the two groups. Overall, Ascomycota and Basid-
iomycota were the most predominant phyla (Fig.  3A). 
Compared with the HC group, the LUAD group showed 
a lower abundance of Ascomycota (P = 0.0149) and signif-
icantly higher abundances of Basidiomycota (P = 0.0131), 
Mortierellomycota (P = 0.0000), and Chytridiomycota 
(P = 0.0125) (Fig.  3B). At the genus level, Candida and 
Saccharomyces were the most abundant genera in both 
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groups. The abundance of Saccharomyces (P = 0.0035), 
Aspergillus (P = 0.0186), Apiotrichum (P = 0.0000), and 
Penicillium (P = 0.0032) were dramatically elevated in 
patients with LUAD compared with that in HCs. Con-
versely, the proportion of Vanrija (P = 0.0001), Pichia 
(P = 0.0000), and Trichosporon (P = 0.0000) were mark-
edly lower in the LUAD group (Fig. 3C, D).

Identification of a gut fungal OTU‑based signature of early 
LUAD
Clinically, the development of non-invasive diagnos-
tic biomarkers for early-stage lung cancer is of key 
importance. In this regard, we used the Beijing dis-
covery cohort for OTU selection and ML model con-
struction. The Boruta algorithm was used to select 19 
OTUs as final features for model construction, and 
five supervised ML algorithms were trained using 
these OTUs. Differences of the abundances of these 19 
OTUs between the LUAD and HC groups are shown 
in Fig. S1 (Additional file 3: Fig. S1). Figure 4A and B 
present results from the five ML models evaluated in 

the discovery cohort. Of all ML models, RF had the 
best performance and achieved the highest accuracy 
of 86.17% in classifying LUAD and HC individuals, 
with less accurate results seen using KNN (69.32%), 
LR (65.00%), SVM (61.98%), or NB (60.87%). In terms 
of the training area under the curve (AUC), RF per-
formed the best with AUC values of up to 0.9350 (95% 
CI: 0.8933–0.9766), while the corresponding AUC 
values were lower for KNN (0.6878, 95% CI: 0.5923–
0.7833), LR (0.5973, 95% CI: 0.3287–0.8660), SVM 
(0.6810, 95% CI: 0.5634–0.7986), and NB (0.7099, 
95% CI: 0.5627–0.8571). Overall, RF produced results 
superior to those of the other ML models in predict-
ing LUAD. We used a classification error loss func-
tion (“ce”) to calculate the importance of the 19 OTUs. 
OTU000030 and OTU000158 were the two most criti-
cal features predicting LUAD in the training model 
(Fig.  4C). In the internal validation phase, RF had 
high predictive power with an AUC of 0.9538 (95% 
CI: 0.9063–1) (Fig.  5A). Moreover, we found that the 
RF model showed a good performance when applied 

Fig. 2  Changes in fungal biodiversity in LUAD. A, B Alpha diversity. Chao1 and Shannon indices describe the α-diversity of the fungi in the LUAD 
and HC groups. Relative to results in controls, the α-diversity was increased significantly in patients with LUAD (P = 0,0043 and P = 0.0217). C Venn 
diagram analysis of OTU abundance between the two groups. The overlap shows that 155 OTUs were shared between the two groups, while 165 
and 127 OTUs were unique for in the LUAD and HC groups, respectively. D Beta diversity. Principal coordinate analysis of Bray–Curtis distance 
with each sample colored by group. Groups were compared using the Adonis method (Adonis R.2 = 0.0279, P = 0.0040)
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to the matching cohort (Additional file 3: Fig. S2). To 
further confirm the diagnostic potential of the OTU 
markers in other samples, two external validation 
cohorts from Suzhou and Hainan were used for inde-
pendent testing to confirm the reliability of RF. The 
Suzhou validation cohort had a surprisingly high AUC 
value of 0.9628 (95% CI: 0.8963–1), while the Hainan 
validation cohort had an AUC value of 0.8833 (95% 
CI: 0.7539–1), slightly lower than that in the discov-
ery cohort (Fig. 5B, C). The data show that the fungal 
OTU markers possessed a strong diagnostic classifica-
tion efficacy for patients with early-stage LUAD from 
northern and southern China.

Discussion
Our study represents the first characterization of the gut 
mycobiome composition of a large cohort of patients 
with early-stage LUAD. Additionally, we presented an 
innovative and non-invasive approach involving gut myc-
obiome-based ML classification for the convenient diag-
nostic screening of LUAD. A diagnostic model based on 
microbial OTU markers was successfully established and 
validated across three different regions in China.

To date, studies on the gut mycobiome have been lim-
ited to varying extents by a deficiency of appropriate 
detection methods (i.e., fungi are less amenable to cul-
turing than  bacteria), technical limitations, and a lack 

Fig. 3  Changes in the gut fungal composition. Differential abundance of dominant fungal taxa at the phylum (A–B) and genus (C–D) level 
between the LUAD and HC groups (Wilcoxon rank-sum test, the respective P-values are shown in the diagram)
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of comprehensive reference databases. However, the 
rapid advances in bioinformatics analysis methodology in 
recent years have facilitated an acceleration in the identi-
fication of fungi, which is expanding our knowledge of the 
fungal kingdom and the contribution of fungi to human 
health and disease. With respect to high-throughput 
sequencing, the selection of appropriate barcoding prim-
ers and amplification conditions is considered a key pre-
requisite. In this context, amplification and sequencing of 
the ITS1 (between 18S and 5.8S) and ITS2 (between 5.8S 
and 28S) regions is a widely adopted approach in studies 
of the human gut mycobiome [21], although a consensus 
has yet to be reached regarding the selection of ITS sub-
regions. On the basis of a survey of the relevant literature, 
it would appear that compared with ITS1, ITS2 is associ-
ated with less amplification and sequencing bias [21, 34]. 
Consistent with this assessment, in a preliminary phase 
of this study, we had relatively limited success when using 
primers targeting ITS1 [31]. Consequently, on the basis 

of these findings, in the present study, we selected prim-
ers targeting the ITS2 sub-region.

Fungi are complex organisms known to play an oppor-
tunistic role during immunosuppressive and antibiotic 
therapies [18]. Fungal invasion induces the synthesis 
of various signaling molecules, including transforming 
growth factor-β, interleukin (IL)-6, IL-12, IL-23, IL-1β, 
and interferon-γ, which trigger Th1 and Th17 cell 
responses, in parallel with macrophage activation and 
neutrophil recruitment [18, 35]. Inflammation induced 
by pathogens is a major mechanism promoting carcino-
genesis [36]. The promotion of carcinogenesis by fun-
gal metabolites has been suggested as another major 
mechanism. The carcinogenic effects of acetaldehyde 
[37] produced by Candida and aflatoxin [38] produced 
by Aspergillus have been demonstrated. In our study, 
the intestinal fungal profiles of LUAD cases differed 
from those of HCs. The gut fungal diversity and richness 
markedly increased during the progression of LUAD, 

Fig. 4  Identification of fungal OTU-based signatures of early-stage LUAD. The Boruta algorithm was first used to select 19 OTUs as the final 
features, and five different supervised ML algorithms were used for identifying patients with LUAD based on OTU features in the discovery cohort. 
A, B Accuracy performance (A) and receiver operating characteristic curves (B) of LR, NBs, KNN, SVM, and RF algorithms. RF achieved the highest 
accuracy of 86.17% and the maximum AUC of 0.9350. C Importance of the 19 OTU features was ranked using a classification error loss function

Fig. 5  Validation of the selected OTU features for LUAD. A The OTU features gave an AUC for the ROC curve of 0.9538 using RF with the internal 
validation cohort. B, C The OTU features gave AUCs of 0.9628 and 0.8833, respectively, using RF with the external validation cohorts from Suzhou 
and Hainan
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suggesting that mycobiome alterations potentially pro-
mote the pathological progression of LUAD. The pre-
dominant phyla in both patients with LUAD and HCs 
were Ascomycota and Basidiomycota, consistent with 
previously reported fungal profiles in other malignant 
tumor types [39]. The abnormal changes in the abun-
dance of Ascomycota and Basidiomycota in the LUAD 
group may reflect fungal dysbiosis, in line with prior 
reported studies on colorectal cancer and pancreatic 
cancer [22, 23]. At the genus level, Candida and Sac-
charomyces were the most abundant in our cohort. Pre-
vious studies have shown that Candida, Saccharomyces, 
Malassezia, and Cladosporium spp. are the most preva-
lent fungi in the healthy human gut [40]. However, slight 
variations in the dominant genera are found in different 
study cohorts, possibly due to sample size bias or the 
different geographical locations of participants. Hoff-
man et  al. [41] have reported that Saccharomyces, Can-
dida, and Cladosporium are the most abundant genera in 
healthy subjects. In a study by Nash et  al. [42], Saccha-
romyces, Malassezia, and Candida were the most abun-
dant genera in healthy subjects. Candida is a prominent 
opportunistic fungal pathogen in humans and is involved 
in many other diseases, including inflammatory bowel 
disease (IBD) [43, 44], alcohol-associated liver disease 
[45, 46], asthma [47], and COVID-19 [48]. A recent study 
on pan-cancer mycobiomes in tumor tissues has revealed 
that Candida is associated with pro-inflammatory gene 
expression, tumor metastasis, and poorer survival out-
comes, especially for gastrointestinal cancers, indicating 
that the detection of Candida may represent a novel pre-
dictive biomarker and therapeutic target [25]. Although 
Candida was the most predominant genus in this study, 
it was not associated with the disease phenotype. In 
contrast, the proportion of Saccharomyces was signifi-
cantly higher in patients with LUAD than in controls. 
Saccharomyces spp., as “bakers” and “brewers” yeasts, 
are commonly used in food fermentation. The role of 
Saccharomyces in disease is controversial. Saumya et  al. 
[49] have identified Saccharomyces as the most abundant 
(42%) genus in patients with multiple sclerosis (MS), a 
chronic autoimmune disease of uncertain etiology. In 
addition to the increase in Saccharomyces in patients 
with MS compared with the controls, it is also associ-
ated with the peripheral immune response, implying a 
pathogenic correlation between Saccharomyces and MS. 
In contrast, Harry et al. [44] have reported that Saccha-
romyces and especially Saccharomyces cerevisiae show 
a markedly decreased abundance in patients with IBD, 
whereas S. cerevisiae exhibits anti-inflammatory effects 
involving increased secretion of IL-10. These results 
highlight the complexity of fungi–host interactions and 

the urgent need for the further exploration of their effects 
on health and disease.

As the gut mycobiome is a highly variable and dynamic 
community, limited sample sizes for disease-associated 
fungal taxa may not be reliable biomarkers in diagnostic 
applications. Therefore, in addition to analyzing changes 
in gut fungal composition in patients with early-stage 
LUAD, our study applied OTU-based gut mycobiome 
features to train a supervised ML model. ML refers to a 
wide range of algorithms that can make predictions that 
mimic human decisions and represents a major form of 
artificial intelligence [50]. Cutting-edge computer tech-
nologies of this kind have been widely used in the health-
care field and have achieved remarkable results, such as 
the use of artificial intelligence image recognition tech-
nology to diagnose multiple malignant tumor patients 
accurately through medical images [51–53] and the use 
of ML to predict the prognosis and survival of patients 
with malignant tumors [27, 54]. However, some uncer-
tainty exists about the diagnostic efficacy [55]. In our 
study, an exploratory analysis of five commonly avail-
able supervised ML algorithms was carried out to com-
pare the performance in predicting LUAD. The results 
showed that RF achieved an excellent predictive AUC of 
0.9350 for distinguishing patients with early-stage LUAD 
from healthy subjects. Moreover, considering that gut 
microbiota may be influenced by diet and geography, we 
conducted cross-regional validation to better verify the 
efficacy and applicability of the models. Similar to gut 
bacteria, the gut mycobiome undergoes changes dur-
ing the human lifetime, and the geography, dietary hab-
its, and host factors, including sex, age, and drug use, 
are prominent factors that contribute to shaping the gut 
mycobiome composition [56]. Yang et  al. characterized 
gut mycobiome profiles across different regions in China, 
including six ethnicities at a large population scale, and 
accordingly found that geography and ethnicity have pro-
nounced effects on the variations in gut fungi [57]. In the 
present study, despite the confounding factors of geogra-
phy and diet, all the validation cohorts showed excellent 
results, thereby indicating the potential significance of 
fungal markers in the diagnosis of LUAD and the broad 
applicability of our approach in different geographical 
regions.

The limitations of the current study include the low 
number of fecal samples from the Suzhou and Hainan 
cohorts. Self-reported drug intake may introduce a cer-
tain degree of bias. A larger sample size and stricter 
screening criteria in multiple centers are needed to fur-
ther validate the results. In addition, further animal 
studies are required to verify the potential association 
between altered fungal diversity and tumor formation.
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Conclusions
We elucidated the characteristic gut fungal altera-
tions in patients with LUAD in a large clinical cohort, 
screened OTU-based fungal markers, and applied 
supervised ML models to validate the diagnostic effi-
cacy in cohorts from different regions in China. Nota-
bly, despite the possibility of misdiagnosis, our study 
demonstrates the potential of training supervised ML 
models using intestinal fungal factors for the clinical 
diagnosis of LUAD. We hope to better assist the devel-
opment of diagnostic and therapeutic targets in lung 
cancer and further benefit patients.
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