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Abstract 

Background The early life stage is critical for the gut microbiota establishment and development. We aimed to inves‑
tigate the lifelong impact of famine exposure during early life on the adult gut microbial ecosystem and examine 
the association of famine‑induced disturbance in gut microbiota with type 2 diabetes.

Methods We profiled the gut microbial composition among 11,513 adults (18–97 years) from three independent 
cohorts and examined the association of famine exposure during early life with alterations of adult gut microbial 
diversity and composition. We performed co‑abundance network analyses to identify keystone taxa in the three 
cohorts and constructed an index with the shared keystone taxa across the three cohorts. Among each cohort, 
we used linear regression to examine the association of famine exposure during early life with the keystone taxa 
index and assessed the correlation between the keystone taxa index and type 2 diabetes using logistic regression 
adjusted for potential confounders. We combined the effect estimates from the three cohorts using random‑effects 
meta‑analysis.

Results Compared with the no‑exposed control group (born during 1962–1964), participants who were exposed 
to the famine during the first 1000 days of life (born in 1959) had consistently lower gut microbial alpha diversity 
and alterations in the gut microbial community during adulthood across the three cohorts. Compared with the no‑
exposed control group, participants who were exposed to famine during the first 1000 days of life were associated 
with consistently lower levels of keystone taxa index in the three cohorts (pooled beta − 0.29, 95% CI − 0.43, − 0.15). 
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Background
The developmental origins of health and disease 
(DOHaD) hypothesis suggests that adverse exposures 
during early life, particularly in utero, may substantially 
influence the later-life health and disease status [1]. 
Indirect support for this hypothesis comes from studies 
showing consistent associations of early-life famine expo-
sure with increased risk of type 2 diabetes [2–6].

There have been several proposed theories to support 
the DOHaD concept and indicate the potential mecha-
nism, including the thrifty gene [7], bet-hedging, fetal 
predictive adaptive response [8], and drifty phenotype 
hypotheses [9]. The gut microbiota is considered as a 
fundamental part of human physiology, contributing to 
the regulation of host health [10]. Gut microbiota aber-
rations have been associated with multiple metabolic 
disorders, such as type 2 diabetes [11–13]. Analogous 
to DOHaD, the early life, especially the first 1000  days 
(from conception to 2 years of age) of life, is critical for 
gut microbiota establishment and development [14]. 
Environmental insults during the period can disrupt the 
optimal succession of the gut microbiota [15]. The above 
evidence leads us to propose the hypothesis that the gut 
microbiome may be a key component contributing to the 
DOHaD concept.

China experienced the Great Famine during 1959–
1961. Famine, as a natural experiment, provides a unique 
opportunity to examine the impact of early-life adverse 
exposure on the adult and later-life gut microbiota and 
the role of the gut microbiota in the DOHaD. Therefore, 
using three independent cohorts involving 11,513 par-
ticipants covering 16 major provinces/megacities across 
China, we aimed to investigate the longitudinal associa-
tions of famine exposure during early life with the adult 
gut microbial diversity, community structure, and key-
stone taxa. As a secondary objective, we aimed to exam-
ine the association of famine-induced disturbance in the 
gut microbial ecosystem with type 2 diabetes.

Methods
Study cohorts
The present study was based on the gut microbiome 
cohort consortium: the Westlake Gut Project [16], 

including three independent Chinese cohorts: Guang-
zhou Nutrition and Health Study (GNHS) [17], Guang-
dong Gut Microbiome Project (GGMP) [18], and China 
Health and Nutrition Survey (CHNS) [19]. The GNHS 
is a prospective cohort study conducted in the Guang-
dong province. It employed a non-probability sam-
pling method to recruit participants who had resided 
in Guangzhou city for at least 5  years. Ultimately, 
between the years 2008 and 2013, GNHS recruited 
4048 participants [17]. During subsequent follow-up 
visits from 2014 to 2018, a subset of 1935 participants 
provided stool samples for the measurement of 16S 
rRNA. After excluding the participants with antibiot-
ics used within the month preceding stool collection or 
without information about the date of birth or with low 
depth of sequencing reads (< 5000), 1920 participants 
(age 64.9 ± 5.9 years, mean ± SD) from the GNHS were 
included in the present study (Additional file 1: Fig. S1).

The GGMP was a cross-sectional cohort study con-
ducted during 2015 and 2016. The study participants 
were selected based on a stratified random sampling 
method. Ultimately, the study included a total of 7009 
participants from 14 districts within Guangdong 
province [18]. All the participants within the GGMP 
had their stool samples collected for the measure-
ment of 16S rRNA. After adopting the same inclusion 
and exclusion criteria as used in GNHS, 6560 GGMP 
participants were included in the present study (age 
52.7 ± 14.8 years, mean ± SD).

The CHNS is a national longitudinal cohort study in 
China. Participants in CHNS were selected through a 
random process from 15 provinces across the country. 
It is important to mention that Guangdong province 
was not included in the CHNS study. Within each of 
these provinces, a multistage, random cluster process 
was used to draw participants [19]. CHNS rounds were 
completed in 1989, 1991, 1993, 1997, 2000, 2004, 2006, 
2009, 2011, 2015, and 2018. During the 2015 round, 
stool samples from a total of 3248 participants were 
collected with subsequent measurements of 16S rRNA 
[19]. After adopting the same inclusion and exclusion 
criteria as used in the GNHS, in the present study, we 
included 3033 CHNS participants from 15 provinces or 
megacities (age 51.6 ± 12.7 years, mean ± SD).

Per 1‑standard deviation increment in the keystone taxa index was associated with a 13% lower risk of type 2 diabetes 
(pooled odds ratio 0.87, 95% CI 0.80, 0.93), with consistent results across three individual cohorts.

Conclusions These findings reveal a potential role of the gut microbiota in the developmental origins of health 
and disease (DOHaD) hypothesis, deepening our understanding about the etiology of type 2 diabetes.
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Measurement of metadata
Demographic and medication data were collected by 
questionnaires during the face-to-face questionnaire 
interviews. The demographic data of this study included 
age, sex, date of birth, and the average income of all 
household members. Medication data included the use 
of antibiotics, hypoglycemic drugs, and hypolipidemic 
drugs. Anthropometric factors, including height and 
weight, were measured on-site by the trained staff. Blood 
samples were collected by registered nurses following an 
overnight fast.

In the GNHS cohort, high-performance liquid chro-
matography was used to measure glycated hemoglobin 
(HbA1c) using the Bole D-10 Hemoglobin A1c Pro-
gram on a Bole D-10 Hemoglobin Testing System; fast-
ing glucose was determined enzymatically on a Hitachi 
7600–010 automated analyzer (Hitachi, Tokyo, Japan). 
In the GGMP cohort, fasting glucose and HbA1c were 
measured on a Hitachi 7600 automatic biochemical ana-
lyzer using reagents obtained from Wako Pure Chemi-
cal Industries Ltd. at the National CDC of China. In the 
CHNS cohort, all samples were analyzed in a national 
central lab in Beijing (medical laboratory accreditation 
certificate ISO 15189:2007) with strict quality control. 
Blood glucose levels were measured using a glucose oxi-
dase phenol 4-aminoantipyrine peroxidase kit (Randox, 
Crumlin, UK) and a Hitachi 7600 Analyzer (Hitachi, 
Tokyo, Japan); HbA1c was measured via high-perfor-
mance liquid chromatography system (model HLC-723 
G7; Tosoh Corporation, Tokyo, Japan).

Gut microbiome analyses
Stool samples from each cohort were sequenced in a 
single batch. Detailed methods for the gut microbiome 
analyses are provided in Additional file 1: Supplementary 
methods.

Assessment of famine exposure
China experienced the Great Famine during 1959–1961. 
People from all provinces experienced the effects of the 
famine, resulting in a notable decrease in birth rate and a 
simultaneous increase in mortality rate across China [20]. 
Consistent with previous Chinese famine studies [21, 22], 
we used the birth year of the participants as the basis for 
the classification of famine exposure. Participants born 
between 1962 and 1964 were classified as the no-exposed 
control group, and those born after 1964 were classified 
as the no-exposed group. Participants born between 1959 
and 1961 were classified as the utero exposed group. The 
utero-exposed group was further divided into three sub-
groups to capture their durations of exposure to famine. 
Specifically, participants who were born in 1959 had been 

exposed to famine in utero and the first two postnatal 
years (first 1000  days of life). Participants born in 1960 
had been exposed to famine in utero and the first post-
natal year. Participants born in 1961 were only exposed 
to famine in utero. Participants born before 1959 were 
classified into five exposed groups: infancy and tod-
dler exposed group (born between 1956 and 1958), pre-
schooler exposed group (born between 1953 and 1955), 
school-aged child exposed group (born between 1947 
and 1952), adolescent exposed group (born between 1942 
and 1946), and adult exposed group (born before 1942).

Assessments of type 2 diabetes
In the GNHS and CHNS cohorts, type 2 diabetes 
cases were ascertained based on fasting blood glu-
cose ≥ 7.0 mmol/L or HbA1c ≥ 47.5 mmol/mol (6.5%) or 
being currently under medical treatment for type 2 dia-
betes during the collection of stool samples, according to 
the American Diabetes Association criteria [23] for the 
diagnosis of diabetes. In the GGMP study, type 2 diabetes 
was determined by self-report (confirmed with medical 
history) or fasting blood glucose ≥ 7.0 mmol/L.

Statistical methods
Comparison of the gut microbial landscape among GNHS, 
GGMP, and CHNS participants
At the genus level, we used the vegdist function in the R 
package vegan [24] to calculate the gut microbial Bray–
Curtis dissimilarity matrix. The pairwise comparisons 
of the variation in microbial composition between three 
cohorts (GNHS, GGMP, and CHNS) were determined by 
PERMANOVA analysis and were visualized using princi-
pal coordinate analysis (PCOA). The P value was deter-
mined by 999 permutations and was further adjusted for 
multiple testing of pairwise comparison using the Benja-
mini-Hochberg  method (function pairwise Adonis in R 
package). An adjusted P value < 0.05 was considered sta-
tistically significant.

Famine exposure, gut microbial diversity, and type 2 diabetes
Alpha diversity differences (in SD units) between other 
groups and no-exposed control group were evaluated 
by linear regression model, with adjustment for age, 
sex, BMI, and the use of hypoglycemic and hypolipi-
demic medications (yes/no for each). The tested alpha 
diversity indices include observed OTUs, Shannon’s 
diversity index, Pielou’s evenness, and Faith’s phyloge-
netic diversity. We pooled the effect estimates from the 
three cohorts using random-effects meta-analysis. This 
approach enables a comprehensive analysis that consid-
ers the variability among different cohorts.

As sensitivity analyses, firstly, we added a potential 
technique confounder (sequencing depth), dietary and 
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lifestyle factors, into the covariate list. This adjustment 
was made to account for their potential impact on the 
composition of the gut microbiome [25]. Specifically, 
within the GNHS and CHNS cohorts, the adjusted die-
tary and lifestyle factors included fruit, vegetable, fish, 
red meat, dairy, alcohol drinking, and smoking status. 
In the GGMP cohort, all aforementioned dietary covari-
ates except dairy and fish (not available) were integrated 
into the model. Secondly, we excluded the participants 
with type 2 diabetes. Thirdly, we defined participants 
born after 1978, corresponding to the period after Chi-
na’s reform and opening-up, as a new reference group, 
and re-ran the analyses within the GGMP and CHNS 
cohorts but not GNHS, as there were no participants in 
the GNHS cohort born after 1978. We also combined 
the three utero-exposed groups (born in 1959, 1960, and 
1961 and with different durations of famine exposure in 
early life) into one group to assess the association of in 
utero famine exposure with alpha diversity. As the fam-
ine during 1959–1961 affected all provinces of China, it is 
impossible to find no-exposed controls with a completely 
matched age structure as the famine births [26]. We 
therefore combined the participants born in 1962–1964 
(no-exposed control group) and 1956–1958 (infancy and 
toddler exposed group) as a new reference group to bal-
ance the age between the no-exposed control group and 
the utero-exposed groups and re-ran the linear regres-
sion analyses.

We examined the cross-sectional association of the 
aforementioned gut microbial diversity (per SD unit) 
with type 2 diabetes using logistic regression, with 
adjustments for age, sex, and BMI. We combined the 
effect estimates from the three cohorts using random-
effects meta-analysis. As a sensitivity analysis, we further 
added the previously mentioned dietary and lifestyle fac-
tors into the covariate list.

Famine exposure, gut microbial community structure, 
and type 2 diabetes
We performed PERMANOVA analysis to evaluate the 
difference in the overall gut microbial community struc-
ture between the no-exposed control group and other 
groups. The P value was determined by 999 permuta-
tions. In each of the cohorts, we independently applied 
principal coordinate analysis to reduce the dimension of 
the microbial data. The gut microbial genera abundance 
matrix was represented by the first two principal coor-
dinates of the Bray–Curtis measures. Linear regression 
was used to evaluate the differences (in SD units) in the 
two principal coordinates between other groups and the 
no-exposed control group, with adjustment for the same 
cofounders as the above alpha diversity analysis.

Co‑abundance network construction and keystone taxa 
identification
At the genus level, we filtered the gut microbiota that was 
detected with < 10% prevalence and used the NetCoMi 
package [27] to perform microbial co-abundance net-
works analyses. We used three classical methods (Pear-
son, SparCC, and SPIEC-EASI) to estimate the microbial 
correlation matrix and further constructed microbial co-
abundance networks. For the Pearson analysis, we used 
multiplicative imputation [28] to handle zero values and 
used centered log-ratio (CLR) transformation to move 
compositional data from the simplex to real space. Cor-
relations with FDR-adjusted P values < 0.05 and with a 
magnitude above 0.3 were selected for further visualiza-
tion and network analysis. For the SparCC analysis, cor-
relations with FDR-adjusted P values < 0.05 and with a 
magnitude above 0.2 were selected for further visualiza-
tion and network analysis. SPIEC-EASI was used to infer 
the conditional dependence between every two micro-
bial taxa. Given that SPIEC-EASI already included node 
selection strategies, further node filtering was unneces-
sary. We used a hierarchical agglomeration algorithm 
[29] to determine clusters of nodes that are highly con-
nected but have a small number of connections to the 
nodes outside their module.

Here, we used eigenvector centrality to define the 
keystone in the co-abundance network (node with a 
centrality value above the empirical 95% quantile in 
the network). Eigenvector centrality was calculated via 
eigenvalue decomposition: Ac = λc, where λ denotes the 
eigenvalues and c the eigenvectors of the microbial adja-
cency matrix A. Eigenvector centrality is then defined as 
the ith entry of the eigenvector belonging to the largest 
eigenvalue.

Spearman correlation analysis was used to examine 
the association of keystone taxa and other measured 
microbial genera with observed OTUs. Correlations with 
FDR-adjusted P values < 0.05 are considered statistically 
significant.

Famine exposure, keystone taxa, and type 2 diabetes
We used a linear regression model to evaluate the dif-
ference (in SD unit) in keystone taxa between other 
groups and the no-exposed control group, with adjust-
ment for age, sex, BMI, and the use of hypoglycemic and 
hypolipidemic medications (yes/no for each). Here, the 
gut microbiota data was CLR-transformed. To apply the 
CLR transformation, zero counts were imputed with a 
pseudo-count of 1. We constructed a keystone taxa index 
with the total abundance of the shared keystone taxa that 
were consistently detected across the three independent 
cohorts. We also applied the above model to evaluate the 
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association of famine exposure with keystone taxa index. 
We combined the effect estimates from the three cohorts 
using random-effects meta-analysis.

Then, we examined the cross-sectional association of 
CLR-transformed abundance of individual keystone taxa 
(per SD unit) and keystone taxa index with type 2 dia-
betes using logistic regression, adjusted for age, sex, and 
BMI. We combined the effect estimates from the three 
cohorts using random-effects meta-analysis.

Results
Overview of the study participants
A total of 11,513 independent participants (18–
97 years) from three Chinese cohorts were included in 
the present study. Specifically, we included 1920 partic-
ipants (age 64.9 ± 5.9 years, 67.1% are women) from the 
GNHS, 6560 (age 52.7 ± 14.8  years, 55.1% are women) 
from the GGMP, and 3033 (age 51.6 ± 12.7 years, 51.2% 
are women) from the CHNS. The overall characteristics 
of the included participants, along with the sample size 
of each famine exposure group in the three cohorts, 
were shown in Table  1. The participants included in 
the present study came from 16 major provinces/meg-
acities in China, and they were either from the same 
community (GNHS), the same province (GGMP), 
or from different provinces (CHNS) (Fig.  1A). These 
cohorts are complementary to each other, given that 
geographic region is a major confounder in the gut 

microbiome analysis [18]. A total of 6174 (53.6%) par-
ticipants have been exposed to the Great Chinese Fam-
ine: 595 exposed in utero, 1112 in infancy and toddler, 
1227 in preschool, 1832 in school-aged, 778 in adoles-
cence, and 630 in the adult stage. The characteristics 
of each famine-exposed group and no-exposed group 
from the three cohorts were shown in Additional file 1: 
Table S1-S3, respectively.

On average, 42,330 ± 12,297 reads in the GNHS, 
46,623 ± 20,389 reads in the GGMP and 75,918 ± 11,730 
reads in the CHNS were generated. We detected alto-
gether 393 genera in the GNHS cohort, 932 in the 
GGMP cohort, and 1510 in the CHNS cohort. After 
filtering for the rare genera (< 10% prevalence in the 
corresponding cohort), 119, 188, and 177 genera were 
retained in the three cohorts, respectively. Among the 
retained genera, most genera detected in the GNHS 
cohort were also observed in the GGMP (109, 91.6%) 
and CHNS (102, 85.7%) cohorts (Fig. 1B). We observed 
relatively small variation between GNHS and GGMP 
cohorts, but large variation between GNHS and CHNS 
(Fig. 1C). Furthermore, there is a more pronounced var-
iation between the GGMP and CHNS cohorts (25.2%) 
compared to the variance between GNHS and GGMP 
cohorts (8.6%), despite the former employing the same 
sequencing region. Therefore, these inter-cohort dif-
ferences were mainly influenced by geographic factors, 
given that geography has been recognized as a primary 
determinant of microbial composition [18].

Table 1 Characteristics of the participants included in this  studya

a Data are presented as number of participants (%) or mean (SD)

GNHS GGMP CHNS

Number of participants 1920 6560 3033

Age, years 64.9 (5.9) 52.7 (14.8) 51.6 (12.7)

Women, n (%) 1288 (67.1%) 3614 (55.1%) 1554 (51.2%)

BMI, kg/m2 23.6 (3.3) 23.4 (3.5) 24.3 (3.9)

Type 2 diabetes case subjects, n (%) 268 (14.0%) 553 (8.4%) 368 (12.2%)

Famine exposed groups

 No‑exposed control 37 (1.9%) 622 (9.5%) 303 (10.0%)

 In utero exposed 54 (2.8%) 366 (5.6%) 175 (5.8%)

  Group 1 (born in 1959) 34 (1.8%) 144 (2.2%) 69 (2.3%)

  Group 2 (born in 1960) 15 (0.8%) 111 (1.7%) 58 (1.9%)

  Group 3 (born in 1961) 5 (0.3%) 111 (1.7%) 48 (1.6%)

 Infancy and toddler exposed 341 (17.8%) 512 (7.8%) 259 (8.5%)

 Preschooler exposed 425 (22.1%) 502 (7.7%) 300 (9.9%)

 School‑aged child exposed group 670 (34.9%) 822 (12.5%) 340 (11.2%)

 Adolescent exposed group 261 (13.6%) 380 (5.8%) 137 (4.5%)

 Adult exposed group 91 (4.7%) 430 (6.6%) 109 (3.6%)

 Other no‑exposed participants 41 (2.1%) 2926 (44.6%) 1410 (46.5%)
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Exposure to the Great Chinese Famine during the first 
1000 days of life is associated with the alterations of gut 
microbial alpha diversity
We found that participants who were exposed to the 
Great Chinese Famine during the first 1000  days of life 
(born in 1959), rather than other periods, had a consist-
ently lower observed OTUs in the GNHS (P = 0.0068), 
GGMP (P = 0.035), and CHNS cohorts (P = 0.018), 
compared with the no-exposed control group (born 
between 1962 and 1964) (Fig. 2A, B and Additional file 1: 

Table S4-S6). Similar trends were observed for the other 
alpha diversity indices (Additional file 1: Fig. S2 A-C and 
Additional file 1: Table S4-S6). Gut microbial alpha diver-
sity was inversely associated with risk of type 2 diabetes 
in the three cohorts (Fig. 2B, pooled odds ratio 0.79, 95% 
CI 0.74, 0.85). This correlation remained consistent even 
after additional adjustments for dietary and lifestyle fac-
tors (Additional file 1: Fig. S3).

In the sensitivity analyses exploring the association 
of famine exposure with microbial alpha diversity, we 

Fig. 1 Overview of the study cohorts. A Overview of 11,513 participants’ sampling regions. B Venn diagram of the number of genera after filtering 
for the rare genera (< 10% prevalence in the corresponding cohorts) detected in each cohort. C Dissimilarities in the gut microbial composition 
between participants from three cohorts. The pairwise comparisons of the variation in microbial composition among the three cohorts (GNHS, 
GGMP, and CHNS) were determined by PERMANOVA analyses. The P value was determined by 999 permutations and was further adjusted 
for multiple testing of pairwise comparison using the Benjamini‑Hochberg method
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obtained consistent results by adding a potential tech-
nique confounder (microbiome sequencing depth), 
dietary and lifestyle factors into the covariate list 
(Additional file  1: Table  S7-S9), excluding the partici-
pants with type 2 diabetes (Additional file 1: Table S10-
S12) or defining the participants born after 1978 as a 
new reference group (Additional file 1: Table S13-S14). 
The results were a bit weaker when we combined the 
above long exposure group (born in 1959) and those 
having a shorter exposure group (born during 1960–
1961) (Additional file  1: Fig. S4 and Additional file  1: 
Table S15).

Given that age imbalance between the first 1000 days 
famine exposure group and the control group may 
confound the famine-gut microbiome analysis, simi-
larly to a previous study [30], we set a new reference 
group by combining the non-exposed control group 
with the infancy and toddler exposed group to further 
control the influence of age. In the GNHS cohort, par-
ticipants in the first 1000 days famine exposure group 
are on average 1.8 years older than the new reference 
group (Additional file  1: Fig. S5A). In the GGMP and 
CHNS cohorts, participants in the first 1000 days fam-
ine exposure group are on average 1.3  years (Addi-
tional file 1: Fig. S5B) and 1.2 years (Additional file 1: 
Fig. S5C) younger than the new reference group, 
respectively. Compared with the new reference group, 
participants who were exposed to the famine during 
the first 1000  days of life, rather than other periods, 
had consistently lower levels of observed OTUs in the 
three cohorts (Additional file  1: Fig. S5D and Addi-
tional file 1: Table S16). Similar trends were observed 
for other alpha diversity indices (Additional file  1: 
Table S16).

Exposure to the Great Chinese Famine during the first 
1000 days of life is associated with the alterations 
of the gut microbial landscape
PERMANOVA analysis showed that the gut microbial 
composition was significantly different between the first 
1000  days famine exposure group and the no-exposed 
control group in the GNHS (P = 0.025, PERMANOVA 
test with 999 permutations) and CHNS (P = 0.009) 
cohorts. After performing principal coordinate analysis 
to reduce the dimension of the microbial data (Fig. 2C–
E), we found that the alteration in microbial composition 
was only present in the first 1000 days famine exposure 
group when compared to the control group (Additional 
file  1: Fig. S6). Notably, the first 1000  days famine-
induced gut microbial variation was mainly located in 
the first principal component (PCOA1, explained 17.4% 
of the total microbial variability) in the GNHS (P = 0.044, 
Additional file 1: Fig. S6 and Additional file 1: Table S17) 
and the second principal component (PCOA2, explained 
11.9% of the total microbial variability) in the CHNS 
(P = 0.00035, Additional file  1: Fig. S6 and Additional 
file  1: Table  S17). In the GGMP (Additional file  1: Fig. 
S6 and Additional file 1: Table S17), the variation of gut 
microbial composition between the first 1000 days fam-
ine exposure group and the no-exposed control group 
was mainly in the PCOA2 (P = 0.056, explained 11.9% of 
the total gut microbial variation). Further comparisons 
involving other groups are depicted in Additional file 1: 
Fig. S6 and Additional file 1: Table S17.

The compositional variation of the famine-disrupted 
gut microbiome was significantly associated with type 2 
diabetes. In the GGMP and CHNS cohorts, the level of 
PCOA2 was lower in the first 1000  days famine expo-
sure group than the no-exposed control group and was 
inversely associated with type 2 diabetes (Fig. 2F).

(See figure on next page.)
Fig. 2 Famine exposure during the first 1000 days of life, alterations of gut microbial diversity, and type 2 diabetes. A Distribution of observed 
OTUs across different groups. Observed OTUs within each cohort were independently z‑scored. Participants were classified into different groups: 
the no‑exposed group (NE1, born after 1964), no‑exposed control group (NE2, born between 1962 and 1964), three in utero exposed groups 
(E1–E3, born in 1959, 1960, and 1961, respectively), infancy and toddler exposed group (E4, born between 1956 and 1958), preschooler exposed 
group (E5, born between 1953 and 1955), school‑aged child exposed group (E6, born between 1947 and 1952), adolescent exposed group (E7, 
born between 1942 and 1946), and adult exposed group (E8, born before 1942). Here, participants in the no‑exposed control group were used 
as the reference group. Participants who were exposed to the famine during the first 1000 days of life (E1, born in 1959) were highlighted in red. 
B Left: association of early‑life famine exposure with observed OTUs. Linear regression was used to estimate the difference in observed OTUs 
between other groups and reference group, with adjustment of age, sex, BMI, and the use of hypoglycemic and hypolipidemic medications 
(yes/no for each). Here, we highlighted the comparation between the E1 and control groups in the three cohorts. Other results were present 
in the supplemental materials. Right: association of observed OTUs with type 2 diabetes. Logistic regression was used to examine the association 
of observed OTUs (per SD unit) with type 2 diabetes, adjusted for age, sex, and BMI. We combined the effect estimates from the three cohorts 
using random‑effects meta‑analysis. C Bray–Curtis‑based principal coordinate analysis for the genus‑level profiles in the GNHS cohort. The circles 
and error bars indicate the mean and standard errors of the mean within each group, respectively. D As in C, but for the GGMP cohort. E As in C, 
but for the CHNS cohort. F Relationship between the first two principal components of the microbial variation and type 2 diabetes. Logistic 
regression was used to examine the association of principal components (per SD unit) with type 2 diabetes, adjusted for age, sex, and BMI
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Fig. 2 (See legend on previous page.)
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Keystone taxa as drivers of gut microbial structure 
and diversity
Considering that alterations in microbial diversity and 
overall composition were consistently observed only in 
the first 1000  days famine-exposed groups across the 
three cohorts, we then delved into evaluating the poten-
tial influence of early-life famine exposure during this 
critical period on adult gut microbial keystone taxa. We 
firstly established microbial co-abundance networks by 
combining the Pearson, SparCC [31], and SPIEC-EASI 
[32] methods. We identified 10, 18, and 17 keystone taxa 
in the GNHS (Additional file  1: Fig. S7), GGMP (Addi-
tional file  1: Fig. S8), and CHNS cohorts (Additional 
file 1: Fig. S9), respectively. Notably, six genera (Oscillo-
spiraceae UCG-002, Oscillospiraceae UCG-005, Alistipes, 
NK4A214 group, Clostridia UCG 014, and Christensenel-
laceae R7 group) were consistently identified as the 
shared keystone taxa across the three cohorts (Fig. 3A). 
The relative abundance of these taxa is relatively modest 
compared with other major gut microbial taxa (Addi-
tional file  1: Fig. S10). These keystone microbes are 

directly or indirectly connected with other gut microbes, 
playing a central position in the microbial ecosystem.

The identified shared keystone taxa were strongly asso-
ciated with gut microbial alpha diversity (Fig.  3B–D). 
For example, the correlation coefficient between Oscil-
lospiraceae UCG-002 and observed OTUs was ranked 
highest in both the GNHS (Spearman’s r = 0.67, P < 0.001) 
and CHNS (Spearman’s r = 0.69, P < 0.001) cohorts and 
second highest in the GGMP cohort (Spearman’s r = 0.68, 
P < 0.001).

Famine exposure during the first 1000 days of life, 
disruption of gut microbial keystone taxa, and type 2 
diabetes
Overall, compared with the no-exposed control group, 
participants who were exposed to famine during the first 
1000 days of life were associated with consistently lower 
levels of keystone taxa index across the three cohorts 
(Fig.  4, pooled beta − 0.29, 95% CI − 0.43, − 0.15). The 
taxa index was inversely associated with type 2 diabetes 

Fig. 3 Keystone taxa as drivers of gut microbial diversity. A Venn diagram of the numbers and list of keystone taxa detected in each cohort. 
B Correlations between the gut microbial genera and observed OTUs in the GNHS. The values on the x‑axis and y‑axis represent the rank 
and Spearman’s coefficient of each genus’s correlation with observed OTUs, respectively. Only significant results were plotted in the figure, 
and the numbered genera represent the keystone taxa that were consistently detected across the three cohorts and their ranked numbers 
among all tested genera. C As in B, but for the GGMP cohort. D As in B, but for the CHNS cohort
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across the three cohorts (Fig.  4, per SD change, pooled 
odds ratio 0.87, 95% CI 0.80, 0.93).

Four keystone taxa (Alistipes, Christensenellaceae R7 
group, Oscillospiraceae UCG-002, and Oscillospiraceae 
UCG-005), which were consistently detected in the three 
cohorts, were inversely associated with type 2 diabetes 
after meta-analyses (Additional file  1: Fig. S11). Impor-
tantly, the abundance of Alistipes and Christensenellaceae 
R7 group was lower in the first 1000  days famine expo-
sure group than the no-exposed control group after con-
ducting meta-analysis (Additional file 1: Fig. S12).

Discussion
Accumulating epidemiological evidence suggests a link 
between early-life exposure to famine and increasing 
burden of chronic diseases, while little is known about 
whether famine exposure has a long-term impact on gut 

microbial health. In this cohort study, we reveal that par-
ticipants exposed to the Great Chinese Famine during the 
first 1000 days of life are associated with the alterations of 
gut microbial diversity, composition, and keystone taxa. 
Importantly, the famine-induced disruptions in the gut 
microbiome are positively associated with the risk of type 
2 diabetes.

Early life, especially the first 1000 days of life, is a criti-
cal window for the establishment and development of gut 
microbiota [14]. It is generally recognized that the initial 
microbes in infants are transmitted from the mother at 
delivery, but recent studies suggested that the exposure 
of the human to microbiota begins in utero [33]. After 
birth, the gut microbiome co-evolves with the host and 
starts stabilizing in later childhood [34, 35]. A previous 
study found that children with malnutrition, character-
ized by a relatively lower weight-for-length Z score, were 

Fig. 4 Famine exposure during the first 1000 days of life, disruption of keystone taxa, and type 2 diabetes. Left: association of early‑life famine 
exposure with keystone taxa index. Keystone taxa index was constructed with the total abundance of the keystone taxa that were consistently 
detected in the three cohorts. Linear regression was used to estimate the difference in keystone taxa index between other groups and reference 
group, with adjustment of age, sex, BMI, and the use of hypoglycemic and hypolipidemic medications (yes/no for each). Here, we highlighted 
the comparation between the first 1000 days famine exposure and the control group in the three cohorts. Other results were present 
in the supplemental materials. Right: the associations of keystone taxa index (per SD unit) with type 2 diabetes using logistic regression in the three 
cohorts, adjusted for age, sex, and BMI. We combined the effect estimates from the three cohorts using random‑effects meta‑analysis
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associated with microbiome immaturity in early life [36]. 
A fecal microbiota transplantation study further dem-
onstrated that undernutrition could causally perturbate 
the normal development of the gut microbiota, and the 
impaired growth phenotypes of undernourished donors 
could be transmitted to the recipient mice [37]. Our 
study further expands the existing knowledge by demon-
strating that early-life malnutrition was closely associated 
with gut microbial dysbiosis in adults.

There is a crosstalk between the early-life gut micro-
biota and immune system, gastrointestinal integrity, and 
many other systems [38, 39]. The gut microbiota and 
its related metabolites may mediate the effects of envi-
ronmental stress on human health and diseases in later 
life [40]. In our study, participants who were exposed to 
the Great Chinese Famine during the first 1000  days of 
life had a lower level of alpha diversity than the control 
participants. Gut microbial alpha diversity, a key quan-
tity index of the overall microbial composition, was 
inversely associated with type 2 diabetes in the current 
study and prior report [41]. In addition, keystone taxa 
are directly or indirectly connected to other microbes 
and as drivers of microbial structure and function-
ing of microbial ecosystem [42]. In the current study, 
although with large variations in gut microbial compo-
sition across the geographic regions, six keystone taxa 
(Oscillospiraceae UCG-002, Oscillospiraceae UCG-005, 
Alistipes, NK4A214 group, Clostridia UCG 014, and 
Christensenellaceae R7 group) were consistently detected 
in the three cohorts. Importantly, Christensenellaceae R7 
group and Oscillospiraceae UCG-002 were also identified 
as the keystone taxa in the previous study [43] and were 
decreased in the first 1000 days famine exposed partici-
pants. Christensenellaceae R7 group was inversely associ-
ated with various circulating lipids and insulin resistance 
[41, 44, 45]. A higher abundance of Oscillospiraceae 
UCG-002 could benefit insulin resistance and depres-
sive symptoms [46]. In agreement with these results, the 
abundance of Christensenellaceae R7 group and Oscil-
lospiraceae UCG-002 were decreased in type 2 diabetes 
participants in the present study. Alistipes is one of the 
major butyrate-producing taxa and was mainly detected 
in the healthy human gastrointestinal tract [47, 48]. Alis-
tipes had protective effects against dysglycemia and car-
diovascular disease [47, 48] and are the key determinants 
of post-antibiotic ecological recovery in the gut [49]. In 
our study, Alistipes was enriched in the no-exposed con-
trol participants, and a higher abundance of Alistipes was 
associated with a lower risk of type 2 diabetes.

This study has several strengths. Firstly, this is the first 
study to comprehensively examine the lifelong impact 
of famine exposure during early life on the adult gut 
microbial ecosystem (microbial diversity, constitution, 

and keystone taxa) and type 2 diabetes. In addition, 
although the distinct study designs, variations in sample 
size, sequencing methods, and differences in population 
characteristics across these cohorts could potentially 
influence the robustness of effect estimates, the asso-
ciations of early-life famine exposure with gut microbi-
ome, and famine-induced disturbance in gut microbiome 
with type 2 diabetes, have been successfully established 
across all three independent cohorts, which supports 
the generalizability of the present findings. Our findings 
support the gut microbiome may play an important role 
in the DOHaD hypothesis. Finally, we identified several 
keystone taxa that were independent of the geographic 
regions. The identified keystone taxa may serve as the 
intervention targets for regulating the microbial ecosys-
tem under the abnormal status.

This study has limitations. First, the absence of detailed 
individual-level data on famine exposure and its varia-
tions in severity between individuals may introduce some 
bias into the effect estimates. However, it is worth noting 
that during the famine period, food distribution primarily 
occurred through communal kitchens, effectively impact-
ing the majority of participants living in the community 
[50]. Second, the famine during 1959–1961 affected all 
provinces of China; it is impossible to find no-exposed 
controls with a completely matched age structure as the 
famine births. Nevertheless, we used an age-balanced 
strategy to adjust age-related biases and obtained con-
sistent findings across the three cohorts. Third, although 
we have adjusted for numerous covariates, the possibility 
of residual confounding could not be fully excluded due 
to the observational nature of the current study. Fourth, 
the sample size for the in utero exposure groups was rela-
tively small due to the famine exposure. Fifth, because of 
the use of 16S rRNA data, associations of functional pro-
files of the gut microbiome could not be explored. Future 
omics data such as metagenomics and short-chain fatty 
acids may overcome these limitations. Finally, our find-
ings on the associations of famine-induced disruption 
in the gut microbiome with type 2 diabetes are observa-
tional without clear causal evidence at this stage. Further 
longitudinal and interventional studies are needed to 
elucidate the underlying mechanism and potential causal 
direction.

Conclusions
In conclusion, our results highlight the potential role of 
the gut microbiome in the DOHaD hypothesis, which 
contributes to our understanding of disease etiology and 
pathogenesis. The identified keystone taxa may serve as 
new interventions or therapeutic targets for type 2 dia-
betes. More investigations are needed to further replicate 
our present findings and reveal the detailed mechanism.
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