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Abstract 

Background The pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) of breast cancer 
is closely related to a better prognosis. However, there are no reliable indicators to accurately identify which patients 
will achieve pCR before surgery, and a model for predicting pCR to NAC is required.

Methods A total of 269 breast cancer patients in Shandong Cancer Hospital and Liaocheng People’s Hospital 
receiving anthracycline and taxane-based NAC were prospectively enrolled. Expression profiling using a 457 cancer-
related gene sequencing panel (DNA sequencing) covering genes recurrently mutated in breast cancer was carried 
out on 243 formalin-fixed paraffin-embedded tumor biopsies samples before NAC from 243 patients. The unique per-
sonalized panel of nine individual somatic mutation genes from the constructed model was used to detect and ana-
lyze ctDNA on 216 blood samples. Blood samples were collected at indicated time points including before chemo-
therapy initiation, after the  1st NAC and before the  2nd NAC cycle, during intermediate evaluation, and prior to surgery. 
In this study, we characterized the value of gene profile mutation and circulating tumor DNA (ctDNA) in combination 
with clinical characteristics in the prediction of pCR before surgery and investigated the prognostic prediction. The 
median follow-up time for survival analysis was 898 days.

Results Firstly, we constructed a predictive NAC response model including five single nucleotide variant (SNV) 
mutations (TP53, SETBP1, PIK3CA, NOTCH4 and MSH2) and four copy number variation (CNV) mutations (FOXP1-
gain, EGFR-gain, IL7R-gain, and NFKB1A-gain) in the breast tumor, combined with three clinical factors (luminal A, 
Her2 and Ki67 status). The tumor prediction model showed good discrimination of chemotherapy sensitivity for pCR 
and non-pCR with an AUC of 0.871 (95% CI, 0.797–0.927) in the training set, 0.771 (95% CI, 0.649–0.883) in the test 
set, and 0.726 (95% CI, 0.556–0.865) in an extra test set. This tumor prediction model can also effectively predict 
the prognosis of disease-free survival (DFS) with an AUC of 0.749 at 1 year and 0.830 at 3 years. We further screened 
the genes from the tumor prediction model to establish a unique personalized panel consisting of 9 individual 
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somatic mutation genes to detect and analyze ctDNA. It was found that ctDNA positivity decreased with the passage 
of time during NAC, and ctDNA status can predict NAC response and metastasis recurrence. Finally, we constructed 
the chemotherapy prediction model combined with the tumor prediction model and pretreatment ctDNA levels, 
which has a better prediction effect of pCR with the AUC value of 0.961.

Conclusions In this study, we established a chemotherapy predictive model with a non-invasive tool that is built 
based on genomic features, ctDNA status, as well as clinical characteristics for predicting pCR to recognize 
the responders and non-responders to NAC, and also predicting prognosis for DFS in breast cancer. Adding pretreat-
ment ctDNA levels to a model containing gene profile mutation and clinical characteristics significantly improves 
stratification over the clinical variables alone.

Keywords Breast cancer, Neoadjuvant chemotherapy, pCR, Prediction model, ctDNA

Background
Breast cancer is the most commonly diagnosed cancer 
in females [1–3]. Neoadjuvant chemotherapy (NAC) 
has long been considered the preferred treatment 
approach for locally advanced breast cancer to down-
stage the tumor while concurrently allowing for in vivo 
assessment of tumor response to NAC [4]. Despite 
impressive successes, approximately 10% of breast can-
cer patients with no response fails to benefit from NAC 
[5]. These patients could benefit from stopping NAC 
and proceeding directly to surgery or switching to a 
different treatment. Therefore, assessing the sensitiv-
ity of patients to NAC is an important task in clinical 
practice.

Pathological complete response (pCR) by examination 
of surgical specimens after NAC is associated with long-
term survival and has been used as the primary endpoint 
of neoadjuvant trials [6, 7]. A treatment monitoring 
biomarker that can accurately predict pCR before the 
surgery is required. Clinically, imaging evaluations, par-
ticularly ultrasound, mammography, and breast magnetic 
resonance imaging (MRI) are mainly used to evaluate the 
extension of the mass, which the disease progression has 
occurred [8, 9]. Therefore, more sensitive biomarkers are 
needed that will earlier detection of progression to iden-
tify the response to NAC.

Some polygenic predictor panels have been developed 
to predict the pCR to NAC and guide physicians to make 
adjuvant treatment decisions [10, 11]. Huang Liang et al. 
developed a predictor of the pCR in triple-negative breast 
cancer (TNBC) patients with DNA repair genes to NAC 
[12]. Masanori Osh et  al. developed a five-gene score 
model to predict the pCR to NAC for estrogen receptor-
positive/Her2-negative breast cancer and a novel three-
gene score as a predictive biomarker for pCR after NAC 
in TNBC [10, 13]. However, these single-platform pro-
filing markers fail to accurately predict the response to 
NAC with the complexity of the tumor ecosystem and the 
dynamic variability of treatment. Undoubtedly, clinicians 
continue to select NAC patients by clinical experience.

Circulating tumor DNA (ctDNA) corresponds to the 
DNA fragments released into the blood by the tumor, 
and utilizing ctDNA to track tumor progression has great 
potential for the clinical treatment [14]. ctDNA levels 
have been shown to be correlated with tumor loading to 
predict therapeutic prognosis and survival in pan-can-
cer [15, 16]. Chaudhuri et  al. reported that ctDNA was 
detected in patients with disease recurrence 5.2 months 
earlier than imaging evaluations, offering therapeutic 
opportunities to treat patients while tumor burden and 
heterogeneity are at their lowest in lung cancer [17]. Con-
tinuous measurement of ctDNA is a potential method 
for early tumor surveillance, and it serves as an objec-
tive parameter for treatment response and earlier relapse 
detection.

Therefore, we conducted a study to establish a risk 
model based on the gene mutation profile and clinical 
characteristics integrating ctDNA dynamic monitoring 
of breast cancer patients treated with NAC to develop a 
predictable NAC response for breast cancer patients.

Methods
Patient eligibility
Approval for this prospective study was obtained from 
the Human Research Ethics Committee of Shandong 
Cancer Hospital (SDTHEC201802002) and was regis-
tered at clinicaltrial.gov (clinical trial No. NCT03688035). 
All patients provided written informed consent. From 
January 2016 to April 2020, a total of 269 female breast 
cancer patients who received NAC were enrolled, 
and 246 enrolled patients were eligible. Patients were 
excluded (n = 23) if they were defined with distant metas-
tasis before NAC, failed to complete the chemotherapy 
regimen, or missed the clinical date. All patients were 
staged according to the American Joint Committee on 
Cancer (AJCC) 8th edition TNM staging guideline sys-
tem. All of the patients received 4–8 cycles of NAC with 
anthracycline and taxane-based regimens, and all Her2-
positive patients received anti-Her2 regimens including 
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trastuzumab or dual Her2 blockade with trastuzumab 
plus pertuzumab before surgical resection of the tumor.

Miller-Payne (MP) grading and residual cancer burden 
(RCB) index were used to validate the response to NAC. 
The RCB evaluation system (www. mdand erson. org/ breas 
tCanc er_ RCB) was used to calculate the RCB index [18]. 
pCR (stage yp-T0/is, ypN0) was defined as RCB = 0, and 
residual disease (no-pCR) was placed into three prede-
fined subgroups (RCB-I, RCB-II, and RCB-III) on the 
basis of predefined cut-off points of 1.36 and 3.28 index 
scores. RCB and pCR status were evaluated by two inde-
pendent pathologists. If their conclusions were inconsist-
ent, a third pathologist reassessed the situation.

Sample collection
A total of 243 tissue puncture samples from formalin 
fixation and paraffin embedding (FFPE) were obtained 
before the initiation of chemotherapy by core needle 
biopsy from 246 patients. Among the 246 patients, 56 
patients underwent ctDNA testing of blood samples. The 
blood samples were collected from each patient dynami-
cally over the course of NAC at four time points as fol-
lows: before NAC  (T0), after the  1st NAC and before the 
 2nd NAC cycle  (T1), during intermediate evaluation 
 (T2), and after the end of NAC but before surgery  (T3) 
(Fig. 1A). The baseline plasma samples of all 56 patients 
were collected, while six patients failed to complete the 
sample collection at all four time points, and the remain-
ing 50 patients completed the entire plasma sample col-
lection process (Fig. 1B).

Tissue and plasma DNA preparation and genomic DNA 
extraction
A GeneRead DNA FFPE kit (Qiagen, USA) was used to 
extract genomic DNA (gDNA) from FFPE and fresh tis-
sue samples, and a DNA blood Midi/Mini kit (Qiagen, 
USA) was used to extract genomic DNA from white 
blood cell samples according to the manufacturer’s 
instructions. The MagMAX cell-free DNA Isolation Kit 
(Thermo Company) was used to separate plasma cell-free 
DNA (cfDNA). The quality of purified DNA was quanti-
fied by gel electrophoresis and using a Qubit® 4.0 fluo-
rometer (Life Technologies, USA).

Construction of the NGS gene panel sequencing library 
based on gDNA and cfDNA
First, the purified gDNA was fragmented to approxi-
mately 200  bp by enzymatic hydrolysis (5X WGS Frag-
mentation Mix, Qiagen, USA). After end repair and 
A-tail connection, the two ends were connected with 
T-adaptors and then PCR amplified to form a prelibrary. 
The purified prelibrary was hybridized with a custom-
ized biotin probe pool (457 gene panel, Berry Oncology, 

Beijing, China) to capture the target clip. According to 
the manufacturer’s instructions, the 96 rxn xGen Exome 
Research Group v1.0 (Integrated DNA Technologies, 
USA) was used to prepare the final sequencing library.

For targeted sequencing of cfDNA, a prelibrary was 
prepared according to the method described above. 
Internally designed panels were used to capture cfDNA 
fragments and generate sequencing libraries. The 
sequencing library was applied to the NovaSeq 6000 plat-
form (Illumina, San Diego, USA) in 150PE mode.

The generated sequence was trimmed, low-quality fil-
tered, and subjected to variant calls. Variations were 
filtered into nonsynonymous SNP, indel, and splicing 
variations. For gDNA, somatic mutations were left with 
allele frequencies (VAF) ≥ 3%, and cancer hotspots were 
retained with VAF ≥ 1%. For cfDNA, the frequency of 
variant alleles (cut-off value ≥ 0.5%) was used to identify 
somatic mutations, the frequency of variant alleles (cut-
off value ≤ 0.1%) was used to screen for cancer hot spots, 
and at least 20 high-quality reads were screened.

Bioinformatics analysis of gene mutations
FASTP [19] was used to trim adapters and delete low-
quality sequences to obtain clean reads. The clean reads 
were compared with the Ensemble GRCh37/hg19 ref-
erence genome executed by BWA. The PCR repeti-
tive sequence was processed to consensus sequence by 
GenCore [20], then SAMtools [21] was used to detect 
somatic single nucleotide variants (SNVs), insertions and 
deletions (InDels), and then false variants were filtered 
by a series of methods such as vaf cutoff, paired control 
sample, negative background database. HGVS variant 
description was annotated with ANNOVAR software 
[22]. After annotation, we used PopFreqMax > 0.05 to 
eliminate SNVs and InDels, then retained nonsynony-
mous SNVs and InDels with VAF > 0.5% or VAF > 0.1% 
among the cancer hot spots in the patient database for 
further analysis. Somatic copy number variants  (CNVs) 
were called by CNVkit [23] through several steps, such 
as depth normalization and GC correction. If the copy 
number > 3, we marked the target as a target gain, and 
if the copy number < 1, we marked the target as a target 
loss. The tumor mutation burden (TMB) was defined as 
the number of all nonsynonymous mutations and indel 
variants per megabase of coding regions.

Statistical analysis
Baseline characteristics analysis was performed on all 
246 patients, including the distribution of patients with 
baseline genomic or clinical characteristics in the pCR/
non-pCR group and the correlation between baseline 
characteristics and pCR status or patient prognosis. 
The association analysis between mutation detection 
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and prognosis was performed on 56 patients with con-
tinuous ctDNA test data (that is, the completion of the 
entire study).

Fisher’s exact test (two-sided test) was used to analyze 
the impact of baseline pathological characteristics (such 
as breast cancer type, Ki67, age, sex, and disease stage) 

Fig. 1 The study design, sample collections, and patients’ response. A Sample collection at different points. B Condition of enrolled patients. C 
Number of patients in different groups responding to pCR
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and mutation characteristics on non-pCR. Those fea-
tures related to the pCR/non-pCR state were selected to 
construct a predictive model for pCR/non-pCR predic-
tion. Usually, we chose to perform the next step of data 
analysis with Fisher’s exact test (P value < 0.05) for the 
feature. A total of 192 patients who had tissue samples 
from Shandong Cancer Hospital were randomized into 
a training cohort (n = 128) and a testing cohort (n = 64) 
using the “caret” R package. The training cohort was used 
to find a meaningful signature, and the testing cohort 
and patients of Liaocheng People’s Hospital (n = 51) were 
used to validate its efficiency.

In the training cohort, significant SNVs and CNVs with 
a mutation frequency greater than 10% including five 
SNVs and 10 CNVs mutations were subjected to mul-
tivariate stepwise logistic regression analysis. The nine 
mutated genes including five SNV mutations and four 
CNV mutations were identified by step-by-step logistic 
regression analysis. Then, a multi-response model was 
built including only clinical characteristics, only SNV 
characteristics, only CNV characteristics, both SNV and 
CNV characteristics, both SNV and clinical character-
istics, both CNV and clinical characteristics, and SNV, 
CNV, and clinical characteristics for a total of 6 response 
models. All models were based on the random forest 
method and developed in a tenfold cross-validation (CV) 
schema. Performance was assessed in terms of accuracy 
(ACC), sensitivity, and specificity by receiver operating 
characteristic (ROC) curve analysis. A nomogram was 
also applied to estimate the performance of the signa-
ture. ROC analysis was performed using the “caret” and 
“ROCR” R packages and a nomogram was generated 
using the “rms” R package.

We defined disease-free survival (DFS) as the time from 
the breast surgery until disease progression (including 
local or distant recurrences) or death. We constructed a 
DFS prediction model based on the signature of the best 
model among the multiresponse models for 192 patients 
from Shangdong Cancer Hospital in the training set and 
test set. Then, a risk score was calculated for each patient, 
and patients were divided into high- and low-risk groups 
based on the median risk score. The ROC analysis was 
performed using the “timeROC” R package. Kaplan–
Meier curves were generated for survival analysis, and 
the log-rank test was used for comparisons.

The threshold for ctDNA positivity was determined 
by the mutation numbers of nine genes included in the 
conducted tumor prediction model. If there were more 
than two mutations among these nine genes, then this 
sample was recognized as ctDNA positive [24]. ctDNA 
fractions were calculated as 2/(1/Max(VAF) + 1) [25]. 
One-way analysis of variance (ANOVA) was applied for 
comparison of ctDNA fractions in different groups. Use 

the random forest model to obtain the probability of 
treatment response or non-response for each sample, and 
combine the ctDNA status at different time points with 
the random forest model to construct a combined tissue 
and blood efficacy prediction model.

Conduct multivariable Cox regression analysis using 
the mutation levels of the nine genes at the tissue level, 
clinical features, and the ctDNA status at each time point 
to obtain the risk scores for each sample, and construct a 
DFS prediction model. Similarly, divide the samples into 
high and low-risk groups based on the median risk score.

A flowchart for the algorithm is shown in sFig.  4. All 
statistical analyses were performed using R software, ver-
sion 3.6.3 (www.r- proje ct. org). For all statistical analyses, 
p < 0.05 was considered statistically significant.

Results
Patient characteristics
A total of 192 patients who had tissue samples in Shan-
dong Cancer Hospital and 51 patients in Liaocheng Peo-
ple’s Hospital were used to predict the residual cancer 
burden status of patients receiving NAC. The specific 
clinical information is shown in Table 1. The median age 
was 50 years old, and 59.3% were younger than 50 years 
old. Most patients were in stage III (51.9%). The sub-
types of Her2 positivity, luminal A, luminal B (Her2-
), luminal B (Her2 +), and TNBC accounted for 19.3% 
(47/243), 21.4% (52/243), 23.5% (57/243), 18.1% (44/243), 
and 17.7% (43/243), respectively. The pCR rate in differ-
ent molecular subtypes was shown in Additional file  1: 
Table S1. Patients with Ki67 expression > 20% accounted 
for the main population (67.8%). Postoperative patho-
logical examination showed that 61 patients (25.1%) had 
achieved pCR by RCB index. For those patients who 
showed non-pCR, 11.9% (29/243), 35.8% (87/243) and 
27.2% (66/243) reached RCB-I, RCB-II and RCB-III, 
respectively. 87.2% of patients received the anthracy-
clines plus taxanes-based chemotherapy, 5.8% received 
the anthracycline-containing regimen only, and 7% of 
patients received taxanes-containing regimen alone 
(Additional file 1: Table S2 and Table S3). An overview of 
the study design was shown in Fig. 1.

Somatic mutation detection in tissue samples
To discover somatic variations in tissue samples used 
for model construction, we extracted DNA from FFPE 
samples of punctured tissue samples and performed 
NGS-based 457 gene panel testing. We analyzed and 
summarized the somatic mutations of 192 samples with 
high-frequency mutation ≥ 10%. The 425 unique genes 
were identified, and the top five highly mutated genes 
were TP53, KMT2C, PIK3CA, EPHA1 and EPPK1 with 
mutation frequencies of 64% (123/192), 47% (90/192), 
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44% (84/192), 42% (80/192), and 36% (69/192) (Fig.  2A 
and Additional file  1: Table  S4). The results of somatic 
CNV showed that 114 genes in tumor tissues were ampli-
fied with at least three times of normal tissues. There 
were 43 genes that were deleted, and 200 genes were both 
amplified and deleted (Additional file 1: Table S5).

Identified the features significantly associated with pCR
We investigated the relationship with pCR and gene 
mutation characteristics and clinical phenotypes. All 
192 patients were randomly divided into two groups 
in a 2:1 ratio into a training set (n = 128) and a test set 
(n = 64). In the training set, we first performed dif-
ferential mutation gene analysis on pCR and no-pCR 
(RCB-I, RCB-II, and RCB-III) patients. Using Fisher’s 
exact test, we found five different SNV mutated genes 
(TP53, SETBP1, PIK3CA, NOTCH4, and MSH2) and 
ten CNV mutated genes (B4GALT3-gain, CDK12-gain, 

EGFR-gain, PRDM1-gain, GATA2-loss, GNA11-loss, 
NOTCH3-loss, FOXP1-gain, IL7R-gain, and NFKB1A-
gain) with a mutation frequency greater than 10% 
(Additional file  1: Table  S6). To further screen for the 
factors used to predict pCR status, stepwise logis-
tic regression was used to screen for the differentially 
mutated genes, and nine differentially mutated genes 
that were significantly related to the pCR status (MSH2, 
NOTCH4, PIK3CA, SETBP1, TP53, EGFR, FOXP1, 
IL7R, NFKB1A) were screened (Fig.  2B, C). Given the 
potential importance of clinical factors in NAC, we 
screened the clinically relevant factors of luminal A, 
 Her2+, and Ki67 related to NAC using Fisher’s exact 
test. Patients with luminal A were less sensitive to NAC 
than patients with other subtypes (P < 0.001) and no 
luminal A patients achieved pCR. In  Her2+ patients, 
the proportion of patients who achieved pCR after 
NAC was significantly higher than that of non-Her2+ 

Table 1 Patient clinical characteristics

Abbreviation: E, anthracycline; C, cyclophosphamide; T, taxane; H, trastuzumab; P, pertuzumab; Cb, platinum
a Ki67 data was missing for 1 patient

Level Overall Training cases Validation cases External 
validation 
cases

Number 243 128 64 51

Patient age (%) Younger (≤ 50) 144 (59.3) 79 (61.7) 36 (56.2) 29 (56.9)

Older (> 50) 99 (40.7) 49 (38.3) 28 (43.8) 22 (43.1)

Tumor stage (%) Stage I–II 117 (48.1) 51 (39.8) 25 (39.1) 41 (80.4)

Stage III 126 (51.9) 77 (60.2) 39 (60.9) 10 (19.6)

Mulecular subtypes (%) Her2 + 47 (19.3) 28 (21.9) 10 (15.6) 9 (17.6)

luminal A 52 (21.4) 21 (16.4) 12 (18.8) 19 (37.3)

luminal B (Her2 −) 57 (23.5) 32 (25.0) 20 (31.2) 5 (9.8)

luminal B (Her2 +) 44 (18.1) 28 (21.9) 13 (20.3) 3 (5.9)

TNBC 43 (17.7) 19 (14.8) 9 (14.1) 15 (29.4)

Ki67 expression (%)a  ≤ 20% 78 (32.2) 34 (26.8) 20 (31.2) 24 (47.1)

 > 20% 164 (67.8) 93 (73.2) 44 (68.8) 27 (52.9)

Menstrual status (%) Postmenopausal 149 (61.3) 85 (66.4) 40 (62.5) 24 (47.1)

Premenopausal 94 (38.7) 43 (33.6) 24 (37.5) 27 (52.9)

Response to NAC, MP (%) 1 18 (7.4) 8 (6.2) 5 (7.8) 5 (9.8)

2 52 (21.4) 25 (19.5) 13 (20.3) 14 (27.5)

3 51 (21.0) 25 (19.5) 15 (23.4) 11 (21.6)

4 41 (16.9) 27 (21.1) 11 (17.2) 3 (5.9)

5 81 (33.3) 43 (33.6) 20 (31.2) 18 (35.3)

Response to NAC, RCB (%) pCR 61 (25.1) 32 (25.0) 16 (25.0) 13 (25.5)

RCB I 29 (11.9) 17 (13.3) 8 (12.5) 4 (7.8)

RCB II 87 (35.8) 49 (38.3) 21 (32.8) 17 (33.3)

RCB III 66 (27.2) 30 (23.4) 19 (29.7) 17 (33.3)

Treatment regimen (%) EC 14 (5.8) 6 (4.7) 7 (10.9) 1 (2.0)

EC-T (H/HP), T(H)-EC, TEC 212 (87.2) 112 (87.5) 56 (87.5) 44 (86.3)

T(HP), TC(H), TCbH(P) 17 (7.0) 10 (7.8) 1 (1.6) 6 (11.8)
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Fig. 2 The landscape of clinical and mutational characteristics. A The landscape of highly mutated genes. B Significantly different SNV included 
in the model in different chemotherapy responses. C Significantly different CNV included in the model in different chemotherapy responses. D 
Comparing the differences in clinical characteristics of different chemotherapy responses. P values were calculated using Fisher’s exact test. The size 
of the white dots in B and C represents the size of the samples
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patients (43.2% vs 20.8%, P = 0.01). In addition, patients 
with higher Ki67 expression pretherapy had a higher 
proportion of attained pCR patients (31.39% vs 9.26%, 
P = 0.001) (Fig. 2D).

Machine learning integrates the gene mutation status 
and clinical factors to build a tumor prediction model 
to predict the NAC response
Above, the nine mutant genes (five SNV mutations and 
four CNV mutations) and three clinical factors were 
identified that were associated with response to NAC. 
This motivated the use of a machine learning framework 
to integrate these factors into a predictive model of pCR. 
We investigated a number of prediction models including 
the gene mutation information and clinical factors alone 
and the combination of mutation information and clini-
cal factors. The results found that a combination of nine 
mutant genes and three clinical factor models had the 
higher sensitivity and specificity than other combinations 
(Additional file 2: Fig. S1) in the training test (AUC: 0.871, 
95% CI: 0.797–0.927), in the verification set (AUC: 0.771, 
95% CI: 0.649–0.883) and in the extra test (AUC: 0.726, 
95% CI: 0.556–0.865) (Fig.  3A). We performed a multi-
variate logistic analysis of NAC response in the training 
cohort to generate a nomogram to predict the results of 
pCR according to RCB index after NAC. Among the nine 
mutant genes and three clinical factors, MSH2, FOXP1 
and luminal A were the three most important factors 
(Fig. 3B). Given the role of MP scoring, which has univer-
sal application in the clinic, we also tested the applicabil-
ity of the model to MP scores and found that our model 
also predicted pCR and non-pCR well in MP score classi-
fication (Fig. 3C), and the nomogram showed that MSH2 
still had the greatest importance (Fig. 3D).

Given that patients who achieved a pCR had better OS 
than patients who did not, we tested the predictive ability 
of the model on the prognosis. In total, 23 patients were 
lost to follow-up in the 192 enrolled patients from Shan-
dong Cancer Hospital. The median follow-up time after 
surgery was 898 days (97 to 1765 days), and 28 of the 169 
patients (17.6%) progressed. The results showed that the 
model also has a good predictive effect on the prognosis 
of NAC patients, and the predictive effect of the long-
term prognosis was better than the short-term predictive 
effect (AUC at 1 year = 0.749 vs. AUC at 3 years = 0.830) 
(Fig.  3E). According to the median risk score, patients 

were divided into high-risk groups and low-risk groups. 
The DFS of the low-risk group was significantly higher 
than that of the high-risk group (P < 0.0001) (Fig. 3F).

The role of ctDNA used to predict NAC response 
in dynamic monitoring
A personalized panel consisting of nine somatic mutation 
genes was selected to detect and analyze ctDNA from 
the tumor model factors for predicting NAC response. 
Fifty-six patients among all the 246 patients underwent 
ctDNA testing. two hundred sixteen blood samples were 
collected dynamically over the course of NAC (plasma 
samples were collected from 56 patients of  T0 and  T1, 54 
patients of  T2, and 50 patients of  T3). A sample with at 
least two detectable somatic variations was considered 
positive for ctDNA (Additional file  1: Table  S7). Before 
treatment  (T0), 46% of patients were ctDNA positive 
(Fig.  4A). Patients with TNBC had a higher expression 
of positive ctDNA (80%) compared with other subtypes 
while luminal A and luminal B patients mainly had nega-
tive ctDNA (Fig. 4B). In addition, patients with low Ki67 
status expressed negative ctDNA (70%) (Fig. 4B).

The ctDNA positivity rate decreased with the passage 
of time during NAC. In the entire population, ctDNA 
positivity gradually declined during NAC, from 46% 
before treatment  (T0) to 14% before the  2nd NAC cycle 
 (T1), and it was 13% during intermediate evaluation  (T2), 
and after NAC  (T3), it dropped to 10% (Fig.  4C). Simi-
larly, the ctDNA fraction also decreased with the passage 
of NAC time (Fig. 4D).

The clearance dynamics of ctDNA reflected the NAC 
response
To investigate whether the dynamic change of ctDNA 
could related to the NAC response, we constructed five 
patterns based on the clearance dynamics of ctDNA 
expression in 50 patients who had complete data at 
all four time points, with cleared at all time points  (T0, 
n = 26, 52%), cleared at  T1 (n = 13, 26%), cleared at  T2 
(n = 4, 8%), cleared at  T3 (n = 2, 4%), and patients who 
remained ctDNA positive after NAC  (T3) (n = 5, 10%) 
(Fig.  5A). We identified 45 patients who had both sur-
vival data and ctDNA status at all four time points. The 
rate for positive detection of ctDNA decreased during 
the NAC, and the positive rate dropped from 44.4%  (T0, 
20/45) to 11.1%  (T3, 5/45) (Fig. 5B). All the patients with 

Fig. 3 Predicting response and DFS combing mutation characteristics and clinical characteristics. A The ROC curve of predictive model in RCB 
index system. B Nomogram from stepwise logistic regression for predicting pCR in RCB index system. C The ROC curve of predictive model in MP 
scoring system. D Nomogram from stepwise logistic regression for predicting pCR in MP scoring system. E Predicting DFS combing important 
mutation and clinical characteristics. F Kaplan–Meier curves for patients in high- and low-risk groups. Response rate refers to the probability 
of a patient responding to treatment

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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pCR had undetectable ctDNA at  T2 and  T3 with no dis-
ease progression (Additional file 2: Fig. S2A, Fig. 5B). In 
contrast, patients with ctDNA-positive at  T2 and  T3 not 
achieved pCR (Fig.  5B). In addition, the patients with 
disease progression were mainly RCB-III (75%, 6/8) and 
RCB-II (25%, 2/8) (Fig. 5B).

To detect ctDNA dynamically for patients whose 
ctDNA is detected before the NAC  (T0), we performed 
monitoring of the ctDNA expression at  T1,  T2, and  T3. 
The positive rate of ctDNA gradually decreased as the 
NAC treatment with 35% (7/20) at  T1 and 20% at  T2 and 
 T3 (4/20) (Fig.  5C). Among patients who did not clear 
ctDNA at  T1, as many as 85.8% had residual disease at 

the time of surgery (6/7 non-pCR), while 69% of patients 
who cleared ctDNA at  T1 had residual disease (9/13 non-
pCR). At  T2 and  T3, in patients who did not have clear 
ctDNA, 100% had residual disease during surgery (4/4 
non-pCR), while in patients who cleared ctDNA, 69% 
(11/16 non-pCR) had residual disease. The positive pre-
dictive value of ctDNA increased with treatment time 
(Additional file 2: Fig. S2B).

Dynamic changes in ctDNA are significantly related 
to metastasis and recurrence
To assess whether ctDNA status was related to metas-
tasis and recurrence, we analyzed the association with 

Fig. 4 Mutation landscape of ctDNA. A Overview of ctDNA status, clinical characters, and response at baseline  (T0). B Proportion of ctDNA-positive 
and ctDNA-negative patients at baseline  (T0) according to clinical characteristics. C Proportion of ctDNA-positive and ctDNA-negative patients 
at different time points. D Comparing the difference of ctDNA fraction at different time points. P values were calculated using one-way analysis 
of variance
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ctDNA dynamic pattern and DFS. Patients who did not 
clear ctDNA at  T3 (n = 5) had a significantly higher risk 
of metastasis and recurrence than patients who cleared 
ctDNA at  T0,  T1,  T2, and  T3 (Fig. 5D, HR 4.61; 95% CI, 
1.05–20.19, P = 0.027). Compared with patients who 
were ctDNA negative at  T0 (n = 22), patients who were 
ctDNA negative at  T1,  T2, or  T3 (n = 18) had a similar 
risk of metastasis and recurrence (Additional file 2: Fig. 
S3). Patients who had cleared ctDNA at  T1,  T2,  T3 had 

longer DFS than patients who had not cleared ctDNA 
at  T3 (Additional file 2: Fig. S3).

The clearance of ctDNA after NAC  (T3) is related 
to the improvement of the survival rate. After NAC, 
patients were stratified according to pCR and ctDNA 
status (n = 45). Seven patients with pCR (100%) (all 
ctDNA negative) showed good DFS. Among patients 
who did not achieve pCR (n = 38), ctDNA positiv-
ity (n = 5) was related to worse DFS. The probability 

Fig. 5 The association between the dynamic changes of ctDNA and DFS or response in the course of NAC. A Patients with complete ctDNA 
data for four time points (n = 50) were grouped according to the different patterns of ctDNA clearance or non-clearance. B Sankey plot showing 
the dynamic changes of patients with complete ctDNA data and DFS data (n = 45). C Sankey plot showing ctDNA dynamics in ctDNA-positive 
patients at  T0. D DFS in ctDNA-cleared patients and non-cleared patients during NAC. E Kaplan–Meier analysis of DFS stratified based on ctDNA 
status after NAC  (T3) and response to treatment, RCB means no-pCR
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of recurrence differed between patients who failed to 
achieve pCR, being greater in RCB/ctDNA + groups 
compared with the RCB/ctDNA- group (Fig.  5E, HR 
3.92; 95% CI, 0.9–17.02, P = 0.061).

The chemotherapy prediction model integrating ctDNA 
status before NAC has a better prediction effect
To further improve the accuracy in predicting NAC 
response to further predict the pCR status of breast 

cancer patients after NAC, we calculated the probability 
of pCR and non-pCR of the sample through the estab-
lished tumor prediction model, and then we combined 
it with the negative and positive status of ctDNA at dif-
ferent time points and used random forest to construct a 
chemotherapy model. Firstly, the status of ctDNA before 
NAC combined with the tumor prediction model has a 
better prediction effect of pCR with the AUC of 0.961 
(Fig.  6A). We constructed a chemotherapy prediction 

Fig. 6 The prediction effect of pCR and the prognosis by a combination of the prediction model and ctDNA monitoring. A The pCR prediction 
determined by the chemotherapy predictive model constructed by combining the information from the established tumor prediction model 
(including DNA mutations and clinical factors), along with the information from ctDNA status. B Different chemotherapy predictive models 
are established using random forest based on the expression status of ctDNA at different time points of  T0,  T1, and  T2. C The predictive effect 
for the chemotherapy predictive model on the prognosis of NAC patients. D Kaplan–Meier curves for patients in high- and low-risk group
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model by combining tumor prediction models with 
ctDNA status at different time points  (T0,  T1,  T2,  T0 and 
 T1,  T0 and  T1 and  T2) in order to assess the impact of 
dynamic changes in ctDNA on prediction. It was found 
that the prediction model was compatible with ctDNA, 
and combined with ctDNA status at different time 
points had similar results for AUC (Fig.  6B,  T0 = 0.961, 
 T1 = 0.951,  T2 = 0.92,  T0/T1 = 0.961,  T0/T1/T2 = 0.961). To 
clarify the impact of the chemotherapy prediction model 
on patients’ prognosis, we analyzed the predictive effect 
of the DFS. It showed a better predictive effect (AUC at 
1 year = 1.000, AUC at 2 years = 0.941) on DFS (Fig. 6C). 
The patients were divided into high-risk groups and low-
risk groups according to the median risk score. The DFS 
of the low-risk group was significantly higher than that of 
the high-risk group (P = 0.0031) (Fig. 6D).

Discussion
In this study, we developed 2 prediction model for pre-
dicting the sensitivity of NAC. First, we constructed a 
tumor prediction model for predicting pCR based on the 
DNA mutations of tumor tissue and clinical information. 
Then, we analyzed the relation between the ctDNA in 
dynamic monitoring and the NAC response. Finally, we 
constructed the chemotherapy prediction model inte-
grating ctDNA status before NAC and tumor prediction 
model that composed of 9-gene mutant in tumor, the 
clinical factors, and the ctDNA status. The chemotherapy 
prediction model is a good predictor for the efficacy in 
NAC to guide therapy, but also predicts the prognosis in 
DFS (Fig. 7).

The MP scoring and RCB index system are commonly 
recommended for pathological assessments after NAC 
for breast cancer. Compared with MP scoring, the RCB 

index system, first described in 2007, provides a com-
prehensive assessment of tumors for evaluating axillary 
lymph nodes and cell density in primary tumors [18]. 
RCB index system has become widely accepted to replace 
MP scoring to evaluate tumor regression due to the role 
in predicting long-term survival after NAC in breast can-
cer [26, 27]. Consequently, we used the RCB index to 
assess the chemotherapeutic response in the prediction 
models. In addition, our model based on the RCB index 
system also remained feasible with good sensitivity and 
specificity for the MP scoring system in the training set, 
validation set, and external validation set.

A mounting number of studies have suggested that 
patients with pCR after NAC have a better prognosis 
compared to those with residual disease [28–30]. The 
NSABP B-18 and NSABP B-27 trials reported that pCR 
was associated with improved prognosis after NAC in 
breast cancer [31, 32], which was also confirmed in sub-
sequent cohort studies and meta-analyses [28, 33, 34]. 
Despite patients who obtain pCR after NAC having a 
better prognosis, the current pCR rate of patients receiv-
ing NAC is less than 50% [28, 35]. Our study is in line 
with these data, reporting a pCR rate of 25.1% (61/243) 
according to the RCB index system and 33.3% (81/243) 
by the MP scores in all 243 patients, suggesting that the 
majority of patients (non-pCR), there might not be ben-
efit in survival from the routine use of NAC and experi-
ence unnecessary exposure to chemotherapy and delayed 
surgery treatment. Therefore, sensitive and specific mark-
ers are needed to distinguish between pCR and non-pCR 
patients after NAC.

We established a tumor prediction model by com-
bining clinical factors (including molecular sub-
type  and Ki67 status) and gene mutation information 

Fig. 7 The pattern diagram guiding the clinical application of the therapeutic efficacy prediction model
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(MSH2, NOTCH4, PIK3CA, SETBP1, TP53, EGFR, 
FOXP1, IL7R, NFKB1), which had good sensitivity 
and specificity for predicting pCR in the training set, 
validation set, and external validation set. In our study, 
we observed that MSH2 and FOXP1 gene mutations 
and the luminal A subtype ranked in the top three in 
the importance of model predictors, consistent with 
previous studies. The MSH2 gene is part of the DNA 
mismatch repair system (MMR), which binds to DNA 
mismatches to initiate DNA repair. Previous studies 
have reported the importance of MSH2 in the role of 
resistance to chemotherapeutic drugs and causing pro-
gression to advanced stages in patients with NAC [36, 
37]. FOXP1 is a member of the FOX transcription fac-
tor family which is associated with the development 
and prognosis in tumors. In a cross-sectional study of 
breast cancer, an analysis of stage I to III breast cancer 
patients who received NAC from 2018 to 2019 found 
that, in response to treatment, there was a significant 
association between complete response and FOXP1 
(p = 0.01) [38]. The insensitivity of the luminal A sub-
type of breast cancer to NAC has been reported. In 
the I-SPY 1 trial, it was found that the most insensi-
tive subtype to adjuvant chemotherapy or NAC was 
luminal A, with a pCR rate of only 9% [39]. Our results 
provided more evidence for the predictive value of 
incorporating gene mutant signatures into clinical risk 
stratification.

Additionally, considering the high concordance rate 
of somatic mutations between ctDNA and tumor DNA, 
we analyzed ctDNA using a unique personalized panel 
from the constructed model [40]. Our study tracks up to 
9 patient-specific somatic variants at the same time for 
offering a performance in the heterogeneity of a patient’s 
tumor as previously reported [41]. Nevertheless, several 
limitations were associated with this method. For exam-
ple, newly emergent somatic variants which presented 
during tumor evolution in response to NAC treatment 
were usually not detectable.

Our data found that a significant reduction in pre-
operative ctDNA level during the NAC could predict 
the pCR, suggesting that dynamic ctDNA monitoring 
may be helpful in tailoring the treatment regimen of 
NAC. Among all patients with ctDNA positive in  T0, 
the positive rate of ctDNA gradually decreased during 
the NAC treatment with 35% at  T1 and 20% at  T2 and 
 T3. The patients with pCR after NAC were all patients 
who tested negative for ctDNA at  T2 and  T3. At  T2 
and  T3, no ctDNA-positive patient achieved pCR and 
the main grade was RCB-III. These results suggest that 
the ctDNA status of patients who experienced at least 
one chemotherapy cycle may predict the response of 
NAC. Furthermore, the ability to predict the response 

of NAC became more accurate with increasing num-
bers of cycles of chemotherapy, and the time points of 
 T2 (during intermediate evaluation) and  T3 (after the 
end of NAC but before surgery) may be taken to obtain 
blood samples for ctDNA analysis.

Interestingly, we demonstrated the prognostic value 
of ctDNA status, therefore, might probably act as a 
promising predictor of metastasis and recurrence in 
breast cancer patients with NAC. The patients with 
ctDNA-positive at  T3 had significantly worse DFS 
compared with the patients with ctDNA-negative. We 
observed similar results after stratifying according to 
pCR and ctDNA status after NAC. The patients who 
achieved pCR with ctDNA negative had the best out-
comes, and patients who failed to achieve pCR with 
ctDNA positive had the worst outcomes. In patients 
who did not achieve pCR, ctDNA negative was signifi-
cantly associated with better DFS than ctDNA positive. 
Our results are consistent with recent studies [41]. The 
presence of ctDNA reflects the presence of metastatic 
tumor burden, and the presence of elevated ctDNA lev-
els predicts disease progression [42, 43].

Considering the importance of ctDNA to predict patient 
response to NAC [44], ctDNA status was added as a cat-
egorical factor to refine the tumor predictive model [45]. 
We constructed the chemotherapy predictive model using 
the ctDNA status before NAC combined with the tumor 
predictive model. This new chemotherapy predictive model 
effectively reflected the sensitivity of NAC and predicted 
the patient’s prognosis for distinguish high- and low-risk 
patients. It is vital to predict and judge the response to the 
NAC for subsequent treatment strategies. Research has 
demonstrated that the high residual cancer burden after 
NAC in breast cancer signifies a poor prognosis. Addi-
tionally, these non-responders can benefit from additional 
adjuvant chemotherapy. As shown in the recently pub-
lished CREATE-X trial, capecitabine was used for 6 months 
in TNBC patients who did not obtain pCR, leading to 
an improved overall survival rate and DFS [46, 47]. Our 
results may have important implications for predicting the 
response of NAC and rational treatment guidance.

In this study, there are some limitations. Firstly, the 
tumor model constructed by tumor DNA mutant and 
clinical information has been internally validated and 
externally validated. However, the chemotherapy model 
constructed by ctDNA status has not been further vali-
dated due to the limited number of patients. Only 56 had 
the ctDNA analysis and there was no external independ-
ent verification. Second, the follow-up period was lim-
ited to 2–3 years, and a long-term follow-up is needed to 
confirm our results. Therefore, the results will be further 
verified by a prospective cohort with a larger sample size 
and longer follow-up time.
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Conclusions
The focus of this study was to construct a prediction 
model in the neoadjuvant setting. Multiscale approaches 
that integrate clinical and genomic DNA mutations of 
tumors were used to construct the predictive model to 
predict response to NAC and prognosis. In addition, 
given the prognostic value of ctDNA in breast cancer 
patients, we included pretreatment ctDNA levels in the 
predictive model. The model integrating ctDNA may 
have a more reliable predictive efficacy, but a larger 
cohort of patients is needed to validate our findings.
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