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Abstract 

Background Most of superficial soft-tissue masses are benign tumors, and very few are malignant tumors. However, 
persistent growth, of both benign and malignant tumors, can be painful and even life-threatening. It is necessary 
to improve the differential diagnosis performance for superficial soft-tissue masses by using deep learning mod-
els. This study aimed to propose a new ultrasonic deep learning model (DLM) system for the differential diagnosis 
of superficial soft-tissue masses.

Methods Between January 2015 and December 2022, data for 1615 patients with superficial soft-tissue masses were 
retrospectively collected. Two experienced radiologists (radiologists 1 and 2 with 8 and 30 years’ experience, respec-
tively) analyzed the ultrasound images of each superficial soft-tissue mass and made a diagnosis of malignant mass 
or one of the five most common benign masses. After referring to the DLM results, they re-evaluated the diagnoses. 
The diagnostic performance and concerns of the radiologists were analyzed before and after referring to the results 
of the DLM results.

Results In the validation cohort, DLM-1 was trained to distinguish between benign and malignant masses, 
with an AUC of 0.992 (95% CI: 0.980, 1.0) and an ACC of 0.987 (95% CI: 0.968, 1.0). DLM-2 was trained to classify the five 
most common benign masses (lipomyoma, hemangioma, neurinoma, epidermal cyst, and calcifying epithelioma) 
with AUCs of 0.986, 0.993, 0.944, 0.973, and 0.903, respectively. In addition, under the condition of the DLM-assisted 
diagnosis, the radiologists greatly improved their accuracy of differential diagnosis between benign and malignant 
tumors.

Conclusions The proposed DLM system has high clinical application value in the differential diagnosis of superficial 
soft-tissue masses.
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Background
Superficial soft-tissue masses refer to various benign and 
malignant masses occurring in the superficial skin layer, 
subcutaneous tissue layer (fat, fibrous connective tissue 
and blood vessels), and muscle tissue layer [1] and pre-
sent as subcutaneous masses of different sizes during 
palpation, which may be accompanied by pain, swelling, 
and dysfunction [2]. The annual incidence of superficial 
soft-tissue masses is about 3‰, and the incidence has 
increased in recent years [3]. Most are benign tumors, 
and very few are malignant tumors (less than 1%) [4]. 
However, both benign and malignant persistent growth 
can cause pain and discomfort. Malignant masses that 
continue to develop may cause complications, such as 
pathological fractures, and may diffuse and become life-
threatening. In clinical practice, compared with benign 
and malignant classification, the difficulty in the diagno-
sis of soft-tissue masses lies in the benign classification, 
because benign has more than 70 subtypes and rarely dis-
plays typical imaging signs of each subtype in individu-
als, and the accuracy of diagnosis is strongly influenced 
by the radiologist’s experience, so the accuracy rate of the 
most radiologists is less than 70%. Therefore, early detec-
tion and correct diagnosis are of great significance for the 
reasonable treatment and prognosis of superficial soft-
tissue masses.

CT, MRI, and ultrasound can all be used for the exami-
nation of superficial soft-tissue masses. Among them, CT 
[5] has an ideal localization function and can show the 
relationship between tumor size, location, boundary, and 
surrounding tissues. However, its resolution on soft-tis-
sue is low, and sometimes it is difficult to be qualitative, 
and it is also radioactive. Although MRI [6] can clarify 
the soft tissue structure, it is expensive and requires a 
long scanning time [7], both of which are not conducive 
for the diagnosis of superficial soft-tissue masses in clini-
cal practice. In contrast, ultrasound has good soft-tissue 
resolution, is non-invasive, safe, non-radioactive, inex-
pensive, can be repeated multiple times, and can have a 
clinical palpation function during the examination, which 
is an incomparable advantage over other imaging meth-
ods, so it is the best method for the initial diagnosis of 
superficial soft-tissue masses [8–13]. However, in clinical 
practice, the diagnosis of superficial soft-tissue masses 
mainly depends on the experience and ability of the radi-
ologist, which is subjective. Therefore, an automated tool 
that can provide screening and auxiliary diagnosis of 
superficial soft-tissue masses is necessary to improve the 
diagnostic efficiency and accuracy of radiologists.

Different from traditional methods, deep learn-
ing radiomics (DLR) is an emerging technology based 
on data-driven learning, which can mine a large num-
ber of quantitative and high-throughput features that 

are difficult for human eyes to recognize from medical 
images for diagnosis and prognosis [14, 15]. However, the 
lesion edge in ultrasonic images is fuzzy, which is greatly 
affected by the operator, and it is difficult to manually 
define and extract features, and the reliability is poor [15]. 
DLR can automatically extract medical image features by 
using a deep neural network structure, so the most signif-
icant advantage of DLR is that it does not need to manu-
ally extract features [14, 15].

There have been many studies on deep learning radi-
omics based on ultrasonic images [15–21]. All these 
studies have obtained satisfactory results, indicating that 
the establishment of a deep learning model is conducive 
to more efficient ultrasonic diagnosis. However, as far as 
we know, there is only one study [22] that applies artifi-
cial intelligence (AI) to ultrasound images to distinguish 
and identify superficial soft-tissue masses. This study 
was conducted on 419 patients in a single center, but its 
model had a small amount of data, simple model results, 
and poor benign identification performance. Therefore, 
more comprehensive studies with larger data cohorts are 
warranted to explore the differentiating performance of 
ultrasound-based DLR for superficial soft-tissue masses.

In this study, we retrospectively collected 1615 cases of 
superficial soft-tissue masses and aim to propose a new 
ultrasound deep learning model system consisting of two 
deep learning models (DLM-1 and DLM-2) for the clas-
sification and diagnosis of superficial soft-tissue masses. 
DLM-1 is trained to distinguish between benign and 
malignant masses, and DLM-2 is trained to classify the 
five most common benign superficial soft-tissue masses: 
lipomyoma, hemangioma, neurinoma, epidermal cyst, 
and calcifying epithelioma. Furthermore, we found data 
on superficial soft-tissue masses from two hospitals as 
an external test cohort to validate the performance of the 
model. In addition, in order to further verify the clinical 
application value of the model, we compared the DLM 
with the radiologists.

Methods
Patients
In this study, we retrospectively collected data for a total 
of 1615 patients with superficial soft-tissue masses from 
Peking University Third Hospital and two other hos-
pitals from January 2015 to December 2022. This study 
was approved by the Institutional Ethics Committee 
(approval number: S2022674), and the need to obtain 
informed consent from patients was waived.

All effective cases included in the study must have 
pathological biopsy (histopathological findings) results as 
a factual basis for the type of mass to be objective.

Inclusion criteria were as follows: (a) confirmed by his-
topathological findings of puncture biopsy or surgical 
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excision; (b) the image is free from puncture needles and 
other external foreign bodies; (c) both two-dimensional 
grayscale images and color Doppler flow imaging (CDFI) 
images; (d) clear images with typical features.

Exclusion criteria were as follows: (a) no histopatho-
logical findings; (b) interference by puncture needles 
and other external bodies; (c) only one image with two-
dimensional grayscale image and CDFI; (d) unqualified 
ultrasonic images; (e) soft-tissue benign masses in addi-
tion to the five benign masses studied in this study.

In this study, 20% of patients were randomly selected to 
be in the independent validation cohort, resulting in a 4:1 
ratio of trained and validated patients. Stratified random 
sampling was used to ensure that model selections for the 
training and validation cohorts in this study were com-
pletely isolated, with a consistent proportion of patients 
responding and not responding.

Acquisition and analysis of US findings
For each patient, we collected 5–8 frames of grayscale 
image and CDFI for screening suitable images and 
finally used one grayscale image and one CDFI for train-
ing and evaluation of the DLM. Most of the research 
was done using a 7–14  MHz linear array probe for 

image acquisition on a HITACHI AIRETT 70 or GE 
LOGIQ E9 system under the default parameter condi-
tions of the instrument. At the same time, comparative 
scan and dynamic scan should be carried out when the 
image is collected to compare and dynamically observe 
the boundary and scope of the lump. If the lump is deep 
or large, appropriate pressure should be applied. We 
ensured that each case contained at least one grayscale 
image and one CDFI.

Deep learning diagnostic and scoring models
A deep learning model system based on ultrasound 
images, including two deep learning models (DLM-1 and 
DLM-2), was developed for the differential diagnosis of 
superficial soft-tissue masses (Fig.  1). DLM-1 was used 
to distinguish between benign and malignant masses. 
DLM-2 consisted of five sub-models (SM-1, SM-2, SM-3, 
SM-4, and SM-5 used to identify lipomyoma, hemangi-
oma, neurinoma, epidermal cyst, and calcifying epithe-
lioma under benign conditions, respectively). All of these 
models are similar in structure to ConvNeXt networks 
[23, 24] (see Additional file 1: Figure S1 and Method S1), 
with the only difference being the fully connected layer, 
to which we made some simple modifications to so that 

Fig. 1 The structure of deep learning model system. For each test case, our model utilizes ultrasound images as inputs each time, outputs 
superficial soft-tissue masses diagnostic task-related predictive probabilities and corresponding heatmaps to compare with and assist radiologists
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the network can adapt to current classification problems 
(see Additional file 1: Table S1). The input to each model 
is a grayscale ultrasound image or a CDFI image. The 
output of each model is the probability of each category 
from 0 to 1.

When applying these deep learning models, the 
region of interest (ROI) of each ultrasonic image is first 
extracted manually to avoid unnecessary text and graphic 
interference. Then, the ROI frame is adjusted to 470 × 280 
based on the average size. In the training process, a series 
of data demonstration operations, including random 
scaling, random clipping, random flipping, and normali-
zation, are needed to overcome overfitting. During the 
test, we directly resized each image to 470 × 280 and nor-
malized each image in the same way as the normalization 
during the training. First, DLM-1 is applied to diagnose 
whether the sample is benign or malignant. If the sample 
is determined to be benign, further diagnosis is made by 
DLM-2, and the sub-model with the highest score gives 
the diagnosis.

The training cohort (n = 618) was used to train the 
model, the validation cohort (n = 154) was used to select 
the training hyperparameters and the best model dur-
ing the training, and the test cohort A (n = 156) and the 
test cohort B (n = 123) were used to test the generaliza-
tion performance of the model. It is important to note 
that in this study, the test queue was completely isolated 
from the training and model selection, so that they could 
be treated as two separate data cohorts. We used the pre-
processed network weights on the ImageNet data cohort 
[25–27] as the initial weights. Finally, ultrasonic images 
were used to fine-tune the network weights. We used the 
same strategy to train SM-1, SM-2, SM-3, SM-4, SM-5, 
and DLM-1 (see Additional file 1: Method S2).

Radiologist study
We compared the results of the DLM for the identifi-
cation of benign and malignant masses and the clas-
sification of benign masses with the diagnoses of two 
radiologists of different seniority with 30 and 8 years of 
clinical experience (Radiological-1 and Radiological-2). 
In the reader study, each radiologist evaluated grayscale 
and Doppler images of 58 patients in an internal test 
cohort, regardless of clinical history or patient demo-
graphics, and recorded his image-only diagnosis. Accord-
ing to the comparison results, the performance and 
clinical application value of the DLM were obtained.

Statistical analysis
Accuracy, specificity, sensitivity, positive predictive value 
(PPV), negative predictive value (NPV), and f1-score 
were calculated to show the diagnostic performance 
of the DLM (see Additional file  1: Method S3). The χ2 

test for independence was used to calculate P values 
for categorical variables (gender and mass type), and 
the one-way ANOVA was used to calculate P values for 
quantitative variables (age). The area under the receiver 
operating characteristic (ROC) curve (AUC) was used 
to estimate the performance of the DLM. For all tests 
mentioned above, a P value of < 0.05 was considered sig-
nificant. The statistical analyses were performed using 
Python and SciPy.

Results
Baseline characteristics
In this study, we retrospectively collected data for a total 
of 1615 patients with superficial soft-tissue masses, of 
which 564 patients were excluded due to exclusion crite-
ria: (a) 214 cases, (b) 39 cases, (c) 57 cases, (d) 209 cases, 
(e) 45 cases. Finally, a total of 1051 cases were included 
for model training and verification (Fig. 2).

The data cohort of the Third Hospital of Beijing Medi-
cal University (Hospital-1 = 772) was randomly assigned 
as the training cohort (n = 618), the validation cohort 
(n = 154), the test cohort A (Hospital-2 = 156) of Beijing 
Civil Aviation General Hospital, and the test cohort B 
(Hospital-3 = 123) of Beijing Friendship Hospital Affili-
ated to Capital Medical University. Baseline characteris-
tics of these patients are summarized in Table  1. There 
were certain statistical differences among benign data 
cohorts, which may be caused by large sample data and 
different hospitals.

Performance of DLM‑1
DLM-1 is used to distinguish between benign and malig-
nant soft-tissue masses. In the training cohort, DLM-1 
had an AUC of 0.915 (95% CI: 0.871, 0.950) and an ACC 
of 0.875 (95% CI: 0.854, 0.896). In the validation cohort, 
the AUC of DLM-1 reached a staggering 0.992 (95% CI: 
0.980, 1.0), and the ACC was 0.987 (95% CI: 0.968, 1.0).

DLM-1 also performed well in two external test 
cohorts, with AUCs of 0.979 (95% CI: 0.952, 1.0) and 
0.898 (95% CI: 0.827, 0.959), respectively (see Table 2 for 
all quantitative indicators of DLM-1, and the ROC curves 
are shown in Fig. 3a).

Performance of DLM‑2
DLM-2 is used to distinguish the five most common 
benign superficial soft-tissue masses, including lipo-
myoma, hemangioma, neurinoma, epidermal cyst, and 
calcifying epithelioma. For the model training cohort, 
validation cohort, and test cohorts A and B, the AUCs 
of lipomyoma classification were 0.980, 0.986, 0.980, and 
0.905, respectively. The AUCs of hemangioma classifica-
tion were 0.976, 0.993, 0.909, and 0.827, respectively. The 
AUCs of neurinoma were 0.940, 0.944, 0.885, and 0.811, 
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Fig. 2 Patient selection flowchart

Table 1 Patient and tumor baseline characteristics

Data are presented as n (%) or mean ± SD

Internal cohort Test cohort A Test cohort B P

Training cohort Validation cohort

Subject 618 154 156 123

Malignant

Age 49.1 (± 16.1) 51.0 (± 12.2) 47.4 (± 12.0) 49.1 (± 16.1) 0.91

Gender Male 17 (53.1%) 4 (50.0%) 2 (40.0%) 4 (40.0%) 0.431

Total 32 8 5 10

Benign

Age 33.9 (± 9.0) 32.7 (± 7.9) 32 (± 7.5) 33.9 (± 9.0) 0.02

Gender Male 288 (49.2%) 69 (47.3%) 80 (53.0%) 59 (52.2%)  < 0.001

Type 0.028

Lipomyoma 121 (20.6%) 30 (20.5%) 40 (26.5%) 28 (24.8%)

Hemangioma 120 (20.5%) 30 (20.5%) 16 (10.5%) 20 (17.7%)

Neurinoma 120 (20.5%) 30 (20.5%) 25 (16.6%) 18 (15.9%)

Epidermal cyst 160 (27.3%) 40 (27.4%) 45 (29.8%) 27 (23.9%)

Calcifying epithelioma 65 (11.1%) 16 (11.1%) 25 (16.6%) 20 (17.7%)

Total 586 146 151 113

Table 2 Diagnostic performance of DLM-1

Data in brackets are the 95% confidence interval

Abbreviations: AUC  area under the receiver operating characteristic curve, ACC  accuracy, PPV positive predict value, NPV negative predict value, DLM deep learning 
model, training cohort (n = 617 individuals), validation cohort (n = 155 individuals), test A cohort (n = 156 individuals), test B cohort (n = 122 individuals)

Training cohort Validation cohort Test cohort A Test cohort B

AUC 0.915 [0.871, 0.95] 0.992 [0.98, 1.0] 0.979 [0.952, 1.0] 0.898 [0.827, 0.959]

ACC (%) 87.5 [84.7, 90.0] 98.7 [95.4, 99.8] 97.4 [93.6, 99.3] 91.0 [84.4, 95.4]

Sensitivity (%) 84.4 [67.2, 94.7] 100.0 [63.1, 100.0] 40.0 [5.3, 85.3] 20.0 [2.5, 55.6]

Specificity (%) 87.7 [84.8, 90.2] 98.6 [95.2, 99.8] 99.3 [96.4, 100.0] 97.3 [92.4, 99.4]

PPV (%) 27.3 [22.4, 32.8] 80.0 [50.2, 94.1] 66.7 [17.7, 94.9] 40.0 [11.2, 78.0]

NPV (%) 99.0 [97.9, 99.6] 100.0 [100.0, 100.0] 98.0 [96.1, 99.0] 93.2 [91.0, 94.9]

F1-score 0.412 [0.318, 0.5] 0.889 [0.706, 1.0] 0.5 [0, 0.857] 0.267 [0, 0.5]
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respectively. The AUCs of epidermal cyst classification 
were 0.997, 0.973, 0.942, and 0.898, respectively. The 
AUCs of calcifying epithelioma were 0.974, 0.903, 0.943, 
and 0.898, respectively. The ROC curves are shown in 
Fig.  3b–f. Table  3 summarizes the various performance 
indicators of the 95% CI of DLM-2.

Results of radiologist study
In this study, two radiologists of different seniority (Radi-
ologist-1: 30  years and Radiologist-2: 8  years of clinical 
experience) identified 58 benign and malignant tumors 
in the validation cohort (including 16 malignant sarco-
mas, 10 lipomyoma, 12 hemangiomas, 6 neurinomas, 10 
epidermal cysts, and 4 calcifying epithelioma), and the 
results were 86.2% (50/58) and 81% (47/58), respectively. 
They classified the benign mass correctly 71.4% (30/42) 
and 59.5% (25/42), respectively.

Without knowing the exact results of the cases, the 
DLM assisted the two radiologists to re-diagnose the 
previous 58 cases: the differential results of benign and 
malignant masses were 89.7% (52/58) and 87.9% (51/58), 
respectively. The results of benign mass classification 
were 80.9% (34/42) and 73.8% (31/42), respectively. ROC 
curves of DLM validation cohort compared with the two 
radiologists (Fig. 3b–f).

Interpretability of the DLM
In order to explore the interpretability of the DLM, we 
used gradient-weighted class activation mapping (Grad 
CAM) to visualize it [28] and found the areas of most 
concern of the DLM through a visualization algorithm, as 
shown in Fig. 4.

We randomly selected 130 patients in the internal 
dataset, used Grad CAM to display the areas of most 

Fig. 3 ROC curves of the DLM-1 and the DLM-2. ROC curves of the DLM in the train cohort, validation cohort, test cohort A, and test cohort B. 
a ROC curves of DLM-1. b ROC curves of lipomyoma in DLM-2. c ROC curves of hemangioma in DLM-2. d ROC curves of neurinoma in DLM-2. e 
ROC curves of epidermal cyst in DLM-2. f ROC curves of calcifying epithelioma in DLM-2. ROC, receiver operating characteristic curve; AUC, area 
under the receiver operator characteristic curve; DLM, deep learning model
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concern of the DLM system, and then compared it with 
the areas of most concern of the two radiologists of dif-
ferent seniority. We found the following: in Radiologist-1, 
28.4% (37/130) of the two areas of concern coincided 
completely; most overlapped 56.2% (73/130); a few over-
lapped 13.1% (17/130); there was 2.3% (3/130) that did 
not coincide at all. In Radiologist-2, there was 23.1% 
(30/130) that did not coincide at all. 52.3% (68/130) 
mostly overlapped; 17.7% (23/130) overlapped in a small 
part; 6.9% (9/130) did not overlap at all. Table 4 summa-
rizes the areas of concern of level of coincidence between 
the DLM and the two radiologists.

Discussion
This study evaluated the performance of a DLM sys-
tem in the differential diagnosis of superficial soft-tissue 
masses, especially its value for less experienced and expe-
rienced radiologists. The DLM-assisted diagnosis was 
significantly helpful for the two radiologists.

DLM-1 and DLM-2 are two deep learning diagnostic 
models. DLM-1 was trained to distinguish between benign 

and malignant masses, and it can be seen from Table  2 
that DLM-1 showed excellent performance. In the valida-
tion cohort, the AUC of DLM-1 reached an astonishing 
0.992 (95% CI: 0.980, 1.0), and the ACC was 0.987 (95% 
CI: 0.968, 1.0), which highly indicated that the model was 
more accurate than the clinician in distinguishing benign 
from malignant masses. DLM-2 was trained to classify the 
five most common benign masses (lipomyoma, heman-
gioma, neurinoma, epidermal cyst, calcifying epithelioma), 
and the AUCs in the validation cohort were 0.986, 0.993, 
0.944, 0.973, and 0.903, respectively. In test cohort B, the 
DLM performed slightly worse because the ultrasonic 
images were taken on machines of different make and 
model from those used in the other two centers. As can 
be seen from the above data, all the performance indexes 
of DLM-2 were about 0.9, indicating that DLM-2 had a 
strong ability in classifying five kinds of benign soft-tissue 
masses. The combination of the two models can accurately 
diagnose soft-tissue masses. It can be seen that deep learn-
ing is not subjective like humans, so it can accurately and 
stably carry out reasonable classification, avoiding the 

Table 3 Diagnostic performance of DLM-2

Data in brackets are the 95% confidence interval

Abbreviations: AUC  area under the receiver operating characteristic curve, ACC  accuracy, PPV positive predict value, NPV negative predict value, DLM deep learning 
model, training cohort (n = 584 individuals), validation cohort (n = 148 individuals), test cohort A (n = 151 individuals), test cohort B (n = 112 individuals)

AUC ACC (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1‑score

Lipomyoma

 Training cohort 0.98 [0.954, 1.0] 94.3 [92.6, 95.9] 90.8 [86.1, 95.1] 95.3 [93.4, 96.8] 83.2 [77.3, 88.5] 97.6 [96.3, 98.7] 0.869 [0.825, 0.904]

 Validation cohort 0.986 [0.973, 0.997] 95.3 [92.6, 98.0] 83.9 [71.9, 93.8] 98.3 [96.4, 100.0] 92.9 [84.2, 100.0] 95.8 [92.7, 98.4] 0.881 [0.8, 0.947]

 Test cohort A 0.98 [0.954, 1.0] 84.1 [78.8, 88.7] 95.0 [88.9, 100.0] 80.2 [73.7, 86.0] 63.3 [53.1, 73.8] 97.8 [95.2, 100.0] 0.76 [0.674, 0.832]

 Test cohort B 0.905 [0.847, 0.956] 78.6 [72.3, 84.8] 96.4 [89.5, 100.0] 72.6 [64.9, 80.2] 54.0 [42.6, 65.9] 98.4 [95.2, 100.0] 0.692 [0.59, 0.786]

Hemangioma

 Training cohort 0.976 [0.966, 0.985] 90.6 [88.5, 92.6] 92.5 [88.2, 96.3] 90.1 [87.8, 92.2] 70.7 [64.5, 76.7] 97.9 [96.7, 99.0] 0.801 [0.756, 0.844]

 Validation cohort 0.993 [0.986, 0.999] 93.9 [90.5, 96.6] 70.0 [55.9, 82.9] 100.0 [100.0, 100.0] 100.0 [100.0, 100.0] 92.9 [89.1, 96.2] 0.824 [0.717, 0.906]

 Test cohort A 0.909 [0.851, 0.957] 79.5 [74.2, 84.8] 87.5 [71.4, 100.0] 78.5 [72.7, 84.6] 32.6 [21.2, 45.2] 98.1 [95.6, 100.0] 0.475 [0.333, 0.606]

 Test cohort B 0.827 [0.735, 0.909] 72.3 [65.2, 80.4] 73.7 [57.1, 90.0] 72.0 [64.3, 80.4] 35.0 [22.9, 48.4] 93.1 [87.7, 97.5] 0.475 [0.333, 0.604]

Neurinoma

 Training cohort 0.94 [0.92, 0.96] 85.1 [82.7, 87.7] 92.5 [88.3, 96.3] 83.2 [80.3, 86.2] 58.7 [53.1, 64.9] 97.7 [96.4, 99.0] 0.718 [0.669, 0.766]

 Validation cohort 0.944 [0.902, 0.978] 89.1 [85.0, 93.2] 86.7 [76.0, 96.4] 89.7 [85.0, 94.0] 68.4 [55.2, 80.0] 96.3 [93.4, 99.1] 0.765 [0.656, 0.847]

 Test cohort A 0.885 [0.816, 0.94] 82.8 [77.5, 87.4] 84.0 [70.8, 95.8] 82.5 [76.4, 88.2] 48.8 [35.7, 61.0] 96.3 [93.1, 99.1] 0.618 [0.491, 0.716]

 Test cohort B 0.811 [0.716, 0.895] 65.2 [58.0, 72.3] 77.8 [60.0, 94.1] 62.8 [54.2, 70.3] 28.6 [18.0, 38.5] 93.7 [88.1, 98.4] 0.418 [0.286, 0.527]

Epidermal cyst

 Training cohort 0.997 [0.993, 1.0] 98.5 [97.6, 99.1] 97.5 [95.2, 99.4] 98.8 [97.9, 99.5] 96.9 [94.4, 98.8] 99.1 [98.3, 99.8] 0.972 [0.956, 0.986]

 Validation cohort 0.973 [0.928, 0.998] 95.2 [92.5, 98.0] 87.5 [78.0, 95.1] 98.1 [95.8, 100.0] 94.6 [88.1, 100.0] 95.5 [91.7, 98.2] 0.909 [0.842, 0.958]

 Test cohort A 0.942 [0.911, 0.969] 84.8 [79.5, 89.4] 51.1 [38.3, 63.8] 99.1 [97.2, 100.0] 95.8 [88.5, 100.0] 82.7 [76.8, 87.7] 0.667 [0.54, 0.767]

 Test cohort B 0.898 [0.839, 0.942] 82.1 [75.9, 87.5] 33.3 [17.9, 48.1] 97.6 [94.7, 100.0] 81.8 [58.3, 100.0] 82.2 [75.8, 88.1] 0.474 [0.286, 0.622]

Calcifying epithelioma

 Training cohort 0.974 [0.958, 0.986] 91.3 [89.2, 93.2] 90.6 [84.2, 96.0] 91.3 [89.2, 93.5] 56.3 [48.3, 64.2] 98.8 [97.9, 99.6] 0.695 [0.625, 0.759]

 Validation cohort 0.903 [0.816, 0.967] 85.8 [81.8, 90.5] 82.4 [66.7, 95.7] 86.3 [81.5, 91.0] 43.8 [29.3, 57.7] 97.4 [94.8, 99.2] 0.571 [0.417, 0.692]

 Test cohort A 0.943 [0.909, 0.973] 90.1 [86.1, 94.0] 60.0 [42.9, 76.9] 96.0 [93.1, 98.4] 75.0 [58.8, 89.5] 92.4 [88.7, 96.1] 0.667 [0.514, 0.787]

 Test cohort B 0.898 [0.848, 0.942] 87.5 [82.1, 92.0] 50.0 [32.0, 69.6] 95.7 [91.7, 98.9] 71.4 [50.0, 91.7] 89.8 [84.5, 94.2] 0.588 [0.4, 0.744]
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problem of missed diagnosis and misdiagnosis caused by 
the subjective judgment of disease types.

In the radiologist study, under the condition of DLM-
assisted diagnosis, the accuracy of diagnosis by the 
radiologist was greatly improved in both benign and 
malignant differentiation and benign classification, 

especially in benign classification. However, only in the 
diagnosis of calcifying epithelioma, the effect of elevation 
is not good; because the clinical radiologist’s diagnosis 
accuracy is already high, DLM-assisted with no signifi-
cant improvement. Also, with the help of the DLM, jun-
ior radiologists can achieve the diagnostic accuracy of 

Fig. 4 Visualization of the DLM using the Grad-CAM. CDFI and activation maps of 6 types of lumps are shown. The strong response areas (red areas) 
are also the areas the DLM paid more attention to, which also means that these areas are more valuable for response prediction. The ovals represent 
the common areas of concern of the radiologist and the DLM; the squares represent the areas of greater concern of the radiologist; the triangles 
represent the areas of greater concern of the DLM. CDFI, color Doppler flow imaging; DLM, deep learning model

Table 4 The areas of concern of level of coincidence between DLM and radiologists

Level of coincidence Complete (100%) Most (50–99%) Partial (1–49%) Not at all (0)

Radiologist-1

 Lipomyoma 36.4% (8/22) 54.5% (12/22) 9.1% (2/22) 0 (0/22)

 Hemangioma 25.0% (5/20) 60.0% (12/20) 10.0% (2/20) 5.0% (1/20)

 Neurinoma 13.8% (4/29) 72.4% (21/29) 20.7% (6/29) 0 (0/29)

 Epidermal cyst 20.7% (6/29) 58.6% (17/29) 10.3% (3/29) 3.5% (1/29)

 Calcifying Epithelioma 55.0% (11/20) 30.0% (6/20) 15.0% (3/20) 0 (0/20)

 Sarcoma 30.0% (3/10) 50.0% (5/10) 10.0% (1/10) 10.0% (1/10)

 Total 28.4% (37/130) 56.2% (73/130) 13.1% (17/130) 2.3% (3/130)

Radiologist-2

 Lipomyoma 27.3% (6/22) 68.2% (15/22) 4.6% (1/22) 0 (0/22)

 Hemangioma 25.0% (5/20) 35.0% (7/20) 25.0% (5/20) 15.0% (3/20)

 Neurinoma 6.9% (2/29) 72.4% (21/29) 27.6% (8/29) 3.5% (1/29)

 Epidermal cyst 13.8% (4/29) 55.2% (16/29) 13.8% (4/29) 6.9% (2/29)

 Calcifying epithelioma 50.0% (10/20) 30.0% (6/20) 15.0% (3/20) 5.0% (1/20)

 Sarcoma 30.0% (3/10) 30.0% (3/10) 20.0% (2/10) 20.0% (2/10)

 Total 23.1% (30/130) 52.3% (68/130) 17.7% (23/130) 6.9% (9/130)
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senior radiologists. Thus, the DLM has certain clinical 
application value in assisting radiologists in the diagnosis 
of soft-tissue masses.

We used Grad CAM to visualize the DLM. When 
comparing the areas of most concern identified by the 
DLM and those identified by the radiologists, we found 
there were many common areas of concern (the rea-
sons why the proportion of complete or most overlap 
between the two was more than 75%). For example, 
(1) for malignant masses [29], both of them were very 
concerned about the rich blood flow inside the lesion 
(Fig. 4a); (2) for lipomyoma [30], both of them focused 
on the strong echo lines inside the lesion (Fig.  4b); (3) 
for hemangioma , both of them paid much attention 
to the obvious internal honeycomb structure and the 
enhanced echo behind the lesion (Fig. 4c); (4) for neu-
rinoma [31, 32], both of them focused on the “bright 
cap sign” of the lesions (Fig. 4d); (5) for epidermal cyst 
[33, 34], both of them were very concerned about the 
enhancement of the echo behind the lesion (Fig.  4e); 
and (6) for calcifying epithelioma [35, 36], both of them 
focused on the obvious attenuation of the echo behind 
the lesion (Fig. 4f ).

In addition, the two had many different concerns. 
For example, (1) for malignant masses, the radiologists 
focused on sharp but irregular edges of the lesion, while 
the DLM focused on the hyperechoic wrapping of une-
qual thickness around the lesion, which represents a large 
number of small interfaces after infiltration, which the 
radiologists did not pay sufficient attention to (Fig. 4a); (2) 
for lipomyoma, when there were not many thick lines, the 
DLM paid more attention to the thick lines; when there 
were many thin lines, the DLM paid more attention to the 
two thin lines that were very close together. More lines 
and fine lines indicate that there are many normal fascia 
lines in the lesion, meaning it is more likely to be benign, 
and there are fewer fascia lines in the malignant mass, 
which is really not generally paid attention to by ultra-
sound doctors (Fig. 4b). (3) For neurinoma, the DLM paid 
more attention to blood flow signals inside the lesions, 
indicating solid nodules (Fig. 4d); (4) for epidermal cyst, 
the DLM’s focus was on the beginning of the lateral sound 
shadow, which means that the site is smooth and not easy 
for the radiologist to see at a glance (Fig. 4e).

We found that there were many similarities and differ-
ences between the DLM area of concern and the signs 
of the radiologist. For the similarities, the rationality 
and feasibility of the model can be further confirmed. 
At the same time, it can also help doctors quickly find 
the focus of the lesion area. For different points, it can 
provide clinicians with lesion areas to focus on in other 
points and provide new ideas for clinical diagnosis. This 

phenomenon may come from this reason: in terms of 
image labeling, we did not cover and sketch the boundary 
details of the lesion as traditional labeling did, but chose 
to use a wide range of field of view to intercept, which 
gave the model more space for self-discovery and learn-
ing. Compared with the traditional model, which only 
saw the details that the doctor wanted the model to see, 
our method may enable the model to discover the details 
that the doctor did not find.

Currently, the only relevant work is an artificial intel-
ligence model proposed by Benjamin Wang et al. [22] to 
distinguish soft-tissue masses. Their model does a good 
job of distinguishing benign from malignant. However, 
their work has many limitations. First, the number of 
cases they collected was small (n = 419), and there were 
many cases without two-dimensional and color Dop-
pler ultrasound images. Second, they had no external 
test cohort and were not verified by other hospital data, 
so the model performance results were not convincing. 
Third, although their model did a good job of distinguish-
ing benign from malignant, it failed completely to iden-
tify the three benign masses and did not even mention 
benign differentiation in the study’s conclusion. Finally, 
the artificial intelligence model applied in this study is 
simple in structure and low in efficiency, with low value 
for clinical application. However, we propose and verify 
that a DLM that addresses these deficiencies well and 
achieves excellent performance, establishing a more 
effective and clinically applicable model for the differen-
tiation of soft-tissue masses.

The main limitation of the study relates to the reader 
study design of two specialist radiologists. In the reader 
study, the radiologist could only interpret selected 
static two-dimensional grayscale and CDFI images. In 
practice, radiologists can combine patient history, clini-
cal symptoms, and real-time dynamic image informa-
tion to obtain diagnosis results. The reader design of 
the study did not take this into account, which may 
have underestimated the performance of the radi-
ologists. Another limitation is that due to the small 
number and wide variety of malignant cases, it is not 
possible to further distinguish malignant cases. In the 
future, we will use more clinical data collected to clas-
sify malignant masses, which may further improve the 
diagnostic performance of the DLM system.

Conclusions
In summary, we propose a new ultrasound deep learn-
ing model system, including two deep learning models 
(DLM-1 and DLM-2), with good performance for the 
classification and diagnosis of superficial soft-tissue 
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masses. If this model is applied clinically, it may help 
to improve the accuracy of classification and identifica-
tion of soft-tissue mass by the radiologist. Furthermore, 
it is helpful for improving the diagnostic efficiency of 
soft-tissue masses in the physical examination screen-
ing scenario and has high clinical application value.
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