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Abstract 

Background Black Americans suffer disparities in risk for cardiometabolic and other chronic diseases. Find-
ings from the Adventist Health Study-2 (AHS-2) cohort have shown associations of plant-based dietary patterns 
and healthy lifestyle factors with prevention of such diseases. Hence, it is likely that racial differences in metabolic 
profiles correlating with disparities in chronic diseases are explained largely by diet and lifestyle, besides social deter-
minants of health.

Methods Untargeted plasma metabolomics screening was performed on plasma samples from 350 participants 
of the AHS-2, including 171 Black and 179 White participants, using ultrahigh-performance liquid chromatography-
tandem mass spectrometry (UPLC-MS/MS) and a global platform of 892 metabolites. Differences in metabolites 
or biochemical subclasses by race were analyzed using linear regression, considering various models adjusted 
for known confounders, dietary and/or other lifestyle behaviors, social vulnerability, and psychosocial stress. The Sto-
rey permutation approach was used to adjust for false discovery at FDR < 0.05.

Results Linear regression revealed differential abundance of over 40% of individual metabolites or biochemical sub-
classes when comparing Black with White participants after adjustment for false discovery (FDR < 0.05), with the vast 
majority showing lower abundance in Blacks. Associations were not appreciably altered with adjustment for dietary 
patterns and socioeconomic or psychosocial stress. Metabolite subclasses showing consistently lower abundance 
in Black participants included various lipids, such as lysophospholipids, phosphatidylethanolamines, monoacylg-
lycerols, diacylglycerols, and long-chain monounsaturated fatty acids, among other subclasses or lipid categories. 
Among all biochemical subclasses, creatine metabolism exclusively showed higher abundance in Black participants, 
although among metabolites within this subclass, only creatine showed differential abundance after adjustment 
for glomerular filtration rate. Notable metabolites in higher abundance in Black participants included methyl and pro-
pyl paraben sulfates, piperine metabolites, and a considerable proportion of acetylated amino acids, including many 
previously found associated with glomerular filtration rate.

Conclusions Differences in metabolic profiles were evident when comparing Black and White participants 
of the AHS-2 cohort. These differences are likely attributed in part to dietary behaviors not adequately explained 
by dietary pattern covariates, besides other environmental or genetic factors. Alterations in these metabolites 
and associated subclasses may have implications for the prevention of chronic diseases in Black Americans.
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Background
Black or  African Americans suffer persistent disparities 
in cardiovascular and metabolic diseases, particularly 
higher morbidity and mortality from these diseases, in 
spite of downward trends in the general US population. 
For example, while national mortality rates for heart dis-
ease and stroke have declined 61% and 70%, respectively, 
since 1975, rates for African Americans remain higher by 
roughly 20% and 40%, respectively [1]. Additionally, rates 
of hypertension [2, 3] and stroke and peripheral arte-
rial disease have been found to be nearly twice as high 
in Black compared with White Americans, and Black 
Americans have higher rates of obesity [2]. Furthermore, 
Blacks have a disproportionate cancer burden, as evi-
denced by their higher mortality and low survival com-
pared to other racial/ethnic groups, with a higher risk of 
death for specific cancers including myeloma, stomach 
cancer, prostate cancer, endometrial cancer, and breast 
cancer [4]. Moreover, Blacks are 1.5 to 2 times as likely to 
develop diabetes as Whites [5, 6] and twice as likely to die 
from diabetes [7].

Reductions in coronary disease progression and death 
are largely attributed to improvements in risk factors 
(smoking, hypertension, physical inactivity) [8, 9]. Die-
tary patterns or habits may play an important role in the 
prevention and control of chronic diseases. Epidemio-
logic and experimental studies have linked diets high in 
plant-based foods to a number of favorable health out-
comes, including lower risk of metabolic syndrome, car-
diometabolic diseases, and cancer, whereas diets high in 
non-fish meats and fatty or refined foods are associated 
with increased risk of these diseases [10–14]. Findings 
from the Adventist Health Study (AHS)-2 cohort, par-
ticularly, have shown strong inverse associations between 
a vegetarian dietary pattern and diabetes, metabolic 
syndrome (including lower triglycerides, glucose, blood 
pressure, waist circumference, and total and low-density 
lipoprotein (LDL)-cholesterol), and coronary heart dis-
ease [15–19]. This reduction in risk of metabolic syn-
drome and the favorable outcomes for vegetarians are 
apparent in Black participants as well [15].

Dietary behaviors may have a profound impact on 
metabolites. We previously reported distinct metabolic 
signatures for vegans relative to nonvegetarians, with 
many of the differentially abundant metabolite subclasses 
implicated in inflammation-related or cardiometabolic 
conditions [20]. We have also found higher abundance 
of anti-inflammatory bioactive compounds and more 

favorable profiles of fatty acids in vegetarians, especially 
vegans, relative to non-vegetarians [21]. Racial status and 
culture may strongly influence dietary patterns and food 
preferences, consequently impacting overall health and 
disease susceptibility. Besides dietary behaviors, research 
has shown that social and environmental determinants 
of health, as opposed to genetic differences, are critical 
in propagating the burden of chronic disease dispari-
ties in African Americans [22–25]. Blacks are over-rep-
resented in lower-wage jobs and more likely to live in 
lower-income neighborhoods disproportionately higher 
in poverty compared to White neighborhoods [26, 27]. 
In these neighborhoods, access to health-promoting 
resources, and quality health care can be problematic. 
This socioeconomic disadvantage and social vulnerability 
may promote psychosocial stress, further contributing to 
disparities in risk of chronic diseases.

Thus, it is therefore necessary to determine if Black rel-
ative to White Americans show differences in metabolic 
profiles, which may be explained by differences in dietary 
and behavioral factors, or social and environmental influ-
ences, besides genetic factors. In the present study, we 
used an untargeted metabolomics platform to compare 
plasma metabolic profiles between Black and White par-
ticipants of the AHS-2 cohort to determine if differences 
in metabolites and their associated biochemical sub-
classes, some with implications for disease susceptibil-
ity, could be explained by lifestyle, sociodemographic, or 
other environmental factors.

Methods
Study design/plasma metabolomics profiling
This study included 171 healthy Black (African Ameri-
can, West Indian/Caribbean, African, or other Black) 
and 179 non-Hispanic White participants from the 
AHS-2 cohort who previously provided plasma samples 
in one of three AHS-2 substudies (Calibration, Reli-
gion Health Study, Pilot Study) [28–30]. Participants 
also completed a 204-item food frequency question-
naire (FFQ) at baseline which contained information on 
dietary habits including consumption of fruits and veg-
etables, legumes (lentils, soybeans, and other beans), 
breads and grains, soy foods/drinks/supplements, dairy, 
eggs, red meats, processed meats, fish, and caffeine/cof-
fee consumption [29]. Participants were subsequently 
classified by dietary pattern, with vegans never or rarely 
(< 1/month) consuming animal products including 
meat, fish, dairy, or eggs; pesco-vegetarians consuming 
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fish at least once per month and other meats < 1/
month; and non-vegetarians consuming flesh meats, 
not only fish ≥ 1/month [29]. The FFQ additionally col-
lected demographic/sociodemographic data including 
address/zipcode, and other lifestyle behaviors such as 
exercise, smoking, alcohol drinking, and medication/
supplement use.

Plasma samples of 350 study participants were pro-
filed by Metabolon, Inc. (Morrisville, NC) using a global 
platform (DiscoveryHD4) that provides a comprehen-
sive picture of metabolites within various biochemical 
classes including amino acid, nucleotide, carbohydrate, 
lipid, xenobiotic, and microbial classes, further divided 
into 92 subclasses. Global metabolomics profiling on 
participant plasma samples was performed in two sepa-
rate sets (on different days): the first set included samples 
from 92 participants (pilot), and the second set included 
a total of 258 samples. Procedures for sample accession 
and sample preparation including protein precipitation 
were followed as documented previously [31]. Briefly, 
samples were prepared using the automated MicroLab 
STAR® system from Hamilton company, as described 
previously, and analyzed on four independent ultrahigh-
performance liquid chromatography-tandem mass spec-
trometry (UPLC-MS/MS) platforms. Several quality 
controls were included — a pooled matrix sample that 
included a small volume of each experimental sample 
was used as a technical replicate, water samples were 
used as process blanks, and a cocktail of quality control 
internal standards was spiked into every experimental 
sample to monitor instrument performance. Test samples 
were randomized across the platform run with QC sam-
ples spaced evenly among the injections. Median relative 
standard deviation (RSD) was calculated for the internal 
standards added to each sample before injection into the 
mass spectrometers to determine instrument variabil-
ity. Process variability was determined by calculating the 
median RSD for endogenous metabolites present in all 
of the technical replicates of pooled client samples. The 
RSD for instrument and process variability was 6% and 
8%, respectively. Metabolites were identified by compari-
son to library entries of purified, authenticated standards 
or recurrent unknown entities.

A biochemical pathway or “subclass” is annotated for 
each metabolite within Metabolon’s proprietary ref-
erence library of compounds, i.e., lysophospholipids, 
long-chain monounsaturated fatty acid, long-chain poly-
unsaturated fatty acid (n3 and n6), xanthine metabolism, 
creatine metabolism, monoacylglycerol, and diacylglyc-
erol, grouping in accordance with its metabolic func-
tion. These subpathways or “subclasses” are grouped into 
larger/broader pathways or “classes,” i.e., amino acids, 
lipids, nucleotides, partially characterized molecules 

(not yet fully characterized), carbohydrates, xenobiotics, 
drugs, and chemicals.

Statistical analysis
Raw metabolite values representing mass spectrometry 
peak densities were median scaled (i.e., for each metab-
olite, individual values were divided by the median for 
that metabolite) and log-transformed after first imputing 
undetectable values with the minimum for each metabo-
lite. Metabolites were excluded from analysis if at least 
80% were missing, defined as below the limits of detec-
tion, yielding a total of 892 metabolites for statistical 
analysis. Linear regression was performed on individual 
metabolites or metabolite subclasses using a combined 
set of n = 350 analytic samples to examine associations of 
race with log-transformed metabolite abundance, adjust-
ing for relevant covariates or known confounders. Covar-
iates included sex (male vs female), race (Black vs White), 
age at clinic visit (continuous), batch (continuous), body 
mass index (BMI, continuous), study (pilot vs non-pilot), 
substudy (Calibration, Religion Health Study, Pilot), 
education (high school, some college, college graduate), 
dietary pattern (vegan, pesco-vegetarian, non-vegetar-
ian), exercise (minutes/week), coffee (ounces/day), use 
of medications for hypertension or cholesterol or use of 
aspirin/NSAIDS (yes/no), smoking and alcohol drinking 
(never, former, current), social vulnerability index (SVI, 
continuous), psychosocial stress (ordinal), and prevalent 
chronic diseases including cardiovascular disease, cancer, 
or diabetes (yes/no).

The Center for Disease Control and Prevention Social 
Vulnerability Index (SVI) was created by the Agency for 
Toxic Substances and Disease Registry’s  (ATSDR) Geo-
spatial Research, Analysis & Services Program [32], and 
determined from geocoded addresses for participants in 
this study. The SVI describes the relative vulnerability of 
US Census tracts (county subdivisions for which the US 
Census collects data) based on various social variables, 
which are grouped into four themes: (1) socioeconomic 
status, (2) household composition and disability, (3) 
minority status and language, and (4) housing type and 
transportation. Each tract received an index or ranking 
(percentile) for each theme, as well as an overall rank-
ing or combined summary theme, which was used in the 
current study. Psychosocial stress was defined by two 
dummy variables — one representing growing up in a 
single-parent household, defined by divorce of parents 
or death of a mother or father, “parents divorced” and 
“mother or father died,” and the other representing per-
sonal divorce. Psychosocial stress was a cumulative vari-
able, representing the sum of these two variables.

In the linear regression analysis of differentially abun-
dant metabolites, the adjusted mean with 95% confidence 
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intervals was calculated as the log of the  adjusted geo-
metric mean for Black and White participants, and sub-
sequently back-transformed for each metabolite. Fold 
difference representing the difference in these adjusted 
means comparing Black with White participants was 
subsequently calculated.

An adapted Storey et  al. permutation approach was 
used to adjust for false discovery [33], and residualized 
variables for race were permuted as a means of find-
ing the null distribution of the t scores for metabolite 
abundance [34], thereby retaining covariances between 
residualized metabolite abundances. An estimate of the 
proportion of null metabolites allows for an estimate 
of the FDR, avoiding the over-conservative Benjamini-
Hochberg approach. Consequently, metabolites may be 
selected with low FDR [33, 35].

For analysis of metabolite subclasses, t-scores were 
obtained by averaging the respective component metabo-
lite values within a subclass and then dividing by the stand-
ard deviation of this average, accounting for the covariances 
between the metabolites. The metabolite subclass average 
was regressed on race and other covariates. As a sensitivity 
analysis, and to identify metabolites and subclasses consist-
ently associated with race, linear regression models exam-
ining these associations were generated considering pilot 
study and non-pilot participants separately. All analyses 
were conducted in R version 4.0.2.

Additionally, over-representation analysis was per-
formed for pathway analysis to determine if a pathway 
was represented more than expected by chance based 
on the analytical/reference platform of metabolic path-
ways in KEGG, performing a hypergeometric test using 
MetaboAnalyst [36]. Importance measures were calcu-
lated from the centrality measures (relative betweenness) 
reflecting the number of shortest paths going through 
the node) based on pathway topology, with each pathway 
having a maximum importance of 1.

A random forest classifier was developed to differen-
tiate race according to metabolic profiles. Two testing 
techniques were implemented to evaluate the robustness 
of the random forest classifier. One used a 70% training 
and 30% test set in a cross-validation approach using all 
samples and all 892 log-transformed metabolites. In this 
analysis, each of the 50,000 trees learned from a random 
sample (70%, training set), with the remaining data (30%, 
test) passed down the tree for class prediction. Mean 
decreased accuracy was calculated to determine the most 
influential metabolites, permuting each predictor vari-
able to assess the difference in predictive accuracy. The 
second approach was a 5-fold cross-validation (also 70% 
training and 30% test), which was used to evaluate the 
model. Overall variable importance was calculated based 

on the goodness of split measures (ascertained by an 
impurity function) for each variable. Analyses were con-
ducted in R, using randomForest and rpart packages.

Results
Baseline characteristics
The current study included 171 Black and 179 White par-
ticipants distributed between vegan, pesco-vegetarian, 
and non-vegetarian diet groups (Table 1). White partici-
pants were on average slightly older in years than Blacks 
(60.4 vs 57.3; p < 0.01), with significantly higher coffee 
consumption (2.2 oz/day vs 0.3 oz/day; p < 0.001). Blacks 
had higher SVI ranking (0.65 vs 0.58; p = 0.003), and a 
greater proportion used blood pressure medication (39% 
vs 23%; p = 0.004) and had a history of smoking (p = 0.02) 
and alcohol drinking (p = 0.008). There were additional 
differences in various dietary components, particu-
larly macronutrients (Additional file  1, Supplementary 
Table  1). Differences in other characteristics (sex, exer-
cise, diet group, education, disease prevalence) were not 
statistically significant.

Linear regression analysis of individual metabolites
In order to obtain a more comprehensive understanding 
of racial disparities contributing to metabolic differences, 
we generated a number of statistical models to compare 
metabolomics profiles between Black and White partici-
pants. In the simplest model adjusted for age, sex, race, and 
study, there were 418 differentially abundant metabolites 
(Tables 2 and 3, Additional file 1, Supplementary Tables 2 
and 3). In the most complete model adjusted addition-
ally  for various lifestyle behaviors and environmental 
stressors (BMI, dietary pattern, exercise, smoking, alcohol 
drinking, coffee consumption, medication use, diabetes, 
education, SVI, psychosocial stress, and chronic condi-
tions), there were 404 differentially abundant metabolites, 
with 56 higher and 348 lower in Blacks. Metabolites most 
notably higher in Black participants included those of the 
xenobiotics class, such as the  methyl/propyl-parabens, 
propyl- and methyl-4-hydroxybenzoate sulfate within the 
benzoate metabolism subclass, and various food com-
ponent/plant metabolites (Table  4). These metabolites in 
higher abundance overlapped largely with those in the sim-
pler models  (Table  2; Additional file  1, Supplementary 
Table  2), and the most significant metabolites (< 1.0E−3) 
were retained. Other compounds with the greatest fold 
difference increases (above 2-fold) or greatest statistical 
differences (< 4E−04) in Black relative to White partici-
pants included various food component/plant metabolites, 
particularly the piperine metabolites (derivatives of black 
pepper), 3-carboxy-4-methyl-5-propyl-2-furanpropanoate 
(CMPF), some acetylated amino acids (and putative uremic 
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toxins), a tocopherol metabolite, bile acid, chemical/drug, 
and tobacco metabolite (Tables 2 and 4).

Among metabolites showing the lowest abundance in 
Black relative to White participants was the microbial 
metabolite n-methylpipecolate, along with lysine metab-
olites (n6-methyllysine, n6,n6-dimethyllysine), various 
xanthine metabolites, and tryptophan betaine, repre-
sented in both the simplest and fullest models (Tables 3 

and 5; Additional file 1, Supplementary Table 4). Various 
types of fatty acids and phospholipids showed the great-
est statistical significance among metabolites inversely 
associated with Black race. Comparing the fully adjusted 
with simplest model, there was some attenuation of rep-
resentation of acyl carnitines and secondary bile acids, 
among other compounds, and greater representation 
of leucine, isoleucine, and valine metabolites, as well as 
long-chain polyunsaturated fatty acids, and glycine, ser-
ine, threonine metabolites in the fully adjusted model. 
Overall, results from the fully adjusted model were very 
similar to other less complex models (Additional file  1, 
Supplementary Tables 5–8), where across these models at 
least 58 metabolites were higher, and 345 lower in Black 
participants, with the most notable difference being 
attenuation of representation of acyl carnitines in the 
fullest relative to the simpler models.

A sensitivity analysis considering only the 258 partici-
pants not included in the pilot study [20] showed over-
all fewer significant metabolites (n = 296), although 95% 
(281) of metabolites significant in the analysis consid-
ering these participants were also significant consider-
ing the full dataset (Additional file  1, Supplementary 
Table 9), including metabolites showing the greatest fold 
differences or statistical significance. A similar analysis of 
pilot participants revealed 268 differential metabolites, 
and again, the majority of these were also differential in 
the analysis considering the full cohort (75%), and nearly 
half overlapped with the non-pilot study participants 
(Additional file 1, Supplementary Tables 10 and 11).

Linear regression analysis of metabolite subclasses
Besides examining associations of race with individual 
metabolites, we also conducted an analysis of metabo-
lite subclasses by averaging metabolites across their 
respective biochemical subclasses. Results from the 
fully adjusted model including adjustment for lifestyle/
behavioral variables and environmental stress revealed a 
total of 38 differentially abundant metabolite subclasses 
of a total of 92 queried subclasses, comparing the two 
racial groups (Table 6). Creatine metabolism exclusively 
showed higher abundance in Blacks (fold change = 1.20). 
Besides creatine metabolism, subclasses with the strong-
est significance included long-chain monounsaturated 
fatty acid, pyrimidine metabolism, ceramides, and several 
phospho- and glycero-lipid subclasses (notably lysophos-
pholipid, monoacylglycerol, phosphatidylethanolamine, 
phosphatidylinositol, glycerolipid metabolism, diacylg-
lycerol, monoacylglycerol, phosphatidylethanolamine, 
glycerolipid metabolism), leucine, isoleucine, and valine 
metabolism, and lysine metabolism, all showing lower 
abundance in Blacks. Results from less complex models 
including only basic covariates (age, sex, substudy, and 

Table 1 Demographic and lifestyle characteristics of the study 
 populationa,b

a Values presented as n (%) or mean (SD)
b Missing values: smoking, n = 3 (Black), n = 1 (White); alcohol n = 5 (Black), n = 1 
(White); education, n = 2 (Black), n = 1 (White)

Black White P value

Participants 171 179

Sex 0.67

 Male 88 (51.5) 87 (48.6)

 Female 83 (48.5) 92 (51.4)

Age (years) 57.3 (11.7) 60.4 (10.5) 0.009

BMI (kg/m2) 27.7 (5.8) 26.6 (5.5) 0.07

Exercise (min/week) 88.8 (99.5) 92.5 (101.1) 0.74

Diet group 0.84

 Vegan 63 (36.8) 62 (34.6)

 Pesco-vegetarian 50 (29.2) 51 (28.5)

 Nonvegetarian 58 (33.9) 66 (36.9)

Coffee (oz/day) 0.3 (1.0) 2.2 (6.7) < 0.001

Social vulnerability index 
(percentile)

0.65 (0.23) 0.58 (0.22) 0.003

Education 0.18

 High school 20 (11.8) 23 (15.7)

 Some college 76 (45.0) 63 (37.5)

 College graduate 73 (43.2) 92 (54.8)

Medication use (yes/no)

 Blood pressure 55 (39) 42 (23.3) 0.004

 Cholesterol 23 (16) 32 (17.8) 0.84

 Aspirin 42 (29.8) 61 (33.9) 0.51

Smoking

 Ever 43 (25.6) 27 (15.2)

 Never 125 (74.4) 151 (84.8) 0.02

Alcohol

 Current 19 (11.4) 12 (6.7) 0.008

 Former 62 (37.3) 46 (25.6)

 Never 85 (51.2) 121 (67.6)

Prevalent disease

 Cardiovascular 6 (3.5) 6 (3.3) 1

 Diabetes 14 (8.2) 10 (5.6) 0.41

 Cancer 13 (7.6) 14 (7.8) 1

Psychosocial stress 0.07

 No 145 164

 Yes 26 15
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Table 2 Metabolites (top 40 of 73) present at higher abundance in Black relative to White participants at FDR < 0.05 in simplest 
 modela,b

a Fold difference represents the ratio of geometric means of raw metabolite values of Black relative to White participants
b Adjusted for age, sex, batch, study, and substudy

Metabolite Fold difference Subclass Major class FDR (Storey)

Propyl 4-hydroxybenzoate sulfate 7.57 Benzoate metabolism Xenobiotics < 3.6E−04

Methyl-4-hydroxybenzoate sulfate 4.56 Benzoate metabolism Xenobiotics < 3.6E−04

Piperine 3.32 Food component/plant Xenobiotics 5.2E−04

3-Carboxy-4-methyl-5-propyl-2-furanpro-
panoate (cmpf )

3.23 Fatty acid, dicarboxylate Lipid 8.8E−04

Umbelliferone sulfate 2.95 Food component/plant Xenobiotics < 3.6E−04

Sulfate of piperine metabolite c18h21no3 (1) 2.79 Food component/plant Xenobiotics < 3.6E−04

n-Acetyl-1-methylhistidine 2.78 Histidine metabolism Amino acid < 3.6E−04

Hydroxy-cmpf 2.73 Fatty acid, dicarboxylate Lipid 1.9E−03

Thymol sulfate 2.72 Food component/plant Xenobiotics 9.9E−04

Sulfate of piperine metabolite c16h19no3 (3) 2.71 Food component/plant Xenobiotics < 3.6E−04

Sulfate of piperine metabolite c16h19no3 (2) 2.66 Food component/plant Xenobiotics < 3.6E−04

Sulfate of piperine metabolite c18h21no3 (3) 2.58 Food component/plant Xenobiotics < 3.6E−04

2-Hydroxyfluorene sulfate 2.49 Tobacco metabolite Xenobiotics < 3.6E−04

2-Naphthol sulfate 2.49 Chemical Xenobiotics < 3.6E−04

n-Acetylalliin 2.31 Food component/plant Xenobiotics 1.5E−03

Gamma-cehc sulfate 2.23 Tocopherol metabolism Cofactors and vitamins < 3.6E−04

n-Acetylcitrulline 2.18 Urea cycle; arginine and proline metabolism Amino acid < 3.6E−04

2-Piperidinone 2.04 Food component/plant Xenobiotics < 3.6E−04

Glucuronide of piperine metabolite 
c17h21no3 (4)

2.02 Food component/plant Xenobiotics 1.0E−02

Glucuronide of piperine metabolite 
c17h21no3 (3)

1.93 Food component/plant Xenobiotics 1.1E−02

Glucuronide of piperine metabolite 
c17h21no3 (5)

1.91 Food component/plant Xenobiotics 1.0E−02

Taurodeoxycholic acid 3-sulfate 1.89 Secondary bile acid metabolism Lipid 5.8E−03

Glutarate (c5-dc) 1.59 Fatty acid, dicarboxylate Lipid 3.6E−04

Perfluorooctanesulfonate (pfos) 1.51 Chemical Xenobiotics 1.0E−02

n-Acetylarginine 1.49 Urea cycle; arginine and proline metabolism Amino acid < 3.6E−04

Serotonin 1.48 Tryptophan metabolism Amino acid 4.8E−02

n-Acetylglutamine 1.45 Glutamate metabolism Amino acid < 3.6E−04

Indoleacetylglutamine 1.44 Tryptophan metabolism Amino acid 3.1E−02

n-Acetylasparagine 1.42 Alanine and aspartate metabolism Amino acid < 3.6E−04

Hexanoylglutamine 1.42 Fatty acid metabolism (acyl glutamine) Lipid 1.3E−02

1-Stearoyl-2-docosahexaenoyl-gpc 
(18:0/22:6)

1.41 Phosphatidylcholine (PC) Lipid 3.8E−04

n-Acetyl-2-aminooctanoate 1.40 Fatty acid, amino Lipid 2.5E−03

6-Oxopiperidine-2-carboxylate 1.40 Lysine metabolism Amino acid 9.8E−03

Taurocholenate sulfate 1.38 Secondary bile acid metabolism Lipid 3.5E−03

Campesterol 1.37 Sterol Lipid 3.1E−02

Carotene diol (3) 1.36 Vitamin A metabolism Cofactors and vitamins 5.0E−03

Arginine 1.35 Urea cycle; arginine and proline metabolism Amino acid < 3.6E−04

Cis-4-decenoylcarnitine (c10:1) 1.34 Fatty acid metabolism (acyl carnitine, mono-
unsaturated)

Lipid 5.0E−04

Picolinate 1.33 Tryptophan metabolism Amino acid 8.5E−03

1-(1-Enyl-stearoyl)-2-arachidonoyl-gpe 
(p-18:0/20:4)

1.33 Plasmalogen Lipid 2.3E−03
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Table 3 Metabolites (top 40 of 345) present at lower abundance in Black relative to White participants at FDR < 0.05 in simplest 
 modela,b

a Fold difference represents the ratio of geometric means of raw metabolite values of Black relative to White participants
b Adjusted for age, sex, batch, study, and substudy

Compound represents structural isomer in the Metabolon spectral library

Metabolite Fold difference Subclass Major class FDR (Storey)

Theobromine 0.26 Xanthine metabolism Xenobiotics 9.2E−04

n-Methylpipecolate 0.28 Bacterial/fungal Xenobiotics 4.5E−03

Caffeine 0.29 Xanthine metabolism Xenobiotics 3.6E−03

n6-methyllysine 0.30 Lysine metabolism Amino acid 2.3E−03

3-Methylxanthine 0.32 Xanthine metabolism Xenobiotics 1.2E−04

5-Acetylamino-6-amino-3-methyluracil 0.34 Xanthine metabolism Xenobiotics 1.1E−03

Tryptophan betaine 0.35 Tryptophan metabolism Amino acid 3.8E−04

7-Methylxanthine 0.37 Xanthine metabolism Xenobiotics 1.6E−04

1-Methylxanthine 0.40 Xanthine metabolism Xenobiotics 1.9E−04

1,7-Dimethylurate 0.40 Xanthine metabolism Xenobiotics 1.2E−03

2-Palmitoleoyl-gpc (16:1) 0.41 Lysophospholipid Lipid 8.2E−05

Theophylline 0.44 Xanthine metabolism Xenobiotics 5.3E−03

Galactonate 0.45 Fructose, mannose, and galactose metabo-
lism

Carbohydrate 2.0E−04

5alpha-androstan-3beta,17alpha-diol 
disulfate

0.46 Androgenic steroids Lipid 8.9E−05

2-Hydroxyacetaminophen sulfate 0.47 Drug — analgesics, anesthetics Xenobiotics 2.3E−02

Quinate 0.47 Food component/plant Xenobiotics 5.1E−03

1,3-Dimethylurate 0.47 Xanthine metabolism Xenobiotics 7.8E−04

Paraxanthine 0.48 Xanthine metabolism Xenobiotics 1.4E−02

Palmitoyl-linoleoyl-glycerol (16:0/18:2) [1] 0.49 Diacylglycerol Lipid 9.8E−05

3-Aminoisobutyrate 0.49 Pyrimidine metabolism, thymine containing Nucleotide 5.7E−04

Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] 0.49 Diacylglycerol Lipid 6.5E−04

Alpha-cehc sulfate 0.49 Tocopherol metabolism Cofactors and vitamins 6.9E−04

Metabolonic lactone sulfate 0.50 Partially characterized molecules Partially characterized 2.2E−04

1-Palmitoleoylglycerol (16:1) 0.50 Monoacylglycerol Lipid 1.8E−04

2-Aminophenol sulfate 0.51 Food component/plant Xenobiotics 2.9E−04

2-Palmitoleoylglycerol (16:1) 0.51 Monoacylglycerol Lipid 1.1E−04

4-Ethylcatechol sulfate 0.52 Benzoate metabolism Xenobiotics 1.1E−03

1-Methylurate 0.52 Xanthine metabolism Xenobiotics 1.8E−04

n6,n6-dimethyllysine 0.52 Lysine metabolism Amino acid 1.5E−03

Vanillic acid glycine 0.53 Food component/plant Xenobiotics 1.9E−04

Palmitoloelycholine 0.53 Fatty acid metabolism (acyl choline) Lipid 4.1E−04

Linoleoyl-linolenoyl-glycerol (18:2/18:3) [2] 0.54 Diacylglycerol Lipid 9.2E−05

n-Delta-acetylornithine 0.54 Urea cycle; arginine and proline metabolism Amino acid 2.3E−04

1,3,7-Trimethylurate 0.54 Xanthine metabolism Xenobiotics 2.1E−03

Myristoleate (14:1n5) 0.55 Long-chain monounsaturated fatty acid Lipid 1.3E−02

3-Methylglutarylcarnitine (2) 0.55 Leucine, isoleucine, and valine metabolism Amino acid 2.7E−04

Cholate 0.55 Primary bile acid metabolism Lipid 1.9E−03

Indolebutyrate 0.55 Tryptophan metabolism Amino acid 2.1E−04

Oleoyl-linoleoyl-glycerol (18:1/18:2) [1] 0.56 Diacylglycerol Lipid 7.5E−04

Ethylmalonate 0.57 Leucine, isoleucine, and valine metabolism Amino acid 9.0E−04
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Table 4 Metabolites present at higher abundance in Black relative to White participants at FDR < 0.05 in the most completely adjusted 
 modela,b

Metabolite Fold difference Subclass Major class FDR (Storey)

Propyl 4-hydroxybenzoate sulfate 7.25 Benzoate metabolism Xenobiotics < 7.6E−05

Methyl-4-hydroxybenzoate sulfate 4.29 Benzoate metabolism Xenobiotics < 7.6E−05

Piperine 3.19 Food component/plant Xenobiotics 3.8E−03

n-Acetylalliin 2.80 Food component/plant Xenobiotics 2.1E−03

Sulfate of piperine metabolite c16h19no3 (3) 2.67 Food component/plant Xenobiotics 1.1E−03

Sulfate of piperine metabolite c18h21no3 (1) 2.66 Food component/plant Xenobiotics 1.2E−03

Sulfate of piperine metabolite c18h21no3 (3) 2.51 Food component/plant Xenobiotics 8.7E−04

Umbelliferone sulfate 2.49 Food component/plant Xenobiotics 4.8E−03

n-Acetyl-1-methylhistidine 2.44 Histidine metabolism Amino acid < 7.6E−05

3-Carboxy-4-methyl-5-propyl-2-furanpro-
panoate (cmpf )

2.43 Fatty acid, dicarboxylate Lipid 5.9E−03

Sulfate of piperine metabolite c16h19no3 (2) 2.41 Food component/plant Xenobiotics 1.0E−03

2-Hydroxyfluorene sulfate 2.33 Tobacco metabolite Xenobiotics < 7.6E−05

2-Naphthol sulfate 2.32 Chemical Xenobiotics < 7.6E−05

Hydroxy-cmpf 2.17 Fatty acid, dicarboxylate Lipid 1.0E−02

n-Acetylcitrulline 2.16 Urea cycle; arginine and proline metabolism Amino acid < 7.6E−05

Thymol sulfate 2.14 Food component/plant Xenobiotics 5.0E−02

Genistein sulfate 2.13 Food component/plant Xenobiotics 3.7E−02

Gamma-cehc sulfate 2.11 Tocopherol metabolism Cofactors and vitamins 1.1E−03

Glycohyocholate 1.89 Secondary bile acid metabolism Lipid 5.8E−03

2-Piperidinone 1.87 Food component/plant Xenobiotics 5.9E−03

Taurodeoxycholic acid 3-sulfate 1.86 Secondary bile acid metabolism Lipid 1.5E−02

Tauro-beta-muricholate 1.72 Primary bile acid metabolism Lipid 2.6E−02

Glutarate (c5-dc) 1.54 Fatty acid, dicarboxylate Lipid 6.8E−03

n-Acetylglutamine 1.49 Glutamate metabolism Amino acid < 7.6E−05

Taurocholenate sulfate 1.47 Secondary bile acid metabolism Lipid 6.2E−03

Carotene diol (3) 1.47 Vitamin A metabolism Cofactors and vitamins 5.0E−03

Spermidine 1.45 Polyamine metabolism Amino acid 2.0E−02

n-Acetylarginine 1.45 Urea cycle; arginine and proline metabolism Amino acid 9.6E−04

n-Acetyl-2-aminooctanoate 1.43 Fatty acid, amino Lipid 1.2E−02

n-Acetylasparagine 1.38 Alanine and aspartate metabolism Amino acid 2.0E−03

Cis-4-decenoylcarnitine (c10:1) 1.34 Fatty acid metabolism (acyl carnitine, mono-
unsaturated)

Lipid 6.5E−03

Homoarginine 1.33 Urea cycle; arginine and proline metabolism Amino acid 1.0E−02

1-(1-Enyl-stearoyl)-2-arachidonoyl-gpe 
(p-18:0/20:4)

1.29 Plasmalogen Lipid 1.4E−02

Sphingomyelin (d18:1/20:1, d18:2/20:0) 1.26 Sphingomyelins Lipid < 7.6E−05

Arginine 1.26 Urea cycle; arginine and proline metabolism Amino acid 6.8E−03

Creatine 1.26 Creatine metabolism Amino acid 9.7E−03

Carotene diol (2) 1.26 Vitamin A metabolism Cofactors and vitamins 3.7E−02

3-Methoxytyrosine 1.25 Tyrosine metabolism Amino acid 1.6E−02

Sphingomyelin (d18:2/24:2) 1.25 Sphingomyelins Lipid 9.6E−04

Guanidinoacetate 1.25 Creatine metabolism Amino acid 6.9E−03

Succinylcarnitine (c4-dc) 1.25 TCA cycle Energy 3.5E−02

2′-o-methyluridine 1.24 Pyrimidine metabolism, uracil containing Nucleotide 1.5E−02

2-Hydroxyglutarate 1.23 Fatty acid, dicarboxylate Lipid 9.3E−03

1-(1-Enyl-palmitoyl)-2-linoleoyl-gpc 
(p-16:0/18:2)

1.22 Plasmalogen Lipid 1.2E−03

1-(1-Enyl-palmitoyl)-2-arachidonoyl-gpe 
(p-16:0/20:4)

1.22 Plasmalogen Lipid 3.5E−02
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batch excluding BMI) or basic covariates in addition to 
dietary pattern, exercise, and/or environmental stress 
variables showed a similar representation of the most sig-
nificant subclasses with 44–54 differential metabolic sub-
classes detected, all represented at lower abundance, with 
the exception of creatine metabolism (Additional file  1, 
Supplementary Tables 12–14).

For many of the differentially represented subclasses, 
the vast majority of component metabolites were signifi-
cantly differential (names of component metabolites in 
Additional file  1, Supplementary Table  15), and showed 
lower abundance in Blacks, as determined from linear 
regression analysis of individual metabolites. Examples 
are the long-chain monounsaturated fatty acid, monoacyl-
glycerol, phosphatidylethanolamine, ceramides, lysophos-
pholipid, diacylglycerol, long-chain polyunsaturated fatty 
acid, and xanthine metabolism subclasses (Table 6). Sev-
eral of the top subclasses were replicated, both in analy-
ses excluding or including only pilot participants, with 
many in common between both sub-cohorts. (Additional 
file 1, Supplementary Table 16). Pathway analysis of meta-
bolic pathways in KEGG revealed an over-representa-
tion of biosynthesis of unsaturated fatty acids pathway 
(FDR = 0.02), consistent with results from subclass analy-
ses (Additional file 1, Supplementary Table 17).

In light of the finding of several differentially abun-
dant subclasses of lipids, we performed additional 
analyses to adjust for dietary fat, including mono-, 

poly-, and saturated fat consumption. Results from 
the linear regression analysis of individual metabo-
lites were overall similar to those from other models 
(Additional file 1, Supplementary Table 18). However, 
far fewer lipid/fatty acid and other subclasses were 
statistically differential after adjustment for dietary 
fat, although several were retained, including long-
chain monounsaturated fatty acids among others 
(Additional file 1, Supplementary Table 19). Addition-
ally, given the relevance of several differentially abun-
dant metabolites or biochemical subclasses related 
to kidney function, namely, creatine metabolism and 
acetylated amino acids, we also compared metabolic 
profiles among a subset of individuals with plasma 
creatinine measurements (mg/dL) adjusting for esti-
mated glomerular filtration rate (eGFR). Adjustment 
for eGFR (mL/min/m2) resulted in far fewer metabo-
lites showing higher abundance in Blacks, notably 
many  acetylated amino acids, which were no longer 
significant, although creatine was still present in 
higher abundance. Interestingly, the inclusion of eGFR 
in analyses of differential abundance of biochemi-
cal subclasses yielded a higher number of differential 
subclasses, with some showing stronger statistical 
significance, most notably, lysine metabolism (Addi-
tional file  1, Supplementary Tables  20–23). Creatine 
metabolism, however, was no longer significant after 
adjustment for eGFR.

a Fold difference represents the ratio of geometric means of raw metabolite values of Black relative to White participants
b Adjustment for age, sex, batch, substudy, dietary pattern, education, social vulnerability index, exercise, BMI, smoking, alcohol drinking, coffee, medication use, and 
chronic disease (cardiovascular disease, diabetes, cancer, hypertension)

Table 4 (continued)

Metabolite Fold difference Subclass Major class FDR (Storey)

Sphingomyelin (d18:2/18:1) 1.21 Sphingomyelins Lipid 2.7E−02

Sphingomyelin (d18:1/20:2, d18:2/20:1, 
d16:1/22:2)

1.20 Sphingomyelins Lipid 2.0E−02

1-(1-Enyl-palmitoyl)-2-arachidonoyl-gpc 
(p-16:0/20:4)

1.19 Plasmalogen Lipid 6.2E−03

Sphingomyelin (d18:1/22:2, d18:2/22:1, 
d16:1/24:2)

1.18 Sphingomyelins Lipid 6.3E−03

1-(1-Enyl-palmitoyl)-2-palmitoyl-gpc 
(p-16:0/16:0)

1.17 Plasmalogen Lipid 2.0E−03

Gamma-glutamylthreonine 1.15 Gamma-glutamyl amino acid Peptide 3.7E−02

5-Methylthioribose 1.15 Methionine, cysteine, SAM, and taurine 
metabolism

Amino acid 9.4E−03

1-(1-Enyl-palmitoyl)-2-oleoyl-gpc 
(p-16:0/18:1)

1.15 Plasmalogen Lipid 2.1E−02

Sphingomyelin (d18:1/17:0, d17:1/18:0, 
d19:1/16:0)

1.13 Sphingomyelins Lipid 2.7E−02

Betaine 1.12 Glycine, serine, and threonine metabolism Amino acid 3.5E−02

Creatinine 1.10 Creatine metabolism Amino acid 2.2E−02
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Table 5 Top 40 (of 348) metabolites present at lower abundance in Black relative to White participants at FDR < 0.05 in the most 
completely adjusted  modela,b

a Fold difference represents the ratio of geometric means of raw metabolite values of Black relative to White participants
b Adjusted for age, sex, batch, substudy, dietary pattern, education, social vulnerability index, exercise, BMI, coffee, medication use, and chronic disease (cardiovascular 
disease, diabetes, cancer, hypertension)

Compound represents structural isomer in the Metabolon spectral library

Metabolite Fold difference Subclass Major class FDR (Storey)

n-Methylpipecolate 0.27 Bacterial/fungal Xenobiotics 4.8E−03

n6-methyllysine 0.31 Lysine metabolism Amino acid 2.4E−03

Theobromine 0.33 Xanthine metabolism Xenobiotics 1.9E−03

Tryptophan betaine 0.35 Tryptophan metabolism Amino acid 1.8E−04

Myristoleate (14:1n5) 0.36 Long-chain monounsaturated fatty acid Lipid 1.2E−03

3-Methylxanthine 0.37 Xanthine metabolism Xenobiotics 2.5E−04

Palmitoyl-linoleoyl-glycerol (16:0/18:2) [1] 0.38 Diacylglycerol Lipid 2.3E−04

5-Acetylamino-6-amino-3-methyluracil 0.39 Xanthine metabolism Xenobiotics 2.7E−03

2-Palmitoleoylglycerol (16:1) 0.40 Monoacylglycerol Lipid 3.0E−04

Metabolonic lactone sulfate 0.41 Partially characterized Partially characterized 4.8E−04

Alpha-cehc sulfate 0.41 Tocopherol metabolism Cofactors and vitamins 5.3E−04

Galactonate 0.42 Fructose, mannose, and galactose metabo-
lism

Carbohydrate 4.0E−04

2-Hydroxyacetaminophen sulfate 0.42 Drug — analgesics, anesthetics Xenobiotics 2.9E−02

7-Methylxanthine 0.43 Xanthine metabolism Xenobiotics 1.5E−03

1-Palmitoleoylglycerol (16:1) 0.44 Monoacylglycerol Lipid 2.2E−04

Oleoyl-linoleoyl-glycerol (18:1/18:2) [2] 0.45 Diacylglycerol Lipid 1.2E−03

Caffeine 0.45 Xanthine metabolism Xenobiotics 8.2E−03

Linoleoyl-linolenoyl-glycerol (18:2/18:3) [2] 0.45 Diacylglycerol Lipid 1.6E−04

1,7-Dimethylurate 0.46 Xanthine metabolism Xenobiotics 2.6E−03

1-Methylxanthine 0.47 Xanthine metabolism Xenobiotics 1.2E−03

Docosatrienoate (22:3n6) 0.48 Long-chain polyunsaturated fatty acid (n3 
and n6)

Lipid 2.1E−04

3-Methylglutarylcarnitine (2) 0.48 Leucine, isoleucine, and valine metabolism Amino acid 4.0E−04

Palmitoleate (16:1n7) 0.49 Long-chain monounsaturated fatty acid Lipid 2.0E−04

2-Palmitoleoyl-gpc (16:1) 0.49 Lysophospholipid Lipid 4.0E−03

9-Hydroxystearate 0.49 Fatty acid, monohydroxy Lipid 8.1E−05

Linoleoyl-linoleoyl-glycerol (18:2/18:2) [2] 0.50 Diacylglycerol Lipid 8.2E−05

5alpha-androstan-3beta,17alpha-diol 
disulfate

0.50 Androgenic steroids Lipid 1.3E−03

Vanillic acid glycine 0.51 Food component/plant Xenobiotics 9.6E−04

3-Aminoisobutyrate 0.51 Pyrimidine metabolism, thymine containing Nucleotide 4.3E−04

Ceramide (d16:1/24:1, d18:1/22:1) 0.51 Ceramides Lipid 1.9E−04

Palmitoloelycholine 0.52 Fatty acid metabolism (acyl choline) Lipid 2.8E−04

2-Aminophenol sulfate 0.52 Food component/plant Xenobiotics 2.0E−03

Oleoyl-linoleoyl-glycerol (18:1/18:2) [1] 0.53 Diacylglycerol Lipid 1.6E−03

1-Palmitoyl-2-palmitoleoyl-gpc (16:0/16:1) 0.53 Phosphatidylcholine (PC) Lipid 9.6E−04

Palmitoyl-linoleoyl-glycerol (16:0/18:2) [2] 0.53 Diacylglycerol Lipid 2.1E−04

n6,n6-dimethyllysine 0.53 Lysine metabolism Amino acid 8.0E−04

Cystathionine 0.54 Methionine, cysteine, SAM, and taurine 
metabolism

Amino acid 1.4E−03

5alpha-androstan-3alpha,17beta-diol mono-
sulfate (1)

0.54 Androgenic steroids Lipid 4.0E−04
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Random forest
Random forest analysis was performed to identify meta-
bolic profiles differentiating race, reasoning that metabo-
lites showing the greatest importance in distinguishing 
race might be more reflective of biological differences. 
Random forest classification showed a predictive 

accuracy in the test set of 81.3% and revealed the great-
est discriminating potential for n6,n6-dimethyllysine, 
n6-methyllysine, n-methylpipecolate, ethylmalonate, 
and 2-hydroxyfluorene sulfate (Fig.  1A). These metabo-
lites were among those found to be most differential in 
the linear regression analysis. Random forest was also 

Table 6 Metabolite subclasses associated with race (Black vs White) at FDR < 0.05 in the most completely adjusted  modela,b

a Linear regression analysis based on composite t-statistics derived by dividing by the standard deviation of the averaged, log-transformed metabolites
b Adjustment for age, sex, batch, substudy, dietary pattern, education, social vulnerability index, exercise, BMI, smoking, alcohol drinking, coffee, medication use, and 
chronic conditions (CVD, diabetes, hypertension, cancer)

Subclass Fold difference (95% CI) n total 
metabolites

n significant 
metabolites

n > 1 n < 1 FDR

Creatine metabolism 1.20 (1.11, 1.29) 3 3 3 0 < 9.0E−05

Long-chain monounsaturated fatty acid 0.61 (0.49, 0.75) 7 7 0 7 9.5E−05

Pyrimidine metabolism, thymine containing 0.73 (0.63, 0.83) 2 1 0 1 1.2E−04

Ceramides 0.74 (0.65, 0.85) 9 8 0 8 1.4E−04

Lysophospholipid 0.75 (0.67, 0.84) 29 24 0 24 1.6E−04

Monoacylglycerol 0.65 (0.54, 0.79) 16 13 0 13 1.6E−04

Phosphatidylethanolamine (PE) 0.70 (0.60, 0.83) 12 10 0 10 1.8E−04

Phosphatidylinositol (PI) 0.75 (0.67, 0.83) 6 6 0 6 2.4E−04

Glycerolipid metabolism 0.77 (0.68, 0.87) 2 2 0 2 2.6E−04

Tryptophan metabolism 0.84 (0.77, 0.92) 20 11 0 11 3.3E−04

Diacylglycerol 0.57 (0.47, 0.68) 11 10 0 10 4.7E−04

Pyrimidine metabolism, orotate containing 0.79 (0.70, 0.90) 3 2 0 2 7.1E−04

Long-chain polyunsaturated fatty acid (n3 and n6) 0.72 (0.61, 0.86) 17 14 0 14 7.7E−04

Leucine, isoleucine, and valine metabolism 0.87 (0.80, 0.94) 28 15 0 15 7.8E−04

Lysine metabolism 0.83 (0.75, 0.92) 16 6 0 6 9.5E−04

Fatty acid metabolism (acyl choline) 0.72 (0.60, 0.87) 9 8 0 8 9.8E−04

Xanthine metabolism 0.49 (0.32, 0.74) 13 12 0 12 1.5E−03

Ascorbate and aldarate metabolism 0.84 (0.75, 0.93) 6 5 0 5 2.2E−03

Phosphatidylcholine (PC) 0.85 (0.77, 0.94) 19 10 0 10 2.4E−03

Fatty acid, dihydroxy 0.85 (0.76, 0.94) 5 3 0 3 2.9E−03

Fructose, mannose, and galactose metabolism 0.79 (0.68, 0.92) 4 1 0 1 3.3E−03

Guanidino and acetamido metabolism 0.73 (0.60, 0.89) 2 1 0 1 3.4E−03

Pentose metabolism 0.85 (0.76, 0.95) 6 4 0 4 4.7E−03

Long-chain saturated fatty acid 0.82 (0.72, 0.95) 7 5 0 5 7.0E−03

Dihydroceramides 0.79 (0.66, 0.94) 2 2 0 2 7.4E−03

Pyrimidine metabolism, cytidine containing 0.84 (0.74, 0.96) 5 2 0 2 1.3E−02

Eicosanoid 0.75 (0.59, 0.95) 3 2 0 2 1.7E−02

Chemical 0.87 (0.78, 0.98) 20 9 1 8 1.9E−02

Fatty Acid, monohydroxy 0.90 (0.82, 0.98) 19 5 0 5 2.0E−02

Androgenic steroids 0.80 (0.66, 0.97) 21 8 0 8 2.1E−02

Pantothenate and CoA metabolism 0.78 (0.63, 0.98) 2 1 0 1 3.0E−02

Gamma-glutamyl amino acid 0.93 (0.86, 1.00) 15 9 1 8 3.4E−02

Nicotinate and nicotinamide metabolism 0.86 (0.75, 0.99) 5 2 0 2 3.6E−02

Sphingosines 0.88 (0.78, 1.00) 2 1 0 1 3.6E−02

Purine metabolism, adenine containing 0.94 (0.88, 1.00) 5 2 0 2 4.0E−02

Fatty acid metabolism (acyl carnitine, dicarboxylate) 0.86 (0.73, 1.01) 4 2 0 2 4.6E−02

Sphingolipid synthesis 0.89 (0.79, 1.00) 3 2 0 2 4.6E−02

Phospholipid metabolism 0.92 (0.84, 1.00) 6 2 0 2 4.7E−02
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performed using 5-fold cross-validation, with a predic-
tive accuracy of 87.9%, and overlap of the top 5 metabo-
lites showing the greatest variable importance (Fig. 1B), 
thereby providing evidence of the robustness of the ran-
dom forest classifier and validating the discriminating 
ability of the most influential metabolites.

Discussion
Differences in metabolite abundance may account for 
racial disparities in susceptibility to chronic diseases 
[37–39]. Using an untargeted metabolomics platform, we 
investigated differences in plasma metabolites with roles 
in various biological pathways with relevance to chronic 
diseases. We noted differences in a number of xenobiotic 
and lipid metabolite subclasses — particularly lysophos-
pholipids, mono- and diacylglycerols, ceramides, and 
related lipids.

We hypothesized that inter-related lifestyle and socio-
economic factors largely contribute to racial differences 
in metabolic profiles. However, expanded models adjust-
ing for these variables did not appreciably alter results, 
neither did adjustment for lifestyle (dietary pattern, 
exercise, etc.) and social stress variables, as the number 
of differential metabolites was not diminished, although 
differences in some xenobiotic metabolites are likely 
explained by differences in lower caffeine consumption 
(as many xanthine metabolites are caffeine derivatives), 
and lower medication use (i.e., drugs/analgesics) by Black 
participants. Additionally, the differences we noted in 
consumption of select foods or nutrients may partially 
explain differences in lipids and other metabolites not 
evident with adjustment for dietary pattern alone. For 

example, two of the most differentially abundant or dis-
criminating metabolites from linear regression or ran-
dom forest analyses, n-methylpipecolate and tryptophan 
betaine (lower in Blacks) have been associated with con-
sumption of certain types of legumes [40–42], and leg-
umes were among foods consumed at higher amounts 
among Black participants.

Dietary habits and food preferences could have a major 
impact on the types/distribution on lipid metabolites 
found to be differential between Black and White par-
ticipants, for example, phospholipids or diacylglycerols, 
besides triglycerides in plasma (again lower in Blacks). 
Synthesis of diacylglycerols and phospholipids is heav-
ily influenced by diet. Indeed, we noted differences in 
dietary intakes of saturated and unsaturated fatty acids, 
which helped explain differences in biochemical sub-
classes or pathways relevant to lipid biosynthesis or 
metabolism. Fatty acids from the diet diffuse in micelles 
from the gut lumen into enterocytes and are converted 
to phosphatidic acid, and subsequently diacylglycer-
ols or phospholipids, and later secreted as vesicles into 
plasma in chylomicrons or very-low-density lipoprotein, 
and transported to other tissues [43]. Lysophoshospho-
lipids are intermediates of other phospholipids, gener-
ated by enzymatic activity resulting in the removal of an 
acyl group. Variations in the diet (consumption of oleic 
or palmitic acids, and related oils) could mean variations 
in phospholipid profiles, as well as the fatty acids incor-
porated into the C1 and C2 positions of diacylglycerols, 
which are continually in flux [44]. Hence differences in 
some of these lipid types reflect differences in food pref-
erences, which are culturally influenced. Accordingly, 

Fig. 1 Random forest analysis showing A mean decrease accuracy representing an average decrease in accuracy after permutation of each 
respective metabolite and B importance plot using 5-fold cross-validation, classifying Black and White participants
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Black Americans within AHS-2 were shown to have 
higher consumption of certain types of carbohydrates 
and “soul” or Caribbean foods such as macaroni and 
cheese, red/pinto beans, rice and beans, black-eyed peas, 
okra, and other foods [45], which could contribute to dif-
ferences in lipid metabolism. This is consistent with the 
higher consumption of carbohydrates in Black partici-
pants in the current study.

A high carbohydrate diet might increase de novo lipo-
genesis and consequently phospholipids or triglycerides, 
as glucose impacts this process by providing acetyl-coA, 
and can induce expression or production of lipogenic 
genes or enzymes [46]. Induction of lipogenic genes 
is also evident in the context of obesity. Lysophospho-
lipid metabolism is also altered with obesity, and in turn 
impacts obesity-related diseases [47]. Besides differences 
in diet or obesity, the other possible explanation for dif-
ferences in phospholipids and other fatty acids relates to 
ethnic differences in triglycerides. Black Americans have 
been found to have lower triglycerides in spite of higher 
rates of several cardiometabolic diseases, termed “the tri-
glyceride paradox” [48], although the reason is not clear. 
It is not clear from the current study how levels of plasma 
triglycerides differed between the two racial groups. But 
there were lower levels of long-chain fatty acids and mon-
oacylglycerols, which are products of triglyceride diges-
tion by pancreatic lipase. Thus, it is possible that lower 
levels of triglycerides correlate with lower products of 
triglyceride digestion (i.e., lower monoacylglycerols and 
monounsaturated/long-chain fatty acids) in Blacks. As 
glycerol and glycerol-3-phosphate (comprising the glyc-
erophospholipids subclass) are precursors for phospho-
lipids and di- and triacylglycerols, it might be expected 
that these would be significantly lower in Blacks.

No lipid metabolite subclasses showed higher abun-
dance in Black participants. There was, however, a pro-
portionately greater representation of sphingomyelins 
and plasmalogens in Black participants when consid-
ering individual metabolites. Both plasmalogens and 
sphingomyelins have important roles in cell structure 
and signaling. While their pathophysiological roles are 
not completely clear, dysregulation may be associated 
with neurodegenerative disorders, cancer, cardiovascu-
lar disease, diabetes, and other metabolic diseases [49, 
50] which could explain higher rates of these diseases in 
Blacks.

Lysine and leucine metabolism showed significant 
and consistent differences comparing Black and White 
participants. Products of leucine breakdown such as 
3-methylglutaconate and ethylmalonate, among others, 
have been previously associated with single nucleotide 
polymorphisms (SNPs) [51], which could partly explain 
the differences. Ethylmalonate is a branched fatty acid 

that has been associated with a protein-altering variant 
in acyl-CoA dehydrogenase (ACAD), which may affect 
fatty acid oxidation [51, 52]. This is consistent with the 
differences observed in fatty acid and lipid metabolism 
in the current study, as leucine and lysine catabolism 
both yield acetyl CoA to regulate fatty acid synthesis. 
It was interesting that methylated lysines, particularly, 
showed the strongest ability to differentiate Black and 
White participants. These metabolites are especially 
interesting because of their potential involvement in 
regulation of gene expression. For instance, histone 
lysine methylation may be associated with activation or 
silencing of genes depending on position [53, 54], and 
these metabolites could have been present in plasma as 
a result of histone degradation. It is also possible that 
these lysine residues are nonhistone derived. Nonhis-
tone lysine methylation has implications for oncogen-
esis and cancer progression [55]. As methylation of 
lysine is regulated by lysine methyltransferase, it would 
be interesting to determine in future studies if such 
enzymes show differential activity in Black and White 
Americans in the context of both health and disease.

The creatine metabolism subclass was exclusively 
higher in Black participants, with all three component 
metabolites statistically higher in the fully adjusted 
model. Higher creatine was the top metabolite associ-
ated positively with estimated glomerular filtration rate 
(eGFR) in African American participants of the Ather-
osclerosis Risk in Communities (ARIC) study without 
chronic kidney disease at baseline [56]. In the current 
study, race was associated with creatine metabolism 
after adjustment for social, demographic, and envi-
ronmental factors, and creatine (though not creatine 
metabolism) showed differential abundance even after 
adjustment for eGFR in a sub-analysis. Our finding of 
higher abundance of creatine or the creatine metabo-
lism subclass in Blacks may highlight clinically relevant 
racial distinctions, as creatinine is the principal deter-
minant of eGFR [57]. Because even healthy Black or 
African Americans have shown higher levels of creati-
nine, various equations have been generated to calcu-
late eGFR with adjustment for race. But the use of such 
equations is controversial as they often yield higher 
estimates of GFR in Blacks, leading to a greater num-
ber of undiagnosed cases. Recently, a new race-free 
calculation of eGFR was developed with either creati-
nine or another filtration marker called cystatin-C [58]. 
Given the apparently complex role of race in creatine 
metabolism, metabolomics analysis will likely provide 
increased discriminatory power to GFR estimation in 
the future.

The higher abundance of creatine-related metabo-
lites was paralleled by higher abundance of arginine, a 
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precursor for creatine that has been found  to be higher 
in other individuals of African descent [59]. Even more 
interestingly, though not directly related to creatine 
metabolism, a number of n-acetylated metabolites, which 
have relevance to kidney function, showed significant dif-
ferences in the current study, though in both directions. 
A number of these metabolites have been found inversely 
associated with eGFR in African Americans [56, 60], 
many also associated with SNPs more common in Afri-
can Americans [51, 60], and particularly mapping to loci 
related to acetylated amino acids, consequently impact-
ing enzyme-metabolite interactions. Ten of 12 recently 
identified metabolites with novel validated inverse asso-
ciations with creatinine glomerular filtration rate in 
novel subpathways (as discovered among participants 
of the ARIC and Bogalusa Heart Study (BHS) cohorts), 
were significantly lower in Black participants in the cur-
rent study, including some metabolites showing greatest 
fold changes or discriminating ability, such as n-methyl-
pipecolate, and 3-amino-isobutyrate, among others. Con-
sequently, the observed racial differences in abundance 
of acetylated amino acids which are putative uremic sol-
utes, and particularly those in higher abundance in Black 
participants, may have important implications for kid-
ney health disparities as Blacks present with significantly 
higher kidney function diseases.

Metabolites of methyl- and propyl- parabens, common 
preservatives in foods, cosmetics (hair, skin, etc.), and 
medications, were markedly higher (~ 6-fold) in Blacks. 
African or Black Americans have shown higher levels of 
parabens in urine in other studies [61], likely attribut-
able to hair products [62]. Particularly hair products have 
been found to contain endocrine-disrupting chemicals 
and have been linked with breast cancer (due to parabens 
or other chemicals) [13, 62–67], and are used more com-
monly by Black women [67, 62, 68]. Though parabens are 
generally considered safe, there are some questions about 
toxicity given some reports of oxidative DNA damage 
upon light irradiation in dermal tissues [69]. Our find-
ings warrant further investigation of these metabolites in 
studies with Black participants and biospecimens.

The minimal impact of other lifestyle factors, and soci-
oeconomic or psychosocial stressors (which were not 
notably different between Black and White participants 
in this study) on metabolic profiles might be explained by 
the overall healthier lifestyles among Black AHS-2 partic-
ipants when compared to the general population. AHS-2 
participants have healthier lifestyles, diminishing some of 
the social disparities that exist between Black and White 
Americans, and translating into better health outcomes 
for Black participants. The AHS-2 cohort consists of a 
large proportion of individuals following vegetarian or 
plant-based diets, with very little tobacco smoking or 

alcohol drinking, consistent with the religious doctrine. 
Thus these participants are more alike in such areas that 
would otherwise contribute to confounding, yet with 
variety in dietary habits/patterns and other lifestyle fac-
tors. While these are unique features or strengths of 
this cohort, there are inevitable limitations in compa-
rability with other populations. An external cohort of 
non-Adventists will have notably different lifestyles and 
behaviors which impact health outcomes and biological 
pathways impacting disease. AHS-2 participants, includ-
ing Blacks, have lower overall cancer incidence and 
lower all-cause and/or cancer mortality compared to the 
National Longitudinal Mortality Study (NLMS) popula-
tion and its Surveillance, Epidemiology, and End Results 
(SEER) substudy, representing US census populations 
[70]. The religious engagement and church activity also 
may favorably impact health and mortality. Such findings 
highlight the relevance of healthy lifestyles, behaviors, 
and social experiences (healthy diets, absence of smok-
ing, alcohol drinking, religion, management of stress) 
in controlling racial disparities. Consequently, there are 
limitations in terms of external validity.

It is not clear how the differential metabolic profiles 
might relate to susceptibility to metabolic diseases, and 
it is challenging to disentangle the biological and social 
effects in explaining racial differences, which may be 
inherently intertwined. For example, social stress may 
interact with biological factors and particularly genetic or 
epigenetic factors that influence metabolite abundance. 
The metabolic profile is attributable to various biologi-
cal and environmental factors, i.e., diet, genetic polymor-
phisms, the gut microbial community, physical activity, 
and stress, among others. The statistical models gener-
ated were not comprehensive with regard to covariates, 
and there is a likelihood of residual confounding, particu-
larly in light of the strong relationship between diet and 
metabolites. However, we have attempted to examine the 
contributions of lifestyle and social factors by generating 
and comparing models of varying complexity. Hence, the 
observed racial differences in metabolic profiles should 
be interpreted with caution. Nonetheless, many of the 
differentially abundant lipid subclasses have important 
physiological roles, and consequently implications for 
health and disease. Lysophospholipids and other signal-
ing lipids have roles in cardiometabolic and neurologi-
cal health, and inflammatory responses [71, 72], besides 
obesity [47]. Besides dietary components/nutrients, it 
is possible that the lower abundance of certain metabo-
lites reflects differences in body composition that were 
unaddressed with adjustment for BMI. The potential 
contribution of genetic polymorphisms also should not 
be ignored, which might impact kidney health or func-
tion and disease risk. Interestingly, metabolomic lactone 
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sulfate which was markedly lower in Black participants, 
has been associated with a polymorphism in a CYP3A 
gene and poor cardiometabolic health. An association 
of such biomarkers with a lower risk of cardiometabolic 
and other diseases in Black Americans may highlight, all 
the more, racial disparities in the progression of chronic 
diseases, and the critical contributions of social determi-
nants of health.

This study has notable strengths, including the approxi-
mately equal numbers of Black and White participants 
with many lifestyle similarities, and comprehensive data 
collected on study participants, allowing for consider-
able model complexity (inclusion of data on social vul-
nerability, dietary patterns, and other lifestyle behaviors 
and environmental stress). One issue, however, is that 
the Black participants in this cohort may not reflect the 
general population as far as socioeconomic or -cultural 
characteristics, which could be seen as a strength or a 
limitation. The Black AHS-2 participants overall have a 
higher level of education and experience less socioeco-
nomic disadvantage. Another limitation is the somewhat 
small sample size for the current study precluding more 
comprehensive comparisons considering aspects of diet 
or stratified analyses, although there was more than 
enough power to detect statistical differences in plasma 
metabolites by race, and we were able to repeat analyses 
comparing two sub-samples.

Conclusions
Black and White participants show distinct metabolic 
profiles, most notably differences in phospholipid metab-
olism and related lipid subclasses, besides creatine and 
lysine metabolism, and metabolites with relevance to 
kidney function. Differences in some of these metabolites 
and subclasses are likely a reflection of unique dietary 
behaviors, not simply dietary patterns, while other dif-
ferences may be attributed to genetic influences. Many 
differences in xenobiotic metabolites probably relate 
to lifestyle choices, such as the use of medications and 
caffeinated beverages. Whether attributed to dietary, 
genetic, or other factors, these differential metabolic 
profiles may have implications for cardiometabolic and 
renal health in Blacks, driving various health disparities 
outcomes.
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