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Abstract 

Background and aims Excess energy intake can lead to metabolic dysfunction‑associated steatotic liver disease 
(MASLD), but the relationship between dietary carbohydrate intake and liver fat content remains unclear. This study 
aimed to examine the associations between types and sources of dietary carbohydrates and liver fat content.

Methods UK Biobank participants with no pre‑existing diabetes, liver disease or cardiovascular disease reported 
dietary intake of types and sources of carbohydrates (total carbohydrates, free sugars, non‑free sugars, starch 
from whole grains, starch from refined grains, and fibre) on at least two 24‑h dietary assessments. In cross‑sectional 
analyses, (n = 22,973), odds ratios (OR) of high liver fat content (defined as a score of ≥ 36 in the hepatic steatosis 
index) by quintiles of carbohydrate intakes were estimated using multivariable logistic regression models. In prospec‑
tive analyses, a second sample (n = 9268) had liver proton density fat fraction (PDFF) measured by magnetic reso‑
nance imaging (2014–2020). Multivariable linear regression models estimated geometric means of PDFF (%) by quin‑
tiles of carbohydrate intakes. Models were adjusted for demographic and lifestyle confounders, including total energy 
intake.

Results In the cross‑sectional analyses, 6894 cases of high liver fat content were identified. Inverse associations 
between intakes of fibre (OR of highest vs. lowest quintile 0.46 [95% CI: 0.41–0.52]), non‑free sugars (0.63 [0.57–0.70]) 
and starch from whole grains (0.52 [0.47–0.57]) with liver fat were observed. There were positive associations 
between starch from refined grains and liver fat (1.33 [1.21–1.46]), but no association with free sugars (p=0.61). In 
prospective analyses, inverse associations with PDFF (%) were observed for intakes of fibre (− 0.48 geometric mean 
difference between highest and lowest quintile of intake [− 0.60 to − 0.35]), non‑free sugars (− 0.37 [− 0.49 to − 0.25]) 
and starch from whole grains (− 0.31 [− 0.42 to − 0.19]). Free sugars, but not starch from refined grains, were positively 
associated with PDFF (0.17 [0.05 to 0.28]).

Conclusion This study suggests that different carbohydrate types and sources have varying associations with liver 
fat, which may be important for MASLD prevention. Non‑free sugars, fibre, and starch from whole grains could be 
protective, while associations with free sugars and starch from refined grains are less clear.

Keywords Hepatic steatosis, MASLD, Dietary carbohydrates, Non‑alcoholic fatty liver, Carbohydrate quality, Fibre 
intake
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Introduction
Non-alcoholic fatty liver disease (NAFLD) is the most 
common cause of chronic liver disease in the world [1]. 
NAFLD, which has been recently redefined as part of 
steatotic liver disease (SLD) under the term MASLD 
(metabolic dysfunction-associated fatty liver disease), 
is a rapidly growing contributor to liver mortality and 
morbidity globally and affects approximately 25% of the 
adult population [2–4]. This disease is characterised 
by the accumulation of fat in the liver [5] and can pro-
gress from simple steatosis (≥5.% of liver fat content) to 
steatohepatitis (≥  5% of liver fat content and inflamma-
tion), and lead to liver fibrosis and cirrhosis [6–8]. These 
advanced stages are mostly responsible for the substan-
tial economic burden of MASLD [6, 9], and it has been 
estimated that MASLD will be the first cause of liver 
transplant by 2030 [3, 10, 11]. To date, the clinical man-
agement of MASLD is constrained to lifestyle interven-
tions such as maintaining a healthy weight and balanced 
diet, as excess energy intake and low energy expenditure 
are key modifiable risk factors, and at present no phar-
macological treatment has been approved [12]. However, 
it is not yet fully understood how different dietary macro-
nutrients relate to MASLD, independently of energy 
intake [13, 14].

It has been proposed that dietary carbohydrates 
increase liver fat accumulation because they promote 
de novo lipogenesis (DNL), and when this physiological 
mechanism is stimulated in excess, it would contribute 
to MASLD [15, 16]. In addition, inflammation has also 
been pointed as a potential mechanism in which carbo-
hydrates are associated with liver fat accumulation [16]. 
However, recent studies have suggested that different 
types and sources of carbohydrates could influence liver 
fat accumulation differently [13, 17]. Population-based 
studies looking at total dietary carbohydrate intake and 
MASLD have observed positive [18–22], negative [23] 
and non-significant associations [21, 24–29]. A recent 
meta-analysis of 34 observational studies concluded that 
there were no significant associations between carbohy-
drates and MASLD [30]. These inconsistent results may 
be due to small sample sizes or differences in dietary 
assessment methods, inclusion criteria, adjustment for 
confounders or MASLD diagnosis tools. In particular, 
there are few observational studies that are prospective 
and have adjusted for total energy intake or assessed dif-
ferent types and sources of carbohydrate intake simul-
taneously. Therefore, this study sought to study the 
associations between different types and sources of die-
tary carbohydrates in the largest prospective study to 
date with liver fat measured using the most accurate and 
precise non-invasive method for liver fat quantification, 
magnetic resonance imaging (MRI) [31].

Methods
Study population
The UK Biobank is a large, population-based prospec-
tive study of 502,413 participants aged 37–63 years 
recruited between 2006 and 2010 from 22 assessment 
centres across Wales, Scotland, and England. During a 
first assessment visit, participants gave their informed 
consent and provided detailed information on sociode-
mographic and lifestyle characteristics and medical con-
ditions via a self-reported questionnaire and an interview 
[32]. Additionally, anthropometric measures were taken, 
and blood, urine and saliva samples were collected [33]. 
A further assessment included multimodal imaging 
studies, in which a subsample of participants was stud-
ied with MRI, from 2016 onwards, which is currently 
ongoing [34]. The UK Biobank study has complied with 
all necessary research ethics protocols, according to the 
Declaration of Helsinki, and approved by the Northwest 
Multi-Centre Research Ethics Committee (reference 
number 21/NW/0157) [32]. Further details about this 
study, including recruitment process and follow-up, can 
be found online [35].

Assessment of dietary types and sources of carbohydrate 
intake
Participants completed up to five 24-h dietary assess-
ments where they indicated their consumption during 
the last 24 hours from a list of 206 widely consumed 
foods and 32 beverages [32, 36–38]. The first 24-h assess-
ment was included at the baseline survey at recruitment 
from 2009 to 2010 (N =  70,724). Participants that had 
provided a valid email address at recruitment were then 
invited to complete identical 24-h assessments online up 
to four more times (N = 176,012; 53% response rate). See 
Additional file 1: Fig. S1 for a timing of the assessments 
and measurements used in this study.

From this questionnaire, carbohydrate intakes from 
each food item and beverage were automatically calcu-
lated by multiplying the frequency of intake by the carbo-
hydrate content of food items and beverages indicated in 
the UK Nutrient Databank food composition tables [39]. 
Total carbohydrate intake can be divided into subcatego-
ries of sugars, fibre and starch based on the quality of the 
food sources consumed (see Additional file 1: Fig. S2 for 
the subdivision of total carbohydrates). ‘Free sugars’ were 
defined as all added sugars in any form (i.e. sugars added 
to foods by manufacturer, cook or consumer), plus those 
naturally present in honey, syrups and unsweetened fruit 
and vegetable juice [40, 41]. ‘Non-free sugar intake’ refers 
to naturally occurring sugars found in fruit, vegetables 
and dairy products; and was calculated by subtracting 
free sugars from total sugar intake [40]. Separate from the 
type of sugars contained within the total carbohydrate 
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intake, dietary intake of starch from refined grains and 
whole grains variables were calculated by combining the 
grams of starch from specific food products reported. 
For example, starch from white bread, pizza, and biscuits 
were included in the ‘starch from refined grains category’, 
whereas starch from wholemeal bread or oat cereal went 
into ‘starch from whole grains’ (see Additional file  1: 
Table  S1 for details). Finally, all dietary variables were 
coded as percentage of total energy intake, except for 
fibre, which was presented in grams per day, and were 
categorised into quintiles.

Assessment of liver fat
Liver fat accumulation was studied both cross-sectionally 
and prospectively with different outcome assessments.

Cross-sectional associations of dietary carbohydrates 
and high hepatic steatosis were assessed using a score of 
≥ 36 in the hepatic steatosis index (HSI) [42]. This index 
considers body mass index (BMI), sex, and liver enzymes, 
and it is calculated as: (ALT/ AST) *8 + BMI + 2 if 
female, and + 2 if diabetic. The HSI at a cut-off value of 
36 has shown varying sensitivity (46–89.5%) and higher 
specificity (60–95.2%) in identifying steatosis cases, when 
validated in populations with different underlying condi-
tions [42–45].

ALT and AST enzymes were obtained from the base-
line visit blood samples [46]. At least one of the 24-h 
dietary questionnaires had to be taken at baseline, when 
blood samples and BMI measurements were taken.

The prospective analyses were carried out in a second 
sample that measured liver fat by MRI, which provides an 
estimate of the liver proton density fat fraction (PDFF) in 
terms of liver fat percentage (%). The MRIs were meas-
ured on average 6 years and 3 months after the final 24-h 
dietary questionnaire was collected (Additional file 1: Fig. 
S1).

Inclusion and exclusion criteria
Participants with cardiovascular disease at baseline 
were excluded due to its association with MASLD and 
to reduce reverse causality because medical advice 
likely includes changes to diet. Participants with condi-
tions that alter liver enzymes or liver metabolism signifi-
cantly were also excluded, such as chronic liver disease, 
diabetes, dyslipidaemia, severe endocrine conditions, 
pregnancy, or use of medication that can promote liver 
inflammation [47] (Additional file 1: Table S2 and Fig. S3) 
Participants in the highest category of alcohol consump-
tion according to NICE guidelines (higher risk drink-
ers, i.e. > 50 alcohol units per week in men and > 30 in 
women) were excluded to prevent associations of liver fat 
with high alcohol consumption [48]. Finally, participants 
were excluded that had missing data on liver fat, reported 

implausible energy intake (total energy intake of < 600 or 
> 3500 kcal/day in women, and < 800 or < 4200 kcal/day 
in men) or less than two 24-h dietary assessments [49]. 
The final cross-sectional sample was N = 22,973 partici-
pants, and the prospective analyses had N = 9268 partici-
pants remaining with MRI measurements.

Statistical analysis
In cross-sectional analyses, multivariable logistic regres-
sion models were built to estimate the odds of high liver 
fat across quintiles of carbohydrate types and sources. 
Potential confounders were added sequentially, and 
model fit improvement was checked with likelihood ratio 
tests between nested models with and without additional 
covariates.

Covariates were included in the following order: sex, 
age, ethnicity (5 categories), Townsend deprivation index 
[49] (quintiles), education (university or equivalent, 
A-levels, GCSE, none/unknown), region (10 categories), 
smoking status (never, former, current), physical activity 
(low, [< 10 metabolic equivalent of task (MET) h/week], 
moderate [10–50 MET h/week], high [>50 MET h/week]) 
[50], total energy intake (quintiles, kilojoules [kJ]) and 
polyunsaturated fatty acids (PUFA)/saturated fatty acids 
(SFA) ratio, as a marker of a healthy diet [51] (see Addi-
tional file 1: Table. S3 for details). BMI was not adjusted 
for in cross-sectional analyses as it was included as part 
of the HSI.

For the prospective analyses, multivariable linear 
regression models estimated geometric means of PDFF 
by quintiles of carbohydrate types and sources intake. 
PDFF had a skewed distribution and was transformed 
by using its natural logarithm (ln), and robust standard 
errors were calculated. Adjusted means of PDFF were 
predicted from the resulting beta coefficients and were 
exponentiated to calculate the geometric mean for each 
quintile. To help interpret a change in geometric means, 
the geometric mean change in PDFF was also expressed 
as a percentage change (Additional file 1: Table S4 ). Con-
founders in the prospective models were added in the 
same order as in the cross-sectional analyses, although 
there was a further adjustment for BMI (categorised fol-
lowing the international classification for adults aged 
over 20 years [51], which were defined as < 25, 25–29.9, 
30–34.9 and ≥ 35). To assess if the associations between 
dietary exposures and liver fat were significantly dif-
ferent across BMI groups and sex, an interaction term 
was included in the regressions, and a likelihood ratio 
test was used to assess model improvement. There was 
no violation of the assumptions of the linear regression 
model.

To assess the robustness of the results, a sensitivity 
analysis including only participants who completed at 
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least four 24-h recall dietary questionnaires was con-
ducted. This was done to observe the impact of measure-
ment error due to potential exposure misclassification. 
Additional sensitivity analyses assessed the impact of 
adjusting for diagnosed hypertension, and the impact on 
cross-sectional analyses of using a larger sample of any-
one who completed at least two 24-h dietary assessments 
(rather than restricting to participants who completed 
their first 24-h dietary assessment at the same time that 
liver enzymes were measured).

All analyses were done using STATA S.E 16 (StataCorp. 
2019. Stata Statistical Software: Release 16. College Sta-
tion, TX: StataCorp LLC), and the significance level was 
considered p < 0.05. Forest plots were produced using R 
package ‘Jasper makes plots’ [52].

Results
Cross‑sectional analyses between carbohydrate intake 
and odds of high liver fat
In the cross-sectional analysis, 6894 participants were 
classified as presenting high liver fat content by HSI 
(32%), (Table 1). Participants with high liver fat content 
were more likely to be current smokers, and in the low 

physical activity category compared to those with low-
to-moderate liver fat. Cases of high liver fat also had a 
higher consumption of starch from refined grain, and 
a lower consumption of fibre, starch from wholegrains 
and non-free sugars compared to controls.

In the fully adjusted cross-sectional analyses, the 
highest quintile of total carbohydrate intake was asso-
ciated with 30% lower odds of high liver fat compared 
to the lowest quintile (OR: 0.70, 95% confidence inter-
val 0.64–0.77, p for trend <  0.001; Fig.  1). Free sugars 
were not significantly associated with high liver fat 
content (p for trend = 0.61), although non-free sug-
ars were associated with 37% lower odds of high liver 
fat for participants in the highest vs. lowest quintile of 
intake (0.63 [0.57–0.70]; p for trend < 0.001). The high-
est quintile of starch from refined grains had a positive 
association with high liver fat content compared to the 
lowest quintile (OR: 1.33 [ 1.21–1.46]), whereas both 
starch from whole grains and fibre reported strong 
inverse linear associations with high liver fat, with 
48% and 54% lower odds reported for quintile 5 com-
pared to quintile 1, respectively (0.52 [0.47–0.57]; 0.46 
[0.41–0.52]).

Table 1 Characteristics of participants in the cross‑sectional analyses, by cases of high HSI (N = 22,973)

Values are presented as N (proportion)
a Defined by a score of 36 in the Hepatic steatosis index
b P values represent chi-squared test
c Values are mean (standard deviation)
d P values represent analysis of variance
e Values are median (interquartile range)
f  P values represent Wilcoxon rank-sum test

Characteristics Controls (N = 16,079) High HSIa (N = 6894) Total (N = 22,973) p valueb

Age (years)c 55.1 (8.1) 54.8 (7.8) 55.0 (8.0) 0.004d

Male sex (%) 6021 (37) 2769 (40) 8790 (38) < 0.001

Body mass index (kg/m2)c 24.1 (2.5) 31.0 (4.1) 26.2 (4.4) < 0.001

White ethnicity (%) 15,406 (95.8) 6536 (94.8) 21,942 (95.5) 0.001

Most deprived quintile (%) 3109 (19.4) 1480 (21.5) 4589 (20.0) < 0.001

University degree (%) 12,224 (76.0) 4845 (70.3) 17,069 (74.3) < 0.001

Current smoker (%) 855 (5.3%) 436 (6.3) 1291 (5.6) < 0.001

Low physical activity (%) 2553 (15.9) 1775 (25.7) 4328 (18.8) < 0.001

Hazardous alcohol intake (%) 6,151 (38.3) 2575 (37.4) 8726 (38.0) < 0.001

Alcohol intake (units/week)e 12 (4, 20) 11.5 (2.8, 22) 12 (4, 20.5) 0.003f

ALT/AST ratioe 0.72 (0.61, 0.85) 1.01 (0.84, 1.22) 0.79 ( 0.65, 0.97) < 0.001f

PUFA/SFA ratioe 0.49 (0.39, 0.62) 0.48 (0.39, 0.61) 0.49 (0.39, 0.61) < 0.001f

Total energy intake (kJ)c 8321.8 (1870.7) 8350.8 (1956.1) 8330.5 (1896.8) 0.29d

Total carbohydrates (% energy)c 51.4 (7.0) 50.6 (7.2) 51.1 (7.1) < 0.001d

Free sugars (% energy)c 11.6 (4.8) 11.8 (5.1) 11.7 (4.9) < 0.001d

Non‑free sugars (% energy)c 14.0 (5.6) 13.1 (5.6) 13.7 (5.6) < 0.001d

Starch from whole grains (% energy)c 11.8 (6.1) 12.7 (6.4) 12.0 (6.2) < 0.001d

Starch from refined grains (% energy)c 5.9 (4.3) 4.8 (3.9) 5.6 (4.2) < 0.001d

Fibre (g/day)c 18.5 (5.7) 17.2 (5.5) 18.1 (5.7) < 0.001d
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Fig. 1 Cross‑sectional results (N = 22,973). Odds ratio of steatosis, defined as ≥36 HSI score. Results from logistic regression models, adjusted by age, 
sex, ethnicity, deprivation, education, smoking status, physical activity, alcohol intake, total energy intake and PUFA:SFA ratio
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Prospective analyses between carbohydrate intake 
and average liver fat percentage
In the prospective sample, the PDFF geometric mean 
on the first imaging assessment was 2.6% (1.9–4.0) and 
1416 (15%) participants had steatosis (>= 5.6% PDFF) [8]. 
Participants in the highest quintiles of non-free sugars, 
starch from wholegrains and fibre tended to be univer-
sity-educated and less likely to smoke or engage in low 
physical activity, but the differences were small compared 
to the first quintile (Table 2).

In the fully adjusted prospective analyses (Fig. 2), after 
adjusting for BMI, total carbohydrates had an inverse 
association with PDFF, but the association was not lin-
ear; all groups reported a similar decrease in the average 
PDFF in comparison with quintile 1. Free sugar intake 
was positively associated with PDFF: there was a 0.17 
mean difference in PDFF between the highest and lowest 
quintiles of intake (95% CI, 0.05–0.28). Meanwhile, non-
free sugars were inversely associated with average PDFF 
to a greater extent (− 0.37 comparing quintile 5 to quin-
tile 1; − 0.49 to − 0.25). Starch from refined grains was 
not associated with PDFF (p for trend = 0.11), but there 
were linear inverse associations for both starch from 
wholegrains and fibre with PDFF (p for trend < 0.001 for 
both). The absolute mean difference between quintiles 5 
and 1 of starch from wholegrains was − 0.31 (− 0.42 to 
−  0.19), which was weaker than the absolute difference 
between extreme quintiles for fibre (−  0.48 [−  0.60 to 
− 0.35]). If the difference in geometric means was trans-
lated to a percentage change in PDFF, the highest quintile 
of fibre intake was associated with approximately a 17% 
lower PDFF compared to quintile 1 (Additional file  1: 
Table S4).

The sequential adjustment for confounders and their 
impact in the associations can be seen in Additional 
file 1: Tables S5 and S6.

There was no evidence of heterogeneity by sex (Addi-
tional file  1: Table  S7). but there was evidence of inter-
action between BMI groups and starch from refined 
grains and non-free sugars (pheterogeneity =  0.01 and phet-

erogeneity  =  0.001, respectively), where the associations 
were stronger at greater levels of BMI (Additional file 1: 
Table S8). In the sensitivity analyses with only those that 
had answered at least four 24-h dietary assessments, the 
cross-sectional sample was reduced to N  =  9046 par-
ticipants and 2488 cases (Additional file 1: Tables S9 and 
S10) and the prospective analysis was reduced to 2829 
participants and 404 cases (14.3%). Generally, similar 
patterns were seen across types and sources of carbohy-
drates for both cross-sectional and prospective analyses, 
with slightly stronger results for non-free sugars, starch 
from wholegrains and fibre in the sensitivity analyses 
than in the main analyses (e.g. fibre quintile 5 vs quintile 

1 OR: 0.35 in the sensitivity analysis, vs 0.46 in the main 
analysis). Sensitivity analyses adjusting for diagnosed 
hypertension did not affect the cross-sectional asso-
ciations although the inverse associations in prospec-
tive analyses became slightly stronger (Additional file 1: 
Tables S11 and S12). Conducting cross-sectional analyses 
on a larger sample of any participants that had at least 
two 24-h dietary assessments (rather than restricting the 
sample to at least one 24-h dietary assessment when liver 
enzymes were measured) did not materially affect most 
associations with carbohydrate intake, although free sug-
ars became weakly inverse (Additional file 1: Table S13).

Discussion
In the largest observational investigation of macronu-
trient intake and liver fat to date, associations varied 
across different types and sources of carbohydrates with 
liver fat accumulation. Overall, the results from both 
the cross-sectional and prospective analyses suggested 
strong inverse and independent associations between the 
intake of non-free sugars, fibre and starch from whole 
grains with liver fat. Conversely, free sugars were posi-
tively associated with liver fat in the prospective analyses 
but not the cross-sectional analyses, whereas starch from 
refined grains was not associated with liver fat in pro-
spective analyses but displayed positive associations in 
the cross-sectional analyses.

Total carbohydrates were inversely associated with 
liver fat in both cross-sectional and prospective analy-
ses, albeit weakly in the latter. However, other obser-
vational studies from Japan, Iran and Korea reported 
positive associations between high carbohydrate intake 
and measurements of liver fat, possibly due to differences 
in the proportions of subtypes of carbohydrates typically 
consumed in different populations compared to the UK 
[18–21]. Since other studies from European populations 
have likewise found inverse associations with carbohy-
drate intake akin to the current study, it overall suggests 
that mixed results may be due to variations in the types 
and sources of carbohydrate, which were not measured 
in these previous studies [23].

When looking in more detail at the types and sources 
of carbohydrates, the current study found strong, inverse 
associations between fibre and starch from wholegrains 
with high liver fat in both the cross-sectional and pro-
spective analyses. Cross-sectional and case-control 
studies in America and Europe also previously reported 
inverse associations with fibre, although the current 
study is the first to show large-scale prospective evidence 
with MRI-based phenotyping of liver fat [23, 24]. Fibre, 
which wholegrains contain high amounts of, may reduce 
low-grade inflammation, improve lipid profiles, increase 
satiety and supress ghrelin, a hormone with orexigenic 
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Fig. 2 Prospective analyses (n = 9268). Geometric mean difference in liver fat between the highest (Q5) and lowest quintile (Q1) of dietary intake 
of carbohydrate types and sources. Results from fully adjusted linear regression models, controlling for age, sex, ethnicity, deprivation, education, 
region, smoking status, physical activity, alcohol intake, PUFA/SFA ratio, and body mass index
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effects; this could explain why it is negatively associated 
with liver fat [14, 53]. In addition, it may affect the gut 
microbiome, by influencing the gut barrier, gastrointes-
tinal immune and endocrine responses, thereby playing a 
role in whole-body and liver metabolism [54].

In contrast, the associations with starch from refined 
grains were less clear, with a weakly positive relationship 
suggested from the cross-sectional analyses but a gener-
ally flat association in the prospective results. A previ-
ous systematic review and meta-analysis of observational 
studies concluded there was not a significant relationship 
between refined grains and MASLD, although none of 
these studies were prospective [55]. Meanwhile, a recent 
RCT of 50 overweight adults with a 12-week feeding 
intervention of refined grains reported a 49% increase in 
liver fat [56]. While the RCT was small and susceptible to 
chance findings, there is mechanistic evidence suggesting 
that refined starchy foods may cause the accumulation 
of fat in the liver by promoting inflammation [16]. Our 
population-based prospective study suggests that the 
association of liver fat with starch may vary by the source 
of starch, although while the benefit of fibre was able to 
be detected, more research is needed to verify whether 
consuming more refined grains is harmful. It could be 
that the healthy volunteer bias of UK Biobank may have 
weakened any risks associated with the consumption of 
refined grains, and more large-scale prospective studies 
will need to assess different sources of starch and liver fat 
accumulation [50]. Alternatively, the prospective analy-
ses included an adjustment for BMI that was not done 
in cross-sectional analyses as this variable was contained 
in the HSI index; this may have contributed to the differ-
ing results across time points, if BMI is the main pathway 
through which starch from refined grains or free sugars is 
associated with liver fat.

The inverse linear association demonstrated here with 
non-free sugars is novel, and to the best of our knowl-
edge, no previous study has looked at the relationship 
between this exposure and liver fat. Sources of non-free 
sugars may be high in fibre, such as vegetables and fruits 
- but non-free sugars also come from dairy, which is low 
in fibre content. This suggests that their role in liver fat 
accumulation could be independent from fibre. Recent 
research has also shown an inverse association between 
dairy products and type 2 diabetes, another important 
metabolic condition that is also associated with MASLD 
[57, 58]. Further research could focus on sources of non-
free sugars to understand whether they have different 
associations with liver fat.

On the other hand, the associations between free 
sugars and high liver fat were non-significant in the 
cross-sectional analyses, but positive in the prospective 
analyses. While the cross-sectional analyses had more 

power due to sample size, the prospective analysis had a 
more reliable outcome ascertainment. Previous research 
is likewise mixed, with a review of observational studies 
suggesting a positive association, whereas both positive 
and null results have been reported from RCTs of dietary 
intervention trials [59–61]. Some of the differences may 
be due to variation in food groups comprising the term 
‘free sugars’, with research on free sugars from sugar-
sweetened beverages (SSBs) generally more consistently 
associated with an increase in liver fat than free sugars 
from other sources [59–61]. A recent meta-analysis of 
controlled trials concluded that excess energy from SSBs 
is associated with large increases in liver fat [62]. There-
fore, looking at the association of free sugar intake with 
liver fat as part of an isocaloric or hypercaloric diet is also 
an important source of variation in the previous research, 
and more research needs to assess if sources of free sug-
ars besides those from beverages are associated with 
liver fat accumulation, independent of overall energy 
consumption.

This study had several strengths, such as studying 
the exposure of dietary carbohydrates as a whole group 
and as types and sources simultaneously. This was pos-
sible due to the availability of detailed dietary data from 
the Oxford WebQ. Previous research has shown that the 
dietary assessment methods in the UK Biobank estimate 
intake with acceptable reproducibility and validity, with 
the advantage of being feasible to administer in a large 
population without too much participant burden [38, 
63]. The exclusion of participants with underlying health 
conditions helped attenuate the influence of reverse cau-
sality, although we cannot fully rule out reverse causality 
whereby subclinical disease may have led the participants 
to change their diet prior to measurement in this study. 
Many potential confounders were also adjusted for in the 
analysis, including energy intake, although the calcula-
tion of an E-value indicated that unmeasured confound-
ers with associations of 2.31 with both the exposure and 
outcome could explain away the inverse relationship of 
fibre with the odds of liver fat in the cross-sectional anal-
yses [64, 65].

A key limitation in this study is the potential selection 
bias arising from the low response rate in UK Biobank 
(5%), which may have introduced a healthy volunteer 
bias particularly for those who agreed to answer two 
or more dietary questionnaires (or four, as in sensitiv-
ity analyses) [32, 63]. However, research has shown 
that even with such a low response rate, estimated risk 
factor associations with disease in the UK Biobank 
appeared reliable [66–69]. Carbohydrate intakes were 
calculated from self-reported questionnaires, and key 
confounders like physical activity were estimated from 
self-reported questionnaires which may have introduced 
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measurement error and information bias [38]. For exam-
ple, the 24-h dietary assessment used here does not col-
lect information about food items that were not on the 
list, which could lead to an underestimation of dietary 
intake and lead to residual confounding. Using at least 
two 24-h dietary assessments and removing implausi-
ble intakes attempted to minimise this information bias. 
Importantly, some subtypes of carbohydrates have more 
within-person variability than others: previous research 
indicated that within-person variability may be larger 
for starch than for fibre in UK Biobank 24-h assessments 
[70]. Within-person variability in exposures will intro-
duce random error that leads to regression dilution bias 
and attenuates associations with disease towards the null, 
and this bias will be greater in the types of carbohydrates 
that had more variability [71]. Lastly, the outcome of HSI 
in cross-sectional analyses was an indirect proxy of liver 
fat that has not been validated in a UK population and 
is driven mostly by BMI, which was already high in this 
population. Thus, while an overestimation of hepatic 
steatosis using the HSI in this population may be a limi-
tation of the cross-sectional analysis, using an index for 
hepatic steatosis in the baseline sample of UK Biobank 
allowed for the large-scale investigation of carbohydrate 
quality and MASLD, with measurements on approxi-
mately 23,000 participants.

It is important to note that in this paper we use the 
term MASLD when referring to previous data that origi-
nally used the term NAFLD. This was done in order to 
adopt the new nomenclature that has been introduced 
this year [4]. While the new definition is slightly differ-
ent, and includes the presence of one metabolic fac-
tor, a recent study showed that it is possible to consider 
NAFLD cases data as MASLD cases [72].

Conclusions
This study suggests that variations in carbohydrate types 
and sources may contribute differently to liver fat: non-
free sugars, fibre, and starch from whole grains could be 
protective of liver fat accumulation, while associations 
with free sugars and starch from refined grains are less 
clear and may be harmful. While this study cannot estab-
lish causality, it can guide future research to understand 
how carbohydrates may have diverse roles in the risk of 
MASLD. Due to the public health relevance of this dis-
ease, and the need for strong evidence to guide dietary 
advice to prevent it, further research is needed that 
focuses on carbohydrate types and sources to prevent 
MASLD at stages in which it is still reversible.
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