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Abstract 

Background Fatty acid binding protein 4 (FABP-4) is a lipid-binding adipokine upregulated in obesity, which may 
facilitate fatty acid supply for tumor growth and promote insulin resistance and inflammation and may thus play 
a role in colorectal cancer (CRC) development. We aimed to investigate the association between circulating FABP-4 
and CRC and to assess potential causality using a Mendelian randomization (MR) approach.

Methods The association between pre-diagnostic plasma measurements of FABP-4 and CRC risk was investigated 
in a nested case-control study in 1324 CRC cases and the same number of matched controls within the European 
Prospective Investigation into Cancer and Nutrition (EPIC) cohort. A two-sample Mendelian randomization study 
was conducted based on three genetic variants (1 cis, 2 trans) associated with circulating FABP-4 identified in a pub-
lished genome-wide association study (discovery n = 20,436) and data from 58,131 CRC cases and 67,347 controls 
in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, 
and Colon Cancer Family Registry.

Results In conditional logistic regression models adjusted for potential confounders including body size, the esti-
mated relative risk, RR (95% confidence interval, CI) per one standard deviation, SD (8.9 ng/mL) higher FABP-4 con-
centration was 1.01 (0.92, 1.12) overall, 0.95 (0.80, 1.13) in men and 1.09 (0.95, 1.25) in women. Genetically determined 
higher FABP-4 was not associated with colorectal cancer risk (RR per FABP-4 SD was 1.10 (0.95, 1.27) overall, 1.03 (0.84, 
1.26) in men and 1.21 (0.98, 1.48) in women). However, in a cis-MR approach, a statistically significant association 
was observed in women (RR 1.56, 1.09, 2.23) but not overall (RR 1.23, 0.97, 1.57) or in men (0.99, 0.71, 1.37).
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Background
Fatty acid binding protein 4 (FABP-4) is a lipid-binding 
adipokine mainly expressed in adipocytes and mac-
rophages. FABP-4 is involved in transporting fatty acids 
to cellular compartments, modulating intracellular 
lipid metabolism, and regulating gene expression [1]. In 
humans, elevated FABP-4 concentrations have been asso-
ciated with obesity, insulin resistance, atherosclerosis, 
type 2 diabetes, and metabolic syndrome [2–6]. Evidence 
for a causal positive association between body mass index 
(BMI) and FABP-4 levels has been provided by Mende-
lian randomization (MR) studies [7, 8]. Pro-inflamma-
tory properties of FABP-4 have also been described [6]. 
FABP-4 has been shown to independently predict inflam-
mation and fibrosis in non-alcoholic fatty liver disease 
(NAFLD) and may have a direct pathogenic link to dis-
ease progression [9, 10]. Based on observations in breast 
cancer FABP-4 has been suggested as a factor that may 
promote obesity-associated cancer initiation and pro-
gression [11]. FABP-4 expression in adipocytes has been 
reported to play a key role in the progression and metas-
tasis of ovarian cancer by facilitating fatty acid supply for 
rapid tumor growth [12]. Colorectal cancer (CRC) repre-
sents another tumor in which adipocytes are an integral 
part of the tumor micro-environment [13], therefore cir-
culating FABP-4 may play a role in CRC development by 
providing a fatty acid supply for tumor growth. In addi-
tion, FABP-4 may affect CRC development through its 
effects on inflammation [14] and insulin resistance [15–
18], two pathways that have been demonstrated to play a 
role in obesity-associated CRC.

Higher FABP-4 concentrations have been observed in 
CRC patients than in controls in two small clinical stud-
ies from China [19, 20]. In the largest of the two studies 
(100 CRC cases), it was also shown that FABP-4 expres-
sion was statistically significantly higher in tumor tis-
sues than in adjacent tissues [20]. In research focusing 
on colon adenocarcinoma, a higher FABP-4 expression 
has been observed in tumor than in adjacent tissues [21] 
and FABP4 was part of an 11-gene risk score that predicts 
recurrence of colon adenocarcinoma [22]. Collectively, 
laboratory and epidemiological research suggests the 
potential involvement of FABP-4 in CRC development. 
However, evidence from prospective studies on the asso-
ciation between circulating FABP-4 and the risk of CRC 
is so far lacking. Clarifying the role of FABP-4 in CRC 

development is important because it may potentially 
serve as an obesity-associated biomarker that may help 
identify individuals at high risk of disease who might spe-
cifically benefit from primary or secondary prevention 
strategies. We hypothesized that higher FABP-4 could 
be positively associated with CRC risk, either directly, 
by facilitating fatty acid supply for tumor growth [13], 
or indirectly through FABP-4-related enhancement of 
inflammation [14] and insulin resistance [15–18] (Addi-
tional file 1: Fig. S1).

Here, we investigated the association between FABP-4 
concentrations measured in baseline blood samples and 
subsequent risk of CRC using data from a nested case-
control study in the European Prospective Investigation 
into Cancer and Nutrition (EPIC) cohort, stratified by sex 
and tumor location. In MR, genetic variants associated 
with circulating biomarker levels can be used to assess 
causal associations by circumventing common types of 
bias in observational studies such as residual confound-
ing and reverse causation [23]. Thus, to further improve 
causal inference, we additionally conducted a two-sample 
MR study using data from the Genetics and Epidemiol-
ogy of Colorectal Cancer Consortium, Colorectal Can-
cer Transdisciplinary Study, and Colon Cancer Family 
Registry [24, 25]. In two-sample MR, gene-exposure and 
gene-outcome associations are derived from non-over-
lapping samples [26], and a combined ratio estimate is 
calculated to estimate the causal association between the 
exposure and the outcome. We examined horizontal plei-
otropy and colocalization to address the validity of MR 
assumptions.

Methods
Biomarker study
Details of the study design and methods of the prospec-
tive, multinational EPIC cohort, which has the aim of 
elucidating the associations between diet, lifestyle, and 
environmental factors with cancer and other chronic dis-
eases, have been reported previously [27]. Between 1992 
and 2000 more than 520,000 participants aged between 
25 and 70 years were enrolled from 23 EPIC study cent-
ers in 10 Western European countries. The baseline 
examinations included standardized lifestyle, medical, 
and personal history questionnaires, as well as anthro-
pometry [28] and the collection of blood samples. Par-
ticipants’ habitual diet in the past year was ascertained at 

Conclusions Taken together, these analyses provide no support for a causal role of circulating FABP-4 in the develop-
ment of CRC, although the cis-MR provides some evidence for a positive association in women, which may deserve 
to be investigated further.
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recruitment by validated country-specific food frequency 
questionnaires (FFQs), diet history, or a combination of 
FFQs and dietary records [27]. The EPIC cohort has been 
approved by the ethics review board of the International 
Agency for Research on Cancer (IARC, Lyon, France) as 
well as local review boards in each participating country.

Identification of colorectal cancer cases
In most participating EPIC countries, incident can-
cer cases were identified through record linkage with 
regional cancer registries (Denmark, Norway, the Neth-
erlands, Spain, Sweden, the UK, and most of the Italian 
study centers). In France, Germany, Greece, and Naples 
(Italy), active follow-up through direct contact with the 
study participants or their next of kin was performed 
through mailed questionnaires. Self-reported cancer 
cases were then verified by study physicians using health 
insurance records, information from cancer and clinical 
or pathology registries, and medical records provided by 
treating physicians. Colorectal cancer was defined based 
on the International Statistical Classification of Diseases, 
Injury and Causes of Death (10th Revision), including 
tumors of the colon (C18.0–C18.7), tumors that were 
overlapping or unspecified (C18.8–C18.9), and tumors of 
the rectum (C19–C20).

Nested case–control study
These analyses are based on a nested case-control study 
(end dates between December 2001 and December 2005 
across EPIC centers) of 1324 first incident CRC cases 
and 1324 matched controls, selected by incidence den-
sity sampling from all cohort members who were alive 
and free of cancer at the time of diagnosis of the index 
case (for technical reasons, no samples from Greece and 
Norway were included in the present analysis). Matching 
factors included sex, age at blood collection (2-month to 
4-year intervals), study center, time of blood collection 
(± 4 h), and fasting status (< 3, 3–6, or > 6 h). Women were 
additionally matched on menopausal status (premeno-
pausal, perimenopausal, postmenopausal, or surgically 
menopausal), on the phase of the menstrual cycle (among 
premenopausal women), and on the use of menopausal 
hormone therapy (among postmenopausal women) at 
the time of blood collection. Although not all matching 
factors (e.g., menstrual cycle) were relevant for the pre-
sent study question, the nested case-control set-up was 
designed to be used for different biomarker studies in 
EPIC.

Blood samples were collected from participants at 
baseline according to a standardized protocol and most 
were stored at the International Agency for Research 
on Cancer (Lyon, France) in liquid nitrogen at −196  °C; 
exceptions were Danish samples — stored locally in 

nitrogen vapor at −150  °C, and Swedish samples — 
stored in −80  °C freezers [27]. Serum concentrations of 
FABP-4 were measured by enzyme-linked immunosorb-
ent assays (BioVendor Adipocyte FABP (FABP4) Human 
ELISA) by BioVendor (BioVendor Laboratory Medicine, 
Inc.; Brno, Czech Republic). Inter-assay coefficients of 
variation during the laboratory analysis were 6.5%, 4.4%, 
and < 6.0% for high, low, and pool serum quality controls, 
respectively. Good reliability of FABP-4 measurements 
four months apart has been demonstrated using a sub-
sample of EPIC-Potsdam [29].

Circulating concentrations of high-sensitivity C-reac-
tive protein (hsCRP), tumor necrosis factor alpha 
(TNF-α), C-peptide, glycated hemoglobin (HbA1c), 
insulin-like growth factor 1 (IGF-1), IGF binding pro-
teins, total cholesterol, triglycerides, high-density 
lipoprotein cholesterol (HDL-C), low-density lipopro-
tein cholesterol (LDL-C), adiponectin, leptin, soluble 
leptin receptor (sOB-R), resistin, neopterin, fetuin-a, 
25-hydroxyvitamin D, ferric reducing ability of plasma 
(FRAP), and reactive oxygen metabolites (ROM) were 
also measured in the same study participants as previ-
ously reported [16, 17, 30–36].

Statistical analysis
Participants were categorized by FABP-4 concentrations 
in sex-specific quintiles with cut-offs based on the dis-
tribution among control participants. Baseline charac-
teristics across sex-specific FABP-4 quintiles in control 
participants were examined as frequencies and propor-
tions for categorical variables, as mean (SD) for continu-
ous variables with approximate normal distribution, and 
as median (25th and 75th percentile) for skewed varia-
bles. P for trend across quintiles was calculated from gen-
eralized linear models for variables expressed as means, 
from the Jonkheere-Terpstra test for variables expressed 
as percentages, and from the Kruskal-Wallis test for 
variables expressed as medians. Baseline characteristics 
were also compared in cases versus controls, overall, and 
stratified by sex. P values for the differences between 
cases and controls were calculated by McNemar’s test for 
variables expressed as percentage, Student’s paired t test 
for variables expressed as means, and Wilcoxon’s signed 
rank test for variables expressed as medians. Diabetes 
at baseline was defined as either self-reported diabetes 
diagnosis or HbA1c ≥ 6.5%. A-body shape index (ABSI) 
was calculated with coefficients of the National Health 
and Nutrition Examination Survey (NHANES) [37] 
as follows: ABSI = waist circumference (mm) × weight 
(kg)−2/3 × height (m)5/6.

Spearman partial correlation coefficients (controlled 
for age and sex) and corresponding p-values were cal-
culated to examine the correlation between circulating 
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FABP-4 concentration and anthropometric measure-
ments as well as metabolic, inflammatory, and other bio-
markers, considering correlations > 0.3 as relevant.

A directed acyclic graph (DAG) was created using 
the DAGitty web application [38] to graphically illus-
trate the hypothesized causal pathways between FABP-4 
and CRC risk and potentially confounding factors to be 
considered based on prior evidence [39]. The associa-
tion between circulating FABP-4 concentration at base-
line and risk of colorectal, colon, proximal colon, distal 
colon, or rectal cancer (overall and separately by sex) in 
the matched nested case-control study was investigated 
using conditional logistic regression analysis. Due to the 
incidence-density sampling, the calculated odds ratios 
(ORs) and 95% confidence intervals (CIs) estimate inci-
dence rate ratios and can be interpreted as relative risks 
(RRs). FABP-4 in relation to CRC risk was analyzed by 
sex-specific quintiles as well as a continuous variable per 
one standard deviation (SD) in controls (8.9 ng/ml). Test 
for trend across quintiles was performed by entering the 
sex-specific quintile medians as a continuous variable 
into the conditional logistic regression model and evalu-
ating its significance by using Wald’s test. The association 
between circulating FABP-4 and CRC risk was investi-
gated in a crude conditional logistic regression model 
(thereby accounting for the matching factors only) as 
well as in a multivariable conditional logistic regression 
model with adjustment for potential confounding fac-
tors including education (none, primary school, techni-
cal/professional or secondary school, longer education 
including university degree, not specified), Cambridge 
physical activity index (inactive, moderately inactive, 
moderately active, active, missing) [40], smoking status 
and intensity (never, current (1–15, 16–25, ≥ 26 ciga-
rettes/day, pipe/cigars/occasionally, intensity missing), 
former (quit ≤ 10, 11–20, ≥ 20 years ago), unknown) and 
alcohol intake (nondrinker, former drinker, current g/day 
at recruitment) (Additional file  1: Fig. S1). Adding die-
tary variables including total energy intake, fiber intake, 
fruit and vegetable intake, red meat intake, processed 
meat intake, and fish and shellfish intake to the model 
did not change results appreciably and these were there-
fore not included as covariables. In a separate model, we 
added body mass index (BMI), height, and residuals of 
BMI- and height-adjusted waist circumference (to avoid 
multicollinearity) to the multivariable model to exam-
ine whether adjustment for body size changed risk esti-
mates. There were 122 participants with missing values 
on waist circumference (all from the Umeå study center) 
in whom the waist circumference residuals were substi-
tuted with sex-specific median values. In a sensitivity 
analysis, we compared associations obtained with the 
simple imputation for waist circumference residuals to 

a complete case analysis. Potential heterogeneity in the 
associations between FABP-4 and colorectal cancer ana-
tomical subsite (i.e., outcome subtypes) was determined 
using competing risk tests [41, 42]. Heterogeneity by sex 
was evaluated using the Q-statistic from the inverse vari-
ance method, assuming a fixed-effect model of 1 degree 
of freedom [43]. Both tests for heterogeneity were con-
ducted with the continuous estimates for FABP-4 per SD. 
We tested for potential non-linear associations between 
FABP-4 and risk of CRC using fractional polynomials 
[44], but there was no indication of a non-linear asso-
ciation from the fractional polynomials for FABP-4 and 
CRC overall or stratified by sex in either model (all p-val-
ues for non-linearity > 0.17).

Additional analyses were performed with exclusion 
of participants with diabetes at baseline (n = 110 cases, 
8.3% of all cases; n = 67 controls, 5.1% of all controls) as 
well as CRC cases (and their matched controls) diag-
nosed within 2  years after recruitment (n = 235 cases, 
17.7% of all cases) to evaluate whether our findings 
were influenced by preclinical disease. We tested for 
statistical interaction by age (< / ≥ median age 59 years), 
BMI (< / ≥ 30  kg/m2), waist circumference (< / ≥ 88  cm 
in women, < / ≥ 102  cm in men), and A-body shape 
index (ABSI, sex-specific median cut-off, < / ≥ 81.2 in 
men, < / ≥ 73.8 in women) as well as by sex-specific 
median cut-off levels of biomarkers of inflamma-
tion (CRP, < / ≥ 1910  ng/ml in men, < / ≥ 2470  ng/ml in 
women) or insulin resistance (C-peptide, < / ≥ 4.4  ng/
ml in men, < / ≥ 3.5 ng/ml in women) or biomarkers that 
correlated substantially with FABP-4 (r > 0.3), i.e., leptin 
(< / ≥ 4.3  ng/ml in men, < / ≥ 14.7  ng/ml in women) and 
FRAP (< / ≥ 1147.5  µmol/l in men, < / ≥ 926  µmol/l in 
women). Statistical interaction on the multiplicative scale 
was evaluated by including a product term of each poten-
tial interaction factor and FABP-4 (as a continuous vari-
able) in the multivariable model including body size and 
evaluating its statistical significance using the Likelihood 
Ratio test.

Where appropriate, we performed a causal media-
tion analysis for nested case–control studies using con-
ditional logistic regression [45, 46], to investigate which 
proportion in the association between body fatness and 
CRC risk could be mediated by FABP-4, based on multi-
variable models adjusted for education, physical activity 
index, smoking intensity, and alcohol intake.

Two‑sample Mendelian randomization study
We identified four single nucleotide polymorphisms 
(SNPs, rs2012444; rs190775685; rs77878271; rs79389622) 
that were independently associated (R2 < 0.01 and 
P < 5 ×  10−8) with FABP-4 from a genome-wide associa-
tion study (GWAS) on 90 proteins including FABP-4 in 
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21,758 individuals from 13 cohorts of European ances-
try (SCALLOP consortium) [8]. The total sample size 
for the GWAS on FABP-4 after subtracting missing par-
ticipants due to values below the limit of detection or 
technical issues in each cohort was 20,436. Effect sizes 
are expressed as standard deviations of FABP-4 concen-
trations. In the same publication, it was shown in MR 
analyses that genetically determined FABP-4 is posi-
tively associated with BMI with intermediate evidence 
[8]. We calculated the variance explained by each of the 
SNPs from the effect allele frequency, sample size, beta 
estimate, and standard deviation as described previously 
[47]. The F-statistic was calculated according to the for-
mula: F = ((n-k-1)/k)/(R2/(1-R2)), where R2 is the total 
proportion of the explained variance in FABP-4 by all 
selected genetic instruments, k is the number of genetic 
instruments and n is the GWAS sample size of the SNP-
FABP-4 association [48]. The estimates for the associa-
tion between the selected SNPs and CRC were based on 
data from three consortia: Genetics and Epidemiology 
of Colorectal Cancer Consortium (GECCO), Colorec-
tal Cancer Transdisciplinary Study (CORECT), and 
Colon Cancer Family Registry (CCFR), including overall 
58,131 CRC cases and 67,347 control participants [49]. In 
these data, one of the four selected SNPs was not avail-
able (rs190775685), so the MR analysis is based only on 
three SNPs, that is one cis-SNP (rs77878271, closest gene 
FABP4) and two trans-SNPs (rs2012444, closest gene 
PPARG , rs79389622, closest gene CRB2). We calculated 
the minimal detectable OR per standard deviation higher 
genetically predicted FABP-4 for the given sample size 
and proportion of variance explained by the three SNPs 
for a power of 0.8 [50]. The association between geneti-
cally predicted FABP-4 concentration and risk of CRC 
or CRC subgroups (by subsites and sex) was investigated 
using the fixed-effects inverse-variance-weighted method 
(IVW) [25]. We used MR Egger as sensitivity analysis 
and to investigate potential horizontal pleiotropy, i.e., the 
possibility that a genetic variant is associated with CRC 
not only through FABP-4 but also through other bio-
logical pathways, in which case the exclusion-restriction 
assumption of MR would be violated [26]. We repeated 
the MR investigation using only the cis-SNP (located 
near the FABP4 gene) as an instrumental variable using 
the Wald ratio [51]. In addition, we scanned the FABP4 
gene region (plus/minus 100 kilobasepairs) for addi-
tional SNPs associated with FABP-4 that were correlated 
to a certain extent (R2 < 0.1). From this approach, one 
additional SNP was selected (rs2011042). As a sensitiv-
ity analysis to explore the robustness of cis MR findings, 
we ran a cis MR using both variants (IVW) accounting 
for their correlation matrix. Finally, as a complementary 
method to MR and to evaluate the robustness of the MR 

estimates, we conducted colocalization analysis [52]. This 
method investigates whether two traits (i.e., circulating 
FABP-4 and CRC) are affected by a shared or two distinct 
causal variants and can be applied based on summary-
level genetic association data. We applied enumeration 
colocalization based on a Bayesian framework to detect 
shared causal variants [53], using the genetic region that 
extends 50 kilobasepairs either side of the lead FABP4 
variant. The posterior probability (PP) for the hypothesis 
corresponding to colocalization was calculated with the 
(standard) prior probability set to p =  10−5 and repeated 
with a relaxed prior probability of p =  10−4.

All reported p-values are two-sided and P-values < 0.05 
were considered statistically significant. We applied Bon-
ferroni-correction to account for multiple tests where 
appropriate. MR analyses (MR robust) and fractional 
polynomials (fracpoly) were performed using STATA SE 
15 (StataCorp, College Station, TX, USA). The cis MR 
accounting for the correlation matrix, the colocalization, 
and the causal mediation analysis were performed in R, 
version 4.2.1. All other analyses were performed using 
SAS Version 4.3 — Graphical Software Interface — SAS 
Enterprise Guide (SAS Institute Inc., Cary, NC, USA).

Results
Baseline characteristics in CRC cases versus con-
trols showed that controls had more often a university 
degree, were less often physically inactive, less often 
current smokers, had less often  diabetes, and had a 
lower BMI, waist circumference, and A-body shape 
index (ABSI,  Additional file  1: Tab. S1). In women, 
BMI did not differ significantly between CRC cases 
and controls, but both waist circumference and ABSI 
were higher in cases than in controls (Additional file 1: 
Tab. S2). Median FABP-4 concentration (25th, 75th 
percentile) was 15.1 (11.0, 20.5) ng/ml in controls and 
with 15.3 (11.1, 21.3) ng/ml slightly higher in CRC 
cases (Additional file  1: Tab. S1). In women, median 
FABP-4 concentration was higher in cases (19.3  ng/
ml) than in controls (18.3  ng/ml), while the contrast 
in men was less strong (median in cases 12.4  ng/ml, 
and in controls 12.1  ng/ml, Supplemental Table S2). 
Among controls, men had substantially lower FABP-4 
concentrations (median 12.1, 25th percentile 9.0, 75th 
percentile 16.0  ng/ml) than women (median 18.3, 
25th percentile 14.0, 75th percentile 24.5, p-value for 
sex-difference from the Kruskal-Wallis test < 0.0001), 
which is why we divided participants in sex-specific 
quintiles (cut-offs based on controls) (Additional file 1: 
Tab. S3). Compared with female controls, male con-
trols had higher BMI, waist circumference and ABSI 
and consumed more alcohol (Additional file  1: Tab. 
S3). Baseline characteristics of control participants by 
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sex-specific quintiles of FABP-4 concentrations are 
shown in Table  1. Mean age increased across FABP-4 
quintiles. Participants in the upper quintiles were more 
often physically inactive than those in the lower quin-
tiles, whereas no clear trends were observed across 
quintiles for education or smoking status. BMI, waist 
circumference, and ABSI were all increased across 
FABP-4 quintiles and, when comparing the upper 
with the lower quintiles, we observed a higher pro-
portion of participants with diabetes. Alcohol intake, 
total energy, fiber, and fruit and vegetable intake were 
slightly decreased across FABP-4 quintiles, whereas no 
clear trends were observed for red and processed meat 
or fish intake. These observations did not differ sub-
stantially when investigating baseline characteristics in 

male and female control participants separately (Addi-
tional file 1: Tab. S4 and S5).

In control participants, FABP-4 concentrations cor-
related statistically significantly, even after applying 
a Bonferroni-correction (n = 28 tests), with BMI and 
waist circumference as well as with a number of bio-
markers of inflammation, metabolism, blood lipids, 
adipokines, antioxidative capacity, and immune func-
tion (Table  2). FABP-4 concentrations were substan-
tially (r > 0.4) positively correlated with BMI and waist 
circumference, and weakly correlated with ABSI, 
whereas no correlation was observed with height. Sub-
stantial correlations were observed between FABP-4 
and the adipokine leptin (r = 0.42) as well as with 
FRAP (r = 0.33), a biomarker of antioxidant capacity. 

Table 1 Baseline characteristics by (sex-specific) quintiles of FABP-4 concentrations in control participants (n = 1324)

P for trend across quintiles from the generalized linear model for variables expressed as means, from the Jonckheere-Terpstra test for variables expressed as 
percentage, and from the Kruskal-Wallis test for variables expressed as median

Mean (SD) unless indicated otherwise; FABP-4 Fatty acid binding protein 4, SD Standard deviation, p25 25th percentile, p75 75th percentile

Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 P‑trend

Quintile ranges in men < 8.3 ng/mL 8.3– < 10.8 ng/mL 10.8– < 13.6 ng/mL 13.6– < 17.2 ng/mL ≥ 17.2 ng/mL

Quintile ranges in women < 13.0 ng/mL 13.0– < 16.8 ng/mL 16.8– < 20.5 ng/mL 20.5– < 26.3 ng/mL ≥ 26.33 ng/mL

N 263 268 266 265 262

Male, n (%) 128 (47.9) 128 (47.6) 128 (47.8) 128 (47.6) 128 (47.9)

Female, n (%) 135 (51.3) 140 (52.2) 138 (51.9) 137 (51.7) 134 (51.1)  0.93

Age, years 55.7 (7.0) 57.6 (7.1) 58.2 (7.4) 59.1 (6.2) 59.8 (6.6) <0.0001

University degree, n (%) 48 (18.3) 56 (20.9) 50 (18.8) 41 (15.5) 40 (15.3) 0.12

Physically inactive, n (%) 40 (15.2) 50 (18.7) 73 (27.4) 61 (23.0) 71 (27.1) 0.001

Recreational and household physi-
cal activity, METs/week, median 
(p25, p75)

83.5 (48.5, 123.2) 78.9 (49.9, 118.7) 76.1 (42.6, 115.6) 75.7 (48.6, 115.5) 75.2 (42.0, 123.0) 0.58

Smoker, n (%) 75 (28.5) 61 (22.8) 57 (21.4) 69 (26.0) 66 (25.2) 0.69

Body mass index, kg/m2, mean (SD) 24.1 (3.1) 25.2 (3.1) 26.5 (3.4) 27.4 (3.3) 28.7 (4.3) <0.0001

Waist circumference, cm, mean (SD) 82.6 (11.3) 85.9 (11.7) 89.1 (10.8) 91.1 (10.8) 95.4 (12.5) < 0.0001

A-body shape index, mean (SD) 76.4 (5.6) 77.2 (6.2) 77.6 (5.7) 77.5 (5.4) 78.6 (5.5) < 0.0001

Height, cm, mean (SD) 168 (9.0) 167 (9.1) 167 (9.3) 168 (9.8) 167 (8.9) 0.40

Diabetes at baseline, n (%) 7 (2.7) 9 (3.4) 10 (3.8) 10 (3.8) 11 (4.2) 0.02

Alcohol intake, g/day, median (p25, 
p75)

10.7 (2.1, 24.8) 7.4 (1.7, 23.6) 7.7 (1.5, 20.0) 9.2 (1.8, 24.5) 6.2 (1.5, 18.3) 0.13

Dietary factors

 Energy intake, kcal/day, median 
(p25, p75)

2085 (1751, 2557) 2070 (1663, 2464) 2005 (1650, 2417) 2094 (1656, 2512) 1934 (1564, 2392) 0.09

 Fiber, g/day, median (p25, p75) 23.8 (18.8, 30.0) 22.9 (18.0, 28.4) 22.9 (18.1, 27.2) 22.9 (18.0, 27.4) 22.6 (17.3, 26.9) 0.04

 Fruits and vegetables, g/day, 
median (p25, p75)

401.3 (262.3, 572.8) 397.9 (282.4, 575.4) 345.7 (241.0, 546.4) 360.9 (235.2, 535.0) 331.7 (213.6, 512.0) 0.01

 Red meat, g/day, median (p25, 
p75)

23.6 (13.0, 43.1) 24.1 (12.8, 43.3) 25.5 (12.5, 42.6) 26.9 (15.5, 45.3) 23.3 (13.3, 45.0) 0.77

 Processed meat intake, g/day, 
median (p25, p75)

41.4 (23.9, 70.5) 44.1 (23.8, 71.5) 46.4 (25.0, 74.3) 51.6 (31.1, 75.8) 48.2 (24.7, 79.7) 0.12

 Fish, g/day, median (p25, p75) 28.2 (13.5, 51.7) 25.9 (13.7, 48.7) 28.9 (16.1, 48.5) 28.9 (14.7, 52.3) 32.4 (16.4, 52.4) 0.49

 FABP-4, ng/mL, median (p25, 
p75)

7.9 (6.5, 11.2) 13.0 (9.7, 14.8) 17.0 (12.2, 18.4) 20.7 (15.3, 23.6) 27.2 (20.3, 31.9) < 0.0001
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The inflammatory marker C-reactive protein (r = 0.29) 
as well as the hyperinsulinemia marker C-peptide 
(r = 0.28) were also correlated with FABP-4.

We observed a statistically significant association 
between circulating FABP-4 and risk of CRC in the 
conditional logistic regression model accounting for the 
matching factors but without further adjustment (RR 
highest versus lowest quintile 1.32, 95% CI 1.01, 1.72; 
RR per SD increment in FABP-4 1.10, 95% CI 1.01, 1.21, 
Table 3). This association was attenuated and no longer 
statistically significant after multivariable adjustment 
(RR highest versus lowest quintile 1.26, 95% CI 0.96, 
1.66; RR per SD 1.09, 95% CI 0.99, 1.19). Additional 
adjustment for body size (BMI, height, and BMI- and 

height-adjusted waist circumference residuals) further 
attenuated the relative risk estimates towards the null 
(RR highest versus lowest quintile RR 1.01, 95% CI 0.74, 
1.38, RR per SD 1.01, 95% CI 0.92, 1.12). The complete 
case analysis excluding participants with missing waist 
circumference (n = 122) yielded the same result in the 
model adjusted for body size (RR per SD 1.01, 95% CI 
0.91, 1.11). No statistical interaction was observed by 
age, BMI, waist circumference, or ABSI categories (all 
p-interactions > 0.26). Similarly, no interaction was 
observed by categories of C-reactive protein, leptin, or 
FRAP (all p-interaction > 0.57). However, a statistically 
significant interaction between FABP-4 and C-peptide 
was observed (p-interaction 0.04). Models stratified 
by C-peptide concentrations (sex-specific median) 
revealed a statistically non-significant inverse associa-
tion in participants with low C-peptide (RR per SD in 
FABP-4 0.84, 95% CI 0.61, 1.17) and a statistically non-
significant positive association in participants with 
high C-peptide (RR 1.04, 95% CI 0.83, 1.29).

In sex-stratified analyses, FABP-4 was borderline sta-
tistically significantly positively associated with CRC 
risk in women in the multivariable-adjusted model (RR 
per SD in FABP-4 1.12, 95% CI 1.00, 1.26), which was 
attenuated after adjustment for body size (RR 1.09, 95% 
CI 0.95, 1.25; Table  3). FABP-4 was not associated with 
CRC risk in men in either the multivariable-adjusted 
model (RR per SD in FABP-4 1.07, 95% CI 0.92, 1.23) or 
the multivariable-adjusted model including body size 
(0.95, 95% CI 0.80, 1.13). Adding the body size variables 
one by one to the multivariable-adjusted model showed 
that adjustment for BMI switched direction of estimates 
in men from (non-significant) positive to negative (data 
not shown). Despite the observed differential associa-
tions of FABP-4 with CRC risk in women compared to 
men, no significant heterogeneity by sex was observed 
(Table  3). After exclusion of participants with diabetes, 
the positive association between FABP-4 and CRC risk 
in women was slightly attenuated and statistically non-
significant (RR in the multivariable-adjusted model per 
SD 1.05, 95% CI 0.92, 1.19), while after exclusion of cases 
diagnosed within the first 2 years of follow-up (and their 
matched controls) point estimates remained statistically 
significant (RR per SD 1.17, 95% CI 1.03, 1.34, Additional 
file 1, Tab. S6). In men and overall, associations were not 
substantially changed after exclusion of people with dia-
betes or cases (and matched controls) diagnosed with the 
first 2 years (Additional file 1, Tab. S6).

In subgroup analyses by CRC subsite and sex (Addi-
tional file 1, Tab. S7), associations were not substantially 
different, although associations were slightly stronger 
in rectal versus colon cancer, with significant heteroge-
neity in conditional only (p-heterogeneity < 0.0001) or 

Table 2 Spearman partial correlation coefficients (controlled for age 
and sex) between FABP-4 and body mass index, waist circumference, 
A-body shape index, height and blood biomarkers in control 
participants (n = 1324)

Correlation coefficient for age controlled for sex only. Substantial correlations 
(r > 0.3) are displayed in bold
* Statistically significant after Bonferroni-correction for n = 28 tests (p < 0.018)

n r P‑value

Age, years 1324 0.21 < 0.0001*

Body mass index, kg/m2 1324 0.44 < 0.0001*
Waist circumference, cm 1263 0.42 < 0.0001*
A-body shape index 1263 0.12 < 0.0001*

Height, cm 1324 −0.03 0.27

High-sensitivity C-reactive protein, mg/L 758 0.29 < 0.0001*

TNF-a (pg/mL) 703 0.09 0.02

C-peptide, ng/mL 652 0.28 < 0.0001*

HbA1c, % 635 0.13 0.002

IGF1, nmol/L 649 −0.10 0.03

IGFBP1, nmol/L 1467 0.15 < 0.0001*

IGFBP2, nmol/L 1456 −0.21 < 0.0001*

IGFBP3, nmol/L 1472 0.05 0.04

IGFBP3 intact, nmol/L 1465 0.05 0.07

Total cholesterol, mmol/L 759 0.05 0.15

LDL cholesterol, mmol/L 759 0.07 0.05

HDL cholesterol, mmol/L 757 −0.14 < 0.0001*

Triglycerides, mmol/L 748 0.25 < 0.0001*

Adiponectin, μg/mL 673 −0.09 0.02

HMW-Adiponectin, μg/mL 672 −0.08 0.03

Leptin, ng/mL 673 0.42 < 0.0001*
Soluble leptin receptor, ng/mL 673 −0.23 < 0.0001*

Resistin, ng/mL 1300 0.10 0.0003*

Fetuin-a, μg/mL 1324 0.12 < 0.0001*

25-Hydroxvitamin D, nmol/L 758 −0.10 0.005

Ferric reducing ability of plasma, µmol/l 759 0.33 < 0.0001*
Reactive oxygen metabolites, Carratelli units 754 0.19 < 0.0001*

Neopterin, nmol/L 606 0.08 0.05
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the multivariable-adjusted (p-heterogeneity = 0.0002) 
model, but not in the model adjusted for body size 
(p-heterogeneity = 0.35).

The three GWAS-identified SNPs (rs2012444, 
rs77878271, rs79389622) explained together about 1% 
of interindividual variance in circulating FABP-4 and 
had an instrument strength of F = 65. With the given 
sample size and a statistical power of 80% the minimal 
detectable OR per SD in genetically predicted FABP-4 
based on the three SNPs was 1.17. Of the three SNPs, 
one was located near the FABP4 gene (cis-SNP), while 
the other two were located near other genes (trans-
SNPs). Details of the three SNPs including effect 

estimates for the SNP-FABP4 and SNP-CRC associa-
tion are displayed in Table 4.

In the two-sample Mendelian randomization analysis 
using all three SNPs as instrumental variables, statisti-
cally non-significant positive associations with geneti-
cally predicted higher FABP-4 were observed for CRC 
overall (OR per one SD genetically predicted FABP-4 
1.10, 95% CI 0.95, 1.27) and in women (OR 1.21, 95% 
CI 0.98, 1.48) but not in men (OR 1.03, 95% CI 0.84, 
1.26, Table 5). Most CRC subgroups by location and sex 
showed non-significant positive associations (Additional 
file 1: Fig. S2), except for rectal cancer overall and in men, 
where effect estimates were in the direction of inverse 

Table 3 Association between baseline FABP-4 concentrations and risk of colorectal cancer (conditional logistic regression models)

FABP-4 Fatty acid binding protein 4, Ca/Co Numbers of cases/controls, RR Relative risk based on estimated incidence rate ratio, CI Confidence interval, SD Standard 
deviation (SD calculated in controls)
a Conditioned on matching factors (sex, age at blood collection, study center, time of blood collection, and fasting status; in women were additionally matched on 
menopausal status, phase of the menstrual cycle among premenopausal women, and use of hormone replacement therapy at the time of blood collection among 
postmenopausal women)
b Additionally adjusted for education (none, primary school, technical/professional or secondary school, longer education including university degree, not specified), 
physical activity index (inactive, moderately inactive, moderately active, active, missing), smoking status and intensity (never, current (1–15, 16–25, 26+ cig/day, pipe/
cigars/occasionally, intensity missing), former (quit ≤ 10, 11–20, 20+ years ago, unknown), alcohol intake (nondrinker, former drinker, current drinker, current g/day at 
baseline)
c Additionally adjusted for BMI, height, and BMI- and height-adjusted waist circumference residuals
d SD calculated in controls

FABP‑4 Ca/Co RRa (95% CI) RRb (95% CI) RRc (95% CI)

Overall (1324 cases and matched controls)

 Quintile 1 237/263 1 Reference 1 Reference 1 Reference

 Quintile 2 256/268 1.08 (0.84, 1.38) 1.08 (0.84, 1.40) 1.03 (0.79, 1.33)

 Quintile 3 268/266 1.15 (0.89, 1.49) 1.14 (0.88, 1.48) 1.04 (0.79, 1.36)

 Quintile 4 267/265 1.16 (0.90, 1.49) 1.12 (0.86, 1.45) 0.98 (0.74, 1.29)

 Quintile 5 296/262 1.32 (1.01, 1.72) 1.26 (0.96, 1.66) 1.01 (0.74, 1.38)

 p-trend 0.03 0.08 0.94

 per SD of FABP-4 (8.9 ng/ml)d 1.10 (1.01, 1.21) 1.09 (0.99, 1.19) 1.01 (0.92, 1.12)

Men (640 cases and matched controls)

 Quintile 1 118/128 1 Reference 1 Reference 1 Reference

 Quintile 2 119/128 1.02 (0.71, 1.45) 1 (0.68, 1.46) 0.89 (0.61, 1.32)

 Quintile 3 139/128 1.20 (0.84, 1.72) 1.21 (0.83, 1.75) 1.02 (0.70, 1.50)

 Quintile 4 127/128 1.09 (0.77, 1.56) 1.04 (0.71, 1.52) 0.85 (0.57, 1.26)

 Quintile 5 137/128 1.19 (0.82, 1.73) 1.11 (0.74, 1.64) 0.76 (0.49, 1.19)

 p-trend 0.35 0.65 0.21

 per SD of FABP-4 (8.9 ng/ml)d 1.07 (0.93, 1.24) 1.07 (0.92, 1.23) 0.95 (0.80, 1.13)

Women (684 cases and matched controls)

 Quintile 1 119/135 1 Reference 1 Reference 1 Reference

 Quintile 2 137/140 1.13 (0.80, 1.61) 1.14 (0.80, 1.64) 1.14 (0.79, 1.65)

 Quintile 3 129/138 1.11 (0.77, 1.60) 1.12 (0.77, 1.64) 1.08 (0.73, 1.60)

 Quintile 4 140/137 1.23 (0.85, 1.76) 1.22 (0.84, 1.79) 1.15 (0.77, 1.72)

 Quintile 5 159/134 1.45 (0.99, 2.12) 1.46 (0.99, 2.17) 1.34 (0.84, 2.11)

 p-trend 0.05 0.05 0.24

 per SD of FABP-4 (8.9 ng/ml)d 1.12 (1.00, 1.26) 1.12 (1.00, 1.26) 1.09 (0.95, 1.25)

 p-heterogeneity by sex 0.62 0.57 0.24
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associations, but confidence intervals were wide. When 
we used MR Egger instead of IVW, similarly statistically 
non-significant positive associations were observed (OR 
for CRC overall 1.27, 95% CI 0.97, 1.68) and there was no 
indication of horizontal pleiotropy for the SNPs associ-
ated with FABP-4 (p-value of pleiotropy 0.21). When we 
used only the cis-SNP as an instrumental variable, asso-
ciations were stronger, with a statistically non-significant 
positive association for genetically predicted higher 
FABP-4 and CRC overall (OR 1.23, 95% CI 0.97, 1.57), a 
statistically significant positive association for CRC (OR 
1.56, 95% CI 1.09, 2.23) and colon cancer (OR 1.58, 95% 
CI 1.05, 2.40) in women and no association for CRC in 
men (OR 0.99, 95% CI 0.71, 1.37, Table  5, Additional 
file  1: Fig. S3). In sensitivity analyses using two moder-
ately correlated (R2 < 0.1) SNPs within the FABP4 gene 
region (rs77878271 and rs2011042) accounting for the 
correlation matrix, results were not changed: genetically 
predicted higher FABP-4 was not associated with CRC 
overall (OR 1.18, 95% CI 0.97, 1.43) or in men (OR 0.94, 
95% CI 0.72, 1.23), whereas a statistically significant posi-
tive association with CRC was observed in women (OR 
1.48, 95% CI 1.12, 1.95). Applying a conservative Bon-
ferroni-correction accounting for the number of tests 
in Table 5 (n = 12), however, the positive associations in 
women in the two cis-MRs did not pass the statistical sig-
nificance threshold. In the IVW, MR Egger, and cis-MR 
with one SNP, no statistically significant heterogeneity 
by sex was observed, while in the cis-MR with 2 moder-
ately correlated SNPs, there was an indication of hetero-
geneity by sex (p = 0.02). Colocalization analysis (genetic 
region plus/minus 50 kilobasepairs from the lead FABP4 
variant rs77878271) for overall CRC with standard prior 
probability (p =  10−5) revealed a posterior probability of a 
shared causal variant (PP4) of only 2% (Additional file 1: 
Tab. S8). Similarly, there was no indication of a shared 

causal variant for CRC in men (PP4 = 1%) or in women 
(PP4 = 12%). When the colocalization analysis was 
repeated with relaxed prior probability (p =  10−4) there 
was an indication of a shared causal variant of FABP-4 
and CRC in women (PP4 = 58%, Additional file  1: Tab. 
S9). Because none of the variants in the gene region was 
strongly associated with CRC (minimum p = 0.03 over-
all, minimum p = 0.13 in men, minimum p = 0.005 in 
women), statistical power to detect colocalization was 
limited.

Given the suggestion of a positive association between 
FABP-4 and CRC risk in women from both the biomarker 
and MR analysis, we performed a causal mediation analy-
sis for the association between waist circumference and 
CRC risk (BMI was not statistically significantly associ-
ated with CRC risk in women) with FABP-4 as a potential 
mediator using the EPIC nested case–control study data, 
assuming no interaction between waist circumference 
and FABP-4 (because there was no indication for such 
interaction). We found a mediated proportion of 10% 
(natural direct effect per 1 cm in waist circumference in 
women: OR 1.012; natural indirect effect through FABP-
4: OR 1.001).

Discussion
In this prospective investigation of circulating FABP-4 
and CRC risk, we found overall no strong evidence for an 
association, although we observed a positive association 
in women; this, however, was attenuated after adjustment 
for body size. Genetically predicted higher FABP-4 was 
not statistically significantly associated with CRC in the 
polygenic MR. In cis MR analyses, no statistically sig-
nificant associations were observed for CRC overall or 
in men, but a statistically significant positive association 
was observed for CRC in women, which, however, did 

Table 5 Mendelian randomization estimates between genetically predicted circulating FABP-4 concentrations and colorectal cancer 
risk

Mendelian randomization analyses of FABP-4 and risk of colorectal cancer based on a two-sample MR with SNP-FABP-4 associations for three SNPs (one cis, two trans) 
from SCALLOP consortium and SNP-CRC associations from GECCO, CORECT, and CCFR

Fixed-effects inverse-variance weighted estimates (IVW) or MR Egger for MR with all SNPs; Wald ratio estimates for cis-MR

OR Odds ratio, CI Confidence interval, FABP-4 Fatty acid binding protein 4, IVW Inverse-variance-weighted method, MR Mendelian randomization
a Cis-MR with two moderately correlated SNPs (rs77878271 and rs2011042), accounting for correlation matrix in IVW

OR per genetically predicted one standard deviation higher FABP‑4 (95% CI)

All SNPs (1 cis, 2 trans) Cis‑MR (1 SNP) Cis‑MR (2 SNPs)a

IVW p‑value MR Egger p‑value Wald ratio p‑value IVW p‑value

CRC, overall 1.10 (0.95, 1.27) 0.20 1.27 (0.97, 1.68) 0.08 1.23 (0.97, 1.57) 0.09 1.18 (0.97, 1.43) 0.10

CRC, men 1.03 (0.84, 1.26) 0.77 1.19 (0.79, 1.78) 0.40 0.99 (0.71, 1.37) 0.94 0.94 (0.72, 1.23) 0.66

CRC, women 1.21 (0.98, 1.48) 0.08 1.46 (0.77, 2.78) 0.25 1.56 (1.09, 2.23) 0.02 1.48 (1.12, 1.95) 0.01

P-heterogeneity by sex 0.29 0.59 0.07 0.02
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not pass a Bonferroni correction accounting for the num-
ber of tests in the MR.

The hypothesis underpinning our study was that 
higher FABP-4 may be positively associated with CRC 
risk, which could be biologically explained by facilitat-
ing tumor growth via increased fatty acid supply [13], or 
FABP-4-related enhancement of inflammation [14] and 
insulin resistance [15–18]. The overall weak and statisti-
cally non-significant associations of measured circulating 
as well as genetically predicted FABP-4 and CRC do not 
provide strong support for circulating FABP-4 playing an 
important role in CRC development. However, a posi-
tive association of FABP-4 and CRC risk in women was 
observed in the biomarker analysis before adjustment for 
body size, suggesting that the positive association was 
largely explained by the upregulation of FABP-4 in obe-
sity [7]. Interestingly, also in cis MR analyses, a positive 
association between FABP-4 and CRC risk in women was 
observed (with statistically significant heterogeneity by 
sex in the cis MR with two moderately correlated SNPs). 
It should be noted that the colocalization analysis with 
standard prior probability did not strongly support the 
existence of a shared causal variant of circulating FABP-4 
and CRC in women, which could indicate that FABP-4 
and CRC have distinct causal variants that are in linkage 
disequilibrium, thereby violating the MR assumptions. 
However, the posterior probabilities of distinct causal 
variants (PP3) were overall low and the associations of the 
variants in the genetic region with CRC were also overall 
low (p > 0.005), suggesting that the lack of evidence for 
colocalization may be due to low power to detect colo-
calization [52]. Colocalization analysis with relaxed prior 
probability gave an indication of a shared causal variant 
for FABP-4 and CRC in women. Sex-specific differences 
in FABP-4 in relation to CRC are plausible, as sex differ-
ences have also been observed in the association between 
general obesity and CRC risk [39, 54], where stronger 
associations have usually been observed with BMI in 
men than in women. Two MR studies produced conflict-
ing results regarding sex-differences in the association 
of BMI with CRC risk, where the smaller one observed 
a positive association between genetically predicted BMI 
and CRC in women but not in men [55], and the larger 
and more recent one (using sex-specific genetic instru-
ments) observed a stronger positive association between 
genetically predicted BMI and CRC in men compared 
with women [56]. Sex-specific differences have been 
observed also in the relationship of inflammatory mark-
ers with CRC risk [14, 30], where stronger associations 
were observed in men than in women. A more promi-
nent role of FABP-4 for CRC in women, as observed 
in our study, may also be biologically plausible on the 

basis of the observed higher FABP-4 concentrations in 
women than men, and deserves further study. It should 
be noted, however, that we observed no statistically sig-
nificant heterogeneity by sex (p-heterogeneity 0.57). In 
contrast, we observed statistically non-significant inverse 
associations between FABP-4 and CRC risk in men in 
models accounting for body size. However, in the MR 
analysis, there was no indication for an inverse associa-
tion between genetically determined higher circulating 
FABP-4 and risk of CRC in men. In the MR analysis, we 
observed mostly non-significant positive associations 
between genetically predicted FABP-4 and CRC anatomi-
cal subsites, except a non-significant inverse association 
with rectal cancer, which is in contrast to our findings 
of the biomarker analysis (non-significant positive asso-
ciation with rectal cancer). However, the wide confidence 
intervals in the MR analysis point to the uncertainty of 
the inverse association with rectal cancer.

When we performed a causal mediation analysis for the 
association between waist circumference and CRC risk 
with FABP-4 as a potential mediator in women, we found 
that a rather small proportion of the association (10%) 
was mediated by FABP-4. Compared with biomarkers 
such as non-HMW adiponectin, soluble leptin-receptor, 
and HDL-cholesterol [57], FABP-4 may play a minor 
mediating role in the association between waist circum-
ference and CRC risk in women.

The observed correlations of FABP-4 with a variety of 
biomarkers of inflammation, metabolism, blood lipids, 
adipokines, antioxidative capacity, and immune func-
tion (with strongest correlations observed for leptin and 
the antioxidant biomarker FRAP), some of which also 
have been previously associated with CRC risk, suggest 
that circulating FABP-4 is an integrative marker of vari-
ous biological processes. Compared with the observed 
substantial correlations of FABP-4 with BMI and waist 
circumference, the weak positive correlation of FABP-4 
with ABSI, a measure that was designed as a body shape 
index independent of BMI [37], suggests that FABP-4 is 
particularly influenced by general obesity.

Strengths of our investigation include the prospec-
tive study design, the ability to control for a variety of 
potential confounders in the biomarker analysis, and the 
use of MR enabling a further investigation of FABP-4 in 
relation to CRC risk circumventing certain types of bias 
common to studies of measured biomarkers. The three 
GWAS-identified SNPs included in the MR analysis 
were robustly associated with circulating FABP-4, but, 
together, explained only 1% of inter-individual varia-
tion. With an F-value of 65 (i.e., > 10, thereby not subject 
to weak instrument bias [48]), the first MR assump-
tion (instrumental variable should be associated with 
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the exposure) is satisfied although, with the given sam-
ple size, the statistical power was limited and we can-
not exclude that small associations (RR < 1.17 per SD in 
FABP-4) have been missed. We assume that the second 
MR assumption (instrumental variables are independ-
ent of potential confounders) was fulfilled, although 
this could not be directly tested since we had no access 
to covariable data in the studies included in GECCO, 
CORECT, and CCFR. The third MR assumption (instru-
mental variable should be associated with the outcome 
only through the exposure of interest (FABP-4) — no 
horizontal pleiotropy) could also not be directly tested, 
but there was no indication of horizontal pleiotropy 
from MR Egger. Query of the phenoscanner database 
[58], however, revealed several adiposity and diabetes-
related traits for the trans-SNP rs2012444, which seems 
plausible given the correlation of FABP-4 with body fat-
ness measures and the previously observed association 
with type 2 diabetes [6], but suggests that this trans-SNP 
is associated besides FABP-4 with two established CRC 
risk factors, i.e., could be an invalid instrumental vari-
able due to pleiotropic effects. Thus, the MR analysis 
using both cis and trans SNPs may have been subject 
to pleiotropy and should be interpreted cautiously. For 
the cis-SNPs (rs77878271 and rs2011042), no associa-
tion with adiposity, diabetes, or other CRC risk factors 
has been reported, which strengthens the confidence in 
their use as instrumental variables. However, one trait 
related to mortality due to alcoholic hepatitis was listed 
for rs77878271. For the trans-SNP, rs79389622 as well 
as the cis-SNP, rs2011042, no associated traits besides 
FABP-4 were found. The stronger observed associations 
in MR using only the cis-SNP compared to all three (cis 
and trans) SNPs combined, may be explained by potential 
pleiotropy in the two trans-SNPs. Employing a cis-SNP in 
MR implies the highest biological plausibility [51]. Com-
parable to our results, a statistically significant associa-
tion using only one cis-SNP as an instrumental variable, 
but statistically non-significant associations when using 
both the cis- and multiple trans-SNPs was observed in a 
MR study on IGF-1 and prostate cancer risk [59]. There 
was no sample overlap between the GWAS for FABP-4 
(SCALLOP consortium) and the one for CRC (GECCO/
CORECT/CCFR), which precludes inflated type one 
error rates [60].

A limitation of the biomarker analysis is that only a 
one-time FABP-4 measurement at baseline was available. 
Although the mid-term reliability (4 months) of FABP-4 
has been shown to be relatively good [29], the one-time 
measurements may not necessarily reflect longer-term 
exposure. However, by the use of genetically determined 
FABP-4 in the MR, we were also able to investigate 

lifelong differences in FABP-4 in relation to CRC risk. 
Nevertheless, the results of the biomarker analysis could 
have been influenced by measurement error. Because 
the FABP-4 measurement was conducted on baseline 
samples before the onset of CRC, we expect such meas-
urement error to be non-differential, which would not 
lead to biased estimates but could lead to attenuation of 
associations. Whereas the sample size of the biomarker 
analysis was sufficient to investigate CRC, it was limited 
for subgroup analysis by CRC anatomical subsite and 
sex. In terms of the MR analysis, another limitation was 
the relatively small sample size of the GWAS on FABP-
4, which resulted in a limited number of SNPs indepen-
dently associated with FABP-4, of which only three could 
be included in the present two-sample MR and these 
three SNPs explained only a small proportion of variabil-
ity in FABP-4. Due to the limited genetic determination 
of FABP-4, the statistical power for the MR was slightly 
lower than in the biomarker analysis, and, again here, the 
sample size was limited for subgroup analyses by ana-
tomical subsite and sex. In addition, the limited number 
of SNPs included in the present two-sample MR pre-
cluded detailed sensitivity analyses.

Conclusions
This study combining data from several large epidemio-
logical studies provides no strong support for a causal 
role of circulating FABP-4 in overall CRC risk, although 
the cis-MR provides some evidence for a positive asso-
ciation in women, which may deserve to be further 
investigated.
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