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Abstract 

Background With increasing hypercholesterolemia prevalence in East Asian adolescents, pharmacologic interven-
tions (e.g., HMGCR inhibitors (statins) and PCSK9 inhibitors) may have to be considered although their longer-term 
safety in the general adolescent population is unclear. This study aims to investigate the longer-term safety of HMGCR 
inhibitors and PCSK9 inhibitors among East Asian adolescents using genetics.

Methods A drug-target Mendelian randomization study leveraging the Global Lipid Genetics Consortium (East Asian, 
n = 146,492) and individual-level data from Chinese participants in the Biobank clinical follow-up of Hong Kong’s 
“Children of 1997” birth cohort (n = 3443, aged ~ 17.6 years). Safety outcomes (n = 100) included anthropometric 
and hematological traits, renal, liver, lung function, and other nuclear magnetic resonance metabolomics. Positive 
control outcomes were cholesterol markers from the “Children of 1997” birth cohort and coronary artery disease 
from Biobank Japan.

Results Genetic inhibition of HMGCR and PCSK9 were associated with reduction in cholesterol-related NMR metabo-
lomics, e.g., apolipoprotein B (HMGCR: beta [95% CI], − 1.06 [− 1.52 to − 0.60]; PCSK9: − 0.93 [− 1.56 to − 0.31]) and had 
the expected effect on the positive control outcomes. After correcting for multiple comparisons (p-value < 0.006), 
genetic inhibition of HMGCR was associated with lower linoleic acid − 0.79 [− 1.25 to − 0.35]. Genetic inhibition 
of PCSK9 was not associated with the safety outcomes assessed.

Conclusions Statins and PCSK9 inhibitors in East Asian adolescents appeared to be safe based on the outcomes con-
cerned. Larger studies were warranted to verify these findings. This study serves as a proof of principle study to inform 
the medication safety among adolescents via genetics.

Keywords HMGCR inhibitors, PCSK9 inhibitors, Safety, Adolescents, Drug-target Mendelian randomization

*Correspondence:
Shiu Lun Au Yeung
ayslryan@hku.hk
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12916-023-03115-y&domain=pdf
http://orcid.org/0000-0001-6136-1836


Page 2 of 11Luo et al. BMC Medicine          (2023) 21:410 

Background
Three-hydroxy-3-methylglutaryl coenzyme A (HMGCR) 
reductase inhibitors, collectively referred to as statins, 
are the first-line pharmacologic treatments for children 
with familial hypercholesterolemia (FH), which demon-
strated a reduction in cardiovascular risk in adulthood 
[1]. However, with increasing rates of obesity in the ado-
lescent populations, in particular East Asians [2], pre-
scriptions of lipid-modifying medications may have to be 
considered for non-FH adolescents who have elevated, 
uncontrolled lipid profiles to mitigate the subsequent risk 
of atherosclerotic cardiovascular disease. Unfortunately, 
a recent review commented a lack of safety studies on 
these medications in adolescents [3]. As such, it would 
be of public health interest to evaluate any possible side 
effects of the use of these medications in the general ado-
lescent population  [4].

Real-world data, such as pharmaco-epidemiologic 
studies of medication side effects, are susceptible to con-
founding by indication or immortal time bias [5]. The 
use of drug-target Mendelian randomization studies has 
gained popularity in recent years, although only a few 
studies have been conducted to study the side effects of 
medications in European adult populations, such as anti-
hypercholesteremia and antihypertensives [6–9]. The 
extent to which these side effects can be extrapolated 
to the adolescent population remains unclear. To bet-
ter evaluate possible safety issues associated with statin 
use in Chinese adolescents, who constitute a significant 
proportion of the global population, we evaluated the 
association of genetically proxied inhibition of HMGCR 

with a wide range of phenotypes (n = 100) in an originally 
population-representative birth cohort in Hong Kong. 
For completeness, we also considered genetic inhibition 
of proprotein convertase subtilisin/kexin type 9 (PCSK9) 
and Niemann-Pick C1-Like 1 (NPC1L1) as these are 
emerging classes of medications for the treatment of 
hypercholesteremia in adolescents [10].

Methods
Study design
This is a drug-target Mendelian randomization study 
using individual and summary data, which relies on 
three instrumental variable assumptions. First to satisfy 
relevance, genetic variants within the protein-encoding 
genes (HMGCR , PCSK9, and NPC1L1) and associated 
with LDL-C were used to proxy the use of statins, PCSK9 
inhibitors, and ezetimibe respectively. Second, the use 
of genetic variants not associated with confounders of 
exposure-outcome association addresses independence. 
Third, genetic variants are independent of the outcome 
given the exposure thereby addressing exclusion restric-
tion [11]. The schematic diagram of the study design is 
depicted in Fig.  1. This study is reported according to 
Strengthening the reporting of observational studies in 
epidemiology using Mendelian randomization (STROBE-
MR) statement (https:// www. strob emr. org/).

“Children of 1997” birth cohort
The Hong Kong “Children of 1997” birth cohort is a 
population-representative Chinese birth cohort, which 
recruited 88% of all ethnic Chinese births (n = 8327) in 

Fig. 1 Schematic diagram of drug target Mendelian randomization study design

https://www.strobemr.org/
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Hong Kong in April and May 1997 [12]. Recruitment 
was conducted at all the Maternal and Children Health 
Centres in Hong Kong at their first postnatal visit for 
free preventive care and immunizations. Infant and fam-
ily characteristics were ascertained using a self-admin-
istered questionnaire [13]. In 2005, record linkage was 
established to obtain routine information and clinical 
measurements (96% successful matching, n = 7999). Dur-
ing the Biobank clinical follow-up phase 1 in 2013–2016, 
at 17.5  years (n = 3460), with a supplementary Biobank 
clinical follow-up phase 2 in 2017 (n = 158), participants 
provided biospecimen (blood, saliva, urine, stool, hair, 
and nails) and completed comprehensive measurements 
(e.g., anthropometrics and lung function). Fasting blood 
samples and their derivatives (e.g., buffy coat and plasma) 
were used for biochemical assays such as liver function 
tests and metabolomic profiling using high-throughput 
nuclear magnetic resonance (NMR) spectroscopy metab-
olomics (Nightingale Health Ltd., Helsinki, Finland, 
https:// night ingal eheal th. com/) [14], which assessed rou-
tine lipids, 14 lipoprotein subclasses, esterified fatty acid 
composition, and a broad range of low-molecular-weight 
metabolites, such as amino acids, ketone bodies, and gly-
colysis and gluconeogenesis-related metabolites [14, 15].

DNA extraction from either blood, buffy coat, or saliva 
samples, where appropriate, and genotyping were per-
formed for 3582 participants by the Centre for Pano-
rOmic Sciences, The University of Hong Kong, with 
Infinium Asian Screening Array BeadChip Kit (v1.0). 
Phasing was performed using Eagle v2.4, and genotyping 
imputation was performed with 1000 Genomes phase 3 
(Version 5, GRCh37/hg19) in the Michigan Imputation 
Server using Minimac4 software (https:// imput ation 
server. sph. umich. edu/ index. html# !). For quality control, 
samples with call rate < 0.98, recorded sex mismatched 
with genetic-inferred sex, second degree of relatedness or 
above, high heterozygosity (deviation > 3 standard devia-
tion (SD)), or variants with call rate < 0.98, and imputa-
tion score < 0.3 were excluded.

Instrument selection
We identified genetic instruments to proxy the effects 
of each lipid-modifying target using the Global Lipids 
Genetics Consortium (GLGC), the latest genome-wide 
association study (GWAS), which included 146,492 mid-
dle-aged (mean aged of 55.8  years) participants of East 
Asian (EAS) ancestry [16]. LDL-C was measured or cal-
culated using the Friedewald equation from either fast-
ing or non-fasting blood samples. LDL-C was corrected 
by dividing the LDL-C by 0.7 if a person was taking 
lipid-modifying medications [16]. To reduce the likeli-
hood of false positives, we only considered genetic vari-
ants located within 100 kilobase (kb) pairs on either side 

of the protein-encoding genes (HMGCR , PCSK9, and 
NPC1L1), and those associated with LDL-C at genome-
wide significance (p-value < 5 ×  10−8) in GLGC were con-
sidered. None of the genetic variants for NPC1L1 passed 
through the selection process and hence was not consid-
ered further. A recent study found that genetic variants 
of LDL-C identified in middle-aged adults of EAS ances-
try are highly predictive of LDL-C measurement at dif-
ferent stages of the life-course including adolescents [17]. 
Nevertheless, we cross-verified the variant-LDL-C asso-
ciations in the “Children of 1997” birth cohort, adjusted 
for age at sample collection, sex, and the top 6 principal 
components (PC) of ancestry. We selected variants asso-
ciated with LDL-C in two independent cohorts (GLGC 
and “Children of 1997” birth cohort, p-value < 0.05) and 
in low linkage disequilibrium (LD) (clumping r2 < 0.3, 
clumping window of 10,000 kb) using a reference panel of 
EAS ancestry from 1000 Genomes Project (phase 3). To 
assess the robustness of the results, we also used a single 
index variant (the smallest p-value).

Genetic risk scores for HMGCR and PCSK9 in the “Children 
of 1997” birth cohort
To maximize statistical power,  [18] an externally 
weighted genetic risk score (GRS) for HMGCR and 
PCSK9 was constructed for each participant in the “Chil-
dren of 1997” birth cohort. Specifically, the GRS for 
HMGCR and PCSK9 were constructed by summing the 
number of all LDL-C lowering alleles for each variant in 
the HMGCR  and PCSK9 gene regions, weighted by the 
effect of that variant on LDL-C in EAS ancestry reported 
by GLGC [16].

Positive control outcomes
To verify the validity of the GRS used to proxy the effect 
of HMGCR and PCSK9 inhibition, we considered choles-
terol-related metrics and coronary artery disease (CAD) 
as the positive control outcomes, as lowering choles-
terol levels and reducing CAD risk are well-established 
effects of HMGCR and PCSK9 inhibition [19]. We used 
cholesterol-related metrics from the NMR metabolomic 
panel of the “Children of 1997” birth cohort, including 
cholesterol, triglycerides, apolipoproteins, phospholip-
ids, cholesteryl esters, free cholesterol, total lipids, other 
lipids, lipoprotein particle sizes, lipoprotein particle con-
centrations, lipoprotein subclasses, and relative lipopro-
tein lipid concentrations at 17.6 years which were used as 
efficacy outcomes (Additional file 1: Table S1). Summary 
genetic associations with CAD (29,319 cases and 183,134 
controls) were obtained from Biobank Japan in middle-
aged people of EAS ancestry [20].

https://nightingalehealth.com/
https://imputationserver.sph.umich.edu/index.html#!
https://imputationserver.sph.umich.edu/index.html#!
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Safety outcomes
To systematically evaluate the safety of genetic inhibi-
tion of HMGCR and PCSK9, we considered extensive 
health outcomes assessed at ~ 17.6  years during the 
Biobank clinical follow-up. We included 20 hemato-
logic traits, 12 anthropometric traits, 18 body com-
position traits, renal function (urea), liver function 
(alkaline phosphatase (ALP), alanine transaminase 
(ALT), bilirubin and total protein), and lung function 
(forced expiratory volume in the first second  (FEV1), 
forced vital capacity (FVC),  FEV1/FVC, peak expiratory 
flow (PEF), the mid-forced expiratory flow at 25–75% 
of the pulmonary volume (FEF 25–75%)). We also 
included other metrics from NMR metabolomic panel, 
i.e., amino acids, fatty acids, fluid balance, glycolysis-
related metabolites, inflammation, and ketone bodies as 
safety outcomes given some of these metabolites (e.g., 
branched chain amino acid) may be related to cardio-
metabolic diseases [21, 22] (Additional file 1: Table S2).

Statistical analysis
Instrument strength was assessed using approximated 
F statistics  Beta

2

Standarderror
2  , where a higher F statistic 

suggests weak instrument bias is less likely. Each con-
tinuous outcome was standardized (mean 0, SD 1) to 
facilitate comparison. With individual level “Children 
of 1997” birth cohort data, the associations of the 
HMGCR and PCSK9 GRS with these outcomes were 
obtained using a multivariable linear regression model 
adjusted for age at sample collection, sex, and the top 6 
PCs of ancestry. The variance explained by the HMGCR 
and PCSK9 GRS were assessed as the proportion of 
variance remaining after covariates fitted in a linear 
model [23]. The effects of genetic inhibition of HMGCR 
and PCSK9 on the outcomes were assessed using the 
Wald ratio 

(

GRSonoutcome

GRSonLDL−C

)

 . Effect sizes and 95% confi-
dence intervals (95% CI) were presented per SD change 
in the outcome per SD decrease LDL-C induced by 
genetic inhibition of HMGCR and PCSK9. A combina-
tion of multiple imputation and inverse probability of 
participation/attribution weighting was used to account 
for potential attrition [24]. Briefly, multiple imputation 
based on a flexible additive regression model with pre-
dictive mean matching was used to impute the missing 
data for variables related to response [25]. Inverse 
probability weights were then obtained using a 
response model so as to minimize the probability of 
selection bias from attrition. Estimates from the analy-
sis model were pooled from 50 computed datasets 
using Rubin’s rules [24]. A complete case analysis was 
used as the sensitivity analysis.

With summarized data from Biobank Japan, the 
effects of genetic inhibition of HMGCR and PCSK9 on 
the positive control outcome CAD were assessed using 
weighted generalized linear regression, i.e., a modified 
version of inverse-variance weighted (IVW) method 
that accounts for pairwise correlation between vari-
ants [26]. We obtained the correlation matrix between 
variants in participants of EAS ancestry using the 1000 
Genomes Project (phase 3) and assessed heterogeneity 
from Cochran’s Q statistic [27].

To correct for the multiple testing of these biologi-
cally correlated outcomes, we used PC analysis to obtain 
the number of PC that explained 99% of the variance 
in the cholesterol related and safety outcomes. The p 
value threshold after correction for multiple testing was 
set as 6 ×  10−4 (α = 0.05/75). Post hoc power calculation 
using type I error α of 0.05 and power of 0.8 was per-
formed using an online tool (https:// shiny. cnsge nom-
ics. com/ mRnd/). Data analyses and visualization were 
obtained using the R packages “ggforestplot” and “EpiViz,” 
R version 4.0.3 (R Foundation for Statistical Computing, 
Vienna, Austria).

Results
Study population
There were 3443 participants (1760 males and 1683 
females) with valid genotype information and out-
comes. Characteristics of these participants by tertile of 
HMGCR score and PCSK9 score are shown in Table  1. 
Compared with participants with the first tertile of 
HMGCR score and PCSK9 score, participants in the 3rd 
tertile had higher lipids.

The validity of genetic inhibition of HMGCR and PCSK9
In total, 5 variants (rs111913932, rs6453131, 
rs191835914, rs13356670, and rs12173076) were selected 
for targeting HMGCR and 3 variants (rs12739979, 
rs199717562, and rs2094470) for PCSK9. Their associa-
tions with LDL-C in GLGC and “Children of 1997” are 
summarized in Additional file 1: Table S3. There was lit-
tle evidence of weak instrumental bias as the F-statistics 
were greater than 10 (HMGCR: 38 to 266 and PCSK9: 
34 to 42). HMGCR and PCSK9 GRS explained 0.54% 
and 0.27% of LDL-C, and thus, our study was adequately 
powered to detect an odds ratio of 0.77 and 0.67 per 
SD reduction in LDL-C for CAD and a beta coefficient 
of ± 0.46 and ± 0.60 per SD reduction in LDL-C for the 
continuous outcomes. Genetic inhibition of each lipid-
modifying target was associated with lower CAD risk 
(HMGCR: 0.66 per 1 SD reduction in LDL-C, 95% CI 
0.54 to 0.81 and PCSK9: 0.55, 95% CI 0.34 to 0.90). Sug-
gestive evidence of heterogeneity was found for the 
effects of genetic inhibition of HMGCR on CAD, which 

https://shiny.cnsgenomics.com/mRnd/
https://shiny.cnsgenomics.com/mRnd/
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may be due to the missense variant of rs19183514 (Addi-
tional file 1: Tables S3-S4).

The effect of genetic inhibition of HMGCR and PCSK9 
on efficacy outcomes
Genetic inhibition of HMGCR was associated with sub-
stantial reduction in several measures of cholesterol 
(total cholesterol, non-high density lipoprotein cho-
lesterol (non-HDL-C), remnant cholesterol, very low 
lipid density lipoprotein (VLDL-C), clinical LDL-C and 
LDL-C) and apolipoproteins (ApoB and the ratio of 
apolipoprotein B to apolipoprotein A1 (ApoB/ApoA1)); 
p-value ≤ 6 ×  10−4 (Fig. 2 and Additional file 1: Table S5). 
In addition, genetic inhibition of HMGCR was also asso-
ciated with lower lipoprotein subclasses, including cho-
lesterol (-C), cholesterol esters (-CE), free cholesterol 
(-FC), total lipids (-L), particle concentration (-P), and 
phospholipids (-PL) in intermediate-density lipopro-
tein (IDL), large LDL (L-LDL), median LDL (M-LDL), 
medium VLDL (M-VLDL), small LDL (S-LDL), small 
VLDL (S-VLDL), and very small VLDL (XS-VLDL). The 
metabolic profiling of genetic inhibition of PCSK9 was 
similar to genetic inhibition of HMGCR, for example, 
genetic inhibition of HMGCR and PCSK9 led to reduc-
tion of ApoB (HMGCR beta: − 1.06 SD, − 1.52 to − 0.60, 
p-value = 5 ×  10−6 and PCSK9 beta: − 0.93 SD, − 1.56 
to − 0.31, p-value = 3 ×  10−3) (Fig. 2 and Additional file 1: 
Table  S5). Similar association of genetic inhibition of 
HMGCR and PCSK9 and efficacy outcomes were found 
in sensitivity analyses using complete case and index var-
iant analyses (Additional file 1: Table S6-7).

The effect of genetic inhibition of HMGCR and PCSK9 
on safety outcomes
Genetic inhibition of HMGCR was associated with 
lower linoleic acid (LA) (beta: − 0.79 SD, 95% CI − 1.25 
to − 0.34, p-value = 6 ×  10−4). In addition, genetic inhi-
bition of HMGCR was nominally associated with lower 
omega-6, polyunsaturated, total, saturated, and monoun-
saturated fatty acids, pyruvate, FEV1, FVC, head circum-
ference, height, and higher glycerol (Fig. 3 and Additional 
file 1: Table S8). There was no association of genetic inhi-
bition of HMGCR with other fatty acids or their ratios, 
amino acids, aromatic amino acids, branched-chain 
amino acids, fluid balance, glycolysis-related metabo-
lites, inflammation, ketone bodies, anthropometric traits, 
body composition, hematological traits, markers of liver 
function, lung function, or renal function. Similarly, no 
association of genetic inhibition of PCSK9 with these 
safety outcomes was observed (Fig.  3 and Additional 
file 1: Table S8). Sensitivity analyses from complete case 
analyses and index variant analyses gave similar conclu-
sions (Additional file 1: Table S9-10).

Discussion
This is one of the first drug-target Mendelian randomiza-
tion studies to assess the efficacy and safety of HMGCR 
inhibitors and PCSK9 inhibitors among Chinese ado-
lescents. We found metabolic profiling was similar for 
genetic mimics of HMGCR inhibitors and PCSK9 inhibi-
tors, and their efficacy in lowering apolipoproteins and 
cholesterol were similar to previous RCTs and Mende-
lian randomization studies in European and EAS adults 

Table 1 Characteristics of participants in “Children of 1997” birth cohort Biobank follow-up

a Mean (SD); n/N (%)
b Kruskal-Wallis rank sum test; Pearson’s chi-squared test

HMGCR genetic risk score PCSK9 genetic risk score

Variable N HMGCR tertile 
1, N =  1148a

HMGCR tertile 
2, N =  1148a

HMGCR tertile 
3, N =  1147a

p-valueb PCSK9 tertile 
1, N =  1148a

PCSK9 tertile 
2, N =  1148a

PCSK9 tertile 
3, N =  1147a

p-valueb

Age 3443 17.48 (0.72) 17.72 (0.86) 17.61 (0.81) < 0.001 17.46 (0.78) 17.25 (0.27) 18.11 (0.92) < 0.001

Sex 3443 0.06 0.19

 Female 536/1148 (47%) 592/1148 (52%) 555/1147 (48%) 549/1148 (48%) 548/1148 (48%) 586/1147 (51%)

 Male 612/1148 (53%) 556/1148 (48%) 592/1147 (52%) 599/1148 (52%) 600/1148 (52%) 561/1147 (49%)

SBP (mmHg) 3433 116.04 (11.91) 115.46 (12.66) 115.44 (12.24) 0.38 116.10 (12.16) 115.34 (11.95) 115.50 (12.69) 0.37

DBP (mmHg) 3433 69.61 (8.05) 69.59 (8.30) 69.74 (8.09) 0.79 69.69 (7.99) 69.54 (8.11) 69.70 (8.34) 0.74

BMI (kg/m2) 3438 20.91 (3.36) 20.85 (3.45) 20.98 (3.75) 0.7 20.96 (3.56) 20.86 (3.38) 20.92 (3.63) 0.84

Total choles-
terol (mmol/L)

3342 4.22 (0.72) 4.32 (0.72) 4.36 (0.70) 0.001 4.24 (0.70) 4.25 (0.70) 4.41 (0.72) < 0.001

LDL-C (mmol/L) 3342 1.58 (0.36) 1.61 (0.35) 1.64 (0.35) < 0.001 1.58 (0.35) 1.59 (0.35) 1.67 (0.36) < 0.001

Triglycerides 
(mmol/L)

3342 0.88 (0.34) 0.87 (0.33) 0.92 (0.40) 0.039 0.89 (0.35) 0.88 (0.36) 0.91 (0.37) 0.24

Apolipoprotein 
B (mmol/L)

3342 0.72 (0.15) 0.74 (0.15) 0.75 (0.15) < 0.001 0.73 (0.14) 0.73 (0.15) 0.76 (0.15) < 0.001
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Fig. 2 Genetic inhibition of HMGCR and PCSK9 (per lower LDL-C in SD) on efficacy outcomes in “Children of 1997” birth cohort Biobank follow-up
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[28–31]. A systematic review of RCTs showed relatively 
short-term safety of statins (no more than 48- week) and 
PCSK9 inhibitors (24-week) in pediatric patients with FH 
[32, 33]. Our study extends by providing genetic evidence 

that longer-term on-target effect of statins and PCSK9 
inhibitors did not appear to have clear adverse effects on 
a wide range of health outcomes in the general Chinese 
adolescents.

Fig. 3 Genetic inhibition of HMGCR and PCSK9 (per lower LDL-C in SD) on safety outcomes in “Children of 1997” birth cohort Biobank follow-up
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Selecting the appropriate genetic instruments to proxy 
effects of medication has been challenging and not as 
standardized as compared to conventional Mendelian 
randomization studies [34]. Nevertheless, our findings 
that both genetic inhibition of HMGCR and PCSK9 was 
associated with lower risk of CAD is consistent with 
Mendelian randomization studies in EAS and Europeans 
[19, 31, 35] and with RCTs [36], and so provides some 
validation. Consistent with earlier RCTs in children and 
adolescents with FH, [37–39] we did not find an associa-
tion of genetic inhibition of HMGCR with liver function, 
possibly because of lack of statistical power. The infre-
quent reported statin-associated asymptomatic increase 
in transaminases (> 3 times the upper limit of normal) 
and hepatotoxicity reported in trials are likely due to idi-
osyncratic or immune allergic reactions [40]. However, 
in 2012, the US Food and Drug Administration recom-
mended removal of routine periodic monitoring of liver 
enzymes among statins users [41].

Majority of the trials on safety among adolescents were 
restricted to those with FH. However, with increasing 
rates of sedentary behaviors and obesity, it is likely that 
statins and/or PCSK9 inhibitors would be potential phar-
maceutical interventions for the overall pediatric popu-
lation since the safety profiles of these interventions are 
not well documented in long-term studies [42]. Using 
genetics, this study did not provide strong evidence for 
possible adverse effects regarding the use of these medi-
cations. More importantly, this study provides a proof of 
concept in using genetics to infer possible side effects of 
medications in adolescents where large-scale trials with 
long duration are more difficult to conduct [43]. With 
increasing global trends in other cardiometabolic risk 
factors such as hypertension and hyperglycemia among 
adolescents [44, 45], drug-target Mendelian randomiza-
tion leverages genetics, and appropriate surrogate and 
safety endpoints in adolescents provide a potentially 
more cost-effective approach to identify adverse effects 
prior to the conduct of observational studies and RCTs. 
Establishing possible safety profile can also help inform 
corresponding clinical management [6–9].

This drug-target Mendelian randomization study has 
some limitations. First, the study used genetic variants to 
mimic the on-target effect of life-long (including devel-
opmental) exposure to a relatively modest LDL-C reduc-
tion induced by genetic inhibition of HMGCR and PCSK9 
among Chinese adolescents. This may not be equivalent to 
the effects of pharmacological interventions administered 
at specific time points, higher dosages, for shorter peri-
ods, or to individuals with particular indications such as 
FH [46]. Second, we cannot assert that the observed asso-
ciations in this study are solely attributable to the LDL-C 
reduction properties of the medication. For example, 

previous studies have suggested that statins can have 
pleiotropic effects related to cardiovascular outcomes 
[47, 48]. A head-to-head comparison with a conventional 
multivariable Mendelian randomization study of LDL-C, 
while adjusting for other lipid traits, could help address 
these research gaps. Third, although we have included 
rare to common variants to mimic HMGCR and PCSK9 
inhibition, a recent study suggests that the inclusion of 
rare and loss-of-function (LoF) variant may provide fur-
ther insights into the efficacy and safety of therapeutic tar-
gets [49]. However, LoF variants tend to maintain at very 
low frequencies in populations, [50] and studies exploring 
the health effects of LoF variants typically require exten-
sive biobanks, such as the UK Biobank. Fourth, genetic 
variants for genetic inhibition of HMGCR  and PCSK9 
were selected and validated in people of EAS descent 
only. While there is a minor imbalance in age distribu-
tion across tertiles of HMGCR and PCSK9 scores, age was 
adjusted for in the study, making it unlikely to explain our 
findings. We were also precluded from using colocaliza-
tion to assess the suitability of the chosen instruments, 
because of the lack of relevant expression or protein 
quantitative trait loci data in EAS. Nevertheless, the vari-
ants used for statins and PCSK9 inhibitors are quite highly 
correlated with those previously used in Europeans and 
EAS [31]. The diversity in human genetics highlights the 
need for ethnicity-specific GWAS and corresponding 
Mendelian randomization studies, with appropriate con-
trols for population stratification, to generate contextually 
specific evidence [51]. It would be valuable to replicate 
this study in the adolescents of other ethnicities. Fifth, 
constrained by sample size and hence statistical power, 
we cannot rule out the possibility of false negatives. Simi-
larly, due to statistical power issues, we were unable to 
consider dichotomized outcomes (e.g., hypertension and 
prediabetes) or sex-specific associations [52]. Further-
more, statistical power may reduce the capability to detect 
false negatives when accounting for multiple corrections. 
In this context, results should be interpreted with cau-
tion, as any nominally significant associations (e.g., lung 
function and height) or associations with large effect 
sizes (e.g., acetate) may suggest potential safety concerns 
and require additional replications in larger studies [53]. 
Further research to validate specific side effects could 
facilitate a more targeted approach that circumvents the 
challenges of multiple testing when corresponding birth 
cohort studies are not extensive. Sixth, although we have 
included a wide range of health outcomes (n = 100), such 
as metabolomics, we did not cover all possible side effects, 
including muscle symptoms and related biomarkers (e.g., 
creatine kinase and myoglobin)  [54] and testosterone 
reduction [55]. Lastly, our study is more likely to detect 
milder side effects, as lethal variants may have led to 
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reduced participation in GLGC (i.e., selection bias) due to 
the presence of more severe side effects and developmen-
tal disorders. This could, in turn, impact the likelihood 
of identifying and including these variants in our study. 
A broader spectrum of potential side effects should be 
assessed in larger studies, such as linking electronic health 
records of clinical outcomes to biobank studies, e.g., the 
All of Us study, which recruited over 40,000 participants 
aged 18–29, [56] and utilizing birth cohorts with whole 
genome sequencing data.

Conclusions
This study did not find evidence that raise substantial 
concerns about the longer-term safety of statins and 
PCSK9 inhibitor in this Chinese adolescent population; 
these findings require verification in larger studies. Our 
study serves as a proof-of-concept study showing the use 
of well-characterized birth cohorts with multi-omics data 
(genetics and metabolomics) and phenotypes to facilitate 
the assessment of the efficacy and safety of drug targets 
among adolescents.
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