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Abstract 

Background Higher maternal pre‑pregnancy body mass index (BMI) is associated with adverse pregnancy and peri‑
natal outcomes. However, whether these associations are causal remains unclear.

Methods We explored the relation of maternal pre‑/early‑pregnancy BMI with 20 pregnancy and perinatal outcomes 
by integrating evidence from three different approaches (i.e. multivariable regression, Mendelian randomisation, 
and paternal negative control analyses), including data from over 400,000 women.

Results All three analytical approaches supported associations of higher maternal BMI with lower odds of maternal 
anaemia, delivering a small‑for‑gestational‑age baby and initiating breastfeeding, but higher odds of hypertensive 
disorders of pregnancy, gestational hypertension, preeclampsia, gestational diabetes, pre‑labour membrane rupture, 
induction of labour, caesarean section, large‑for‑gestational age, high birthweight, low Apgar score at 1 min, and neo‑
natal intensive care unit admission. For example, higher maternal BMI was associated with higher risk of gestational 
hypertension in multivariable regression (OR = 1.67; 95% CI = 1.63, 1.70 per standard unit in BMI) and Mendelian 
randomisation (OR = 1.59; 95% CI = 1.38, 1.83), which was not seen for paternal BMI (OR = 1.01; 95% CI = 0.98, 1.04). 
Findings did not support a relation between maternal BMI and perinatal depression. For other outcomes, evidence 
was inconclusive due to inconsistencies across the applied approaches or substantial imprecision in effect estimates 
from Mendelian randomisation.
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Conclusions Our findings support a causal role for maternal pre‑/early‑pregnancy BMI on 14 out of 20 adverse 
pregnancy and perinatal outcomes. Pre‑conception interventions to support women maintaining a healthy BMI may 
reduce the burden of obstetric and neonatal complications.
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Background
Obesity is a leading preventable cause of ill health, mor-
tality, and morbidity across the world and affects 10% 
and 25% of adult women in low- and high-income coun-
tries, respectively [1]. Higher maternal pre-pregnancy 
body mass index (BMI) is associated with a higher risk 
of various adverse pregnancy and perinatal outcomes, 
including pregnancy loss, gestational hypertension 
(GH), preeclampsia (PE), gestational diabetes mellitus 
(GDM), perinatal depression, caesarean deliveries, pre-
term birth (PTB), large for gestational age (LGA), and no 
breastfeeding initiation [2–12]. However, given the ethi-
cal and logistical challenges of conducting randomised 
controlled trials (RCTs) in pregnancy, most evidence in 
the field comes from conventional observational stud-
ies, which may be confounded by unmeasured or inac-
curately measured maternal characteristics, such as 
socioeconomic position, age, parity, ethnicity, smoking, 
and alcohol intake.

Understanding the impact of maternal pre-pregnancy 
BMI on pregnancy and perinatal health is key to inform 
appropriate interventions aimed at preventing adverse 
outcomes and to predict their future burden in differ-
ent populations. A better understanding of the potential 
causal role of BMI can be achieved by integrating mul-
tiple lines of evidence in a triangulation framework [13, 
14], which can help overcome fundamental biases aris-
ing from the reliance on a single method (e.g. multivari-
able regression in observational studies). In this context, 
more credible causal inference can be made for find-
ings in agreement across different analytical approaches 
with different strengths and limitations; while disagree-
ment could decrease confidence in previous findings or 
highlight specifics of future research needs, for exam-
ple where there is imprecision in results from some 
approaches.

The aim of this study was to explore the relation of 
maternal pre-/early pregnancy BMI (hereafter ‘mater-
nal BMI’) with a wide range of pregnancy and perinatal 
outcomes by integrating evidence from multivariable 
regression, Mendelian randomisation, and paternal neg-
ative control. The combination of these three approaches 

provides a unique contribution to the evidence basis 
on the causal effect of maternal BMI given their dif-
ferent strengths and limitations. While findings from 
conventional observational studies using multivariable 
regression might be biased by residual confounding, 
Mendelian randomisation studies are less prone to such 
form of confounding but may be biased by weak instru-
ments or unbalanced horizontal pleiotropy [15, 16]. The 
use of negative control designs, such as using paternal 
BMI as a negative control exposure, can reveal bias in 
associations of maternal BMI with adverse pregnancy 
and perinatal outcomes since paternal BMI is unlikely 
to affect these outcomes, but may be associated with 
unmeasured confounders in a similar way to maternal 
BMI (Fig. 1) [17, 18].

Methods
Study participants
Data were obtained from up to 446,526 women par-
ticipating in 14 studies in Europe and North America as 
part of the MR-PREG collaboration [22] (Table  1). We 
included women who had available information on at 
least one outcome of interest, had a singleton birth, deliv-
ered a baby without a severe known congenital anom-
aly, and were of European ancestry since most studies 
included participants of European descent only or pre-
dominantly. Informed consent was obtained from all par-
ticipants and study protocols were approved by the local, 
regional, or institutional ethics committees. Details of 
recruitment, data collection, and ethical approval of each 
study can be found in Additional file  1: Supplementary 
Methods [23–55].

Exposure measures
Maternal BMI in kg/m2 was calculated from measured 
or self-reported weight and height data (Table 1). Weight 
data was collected before pregnancy in eight stud-
ies, before 20  weeks of gestation in three studies, and 
between 24 and 32 weeks of gestation in one study. Two 
studies did not have a measure of pre- or early-pregnancy 
BMI and could only contribute to the Mendelian ran-
domisation analyses.
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Outcomes measures
We focused on 20 a priori selected (based on clini-
cal relevance and consensus amongst the study team) 
binary outcomes: miscarriage, stillbirth, hypertensive 
disorders of pregnancies (HDP), GH, PE, GDM, mater-
nal anaemia, perinatal depression, pre-labour mem-
brane rupture, induction of labour, caesarean section, 
PTB, LGA, small-for-gestational age (SGA), low birth-
weight, high birthweight, low Apgar score after 1 min, 
low Apgar score after 5  min, neonatal intensive care 
unit (NICU) admission, and breastfeeding initiation 
(see Table 2 for definitions and total sample sizes). We 
included related traits amongst the selected outcomes 
to maximise the number of cohorts contributing to the 
analyses (e.g. studies that did not have data on gesta-
tional age could contribute with information on low 
birthweight but not SGA). In additional analyses, we 
examined four continuous traits that underlie some of 
these outcomes (i.e. birthweight, birth length, ponderal 
index at birth, and gestational age at birth). Details on 
outcomes definitions, distributions, and sample sizes 
for each contributing study are available in Additional 

file 1: Supplementary Methods [23–55] and Additional 
file 2: Supplementary Tables 1A and B.

Covariables
The following were a priori considered potential con-
founders of the association between maternal BMI and 
the pregnancy and perinatal outcomes: maternal age, 
parity, education, smoking during pregnancy, and alco-
hol use during pregnancy. We also adjusted for offspring 
sex to improve statistical efficiency given its strong asso-
ciation with some outcomes (e.g. birthweight-related out-
comes). Details of the distribution of these covariables in 
each study are provided in Additional file 2: Supplemen-
tary Table 2.

Statistical analyses
All analyses were conducted using Stata version 17 
(StataCorp, College Station, TX) [59] or R version 4.2.1 
(R Foundation for Statistical Computing, Vienna, Aus-
tria) [60]. Results are presented as odds ratio (OR) 
for each binary outcome per standard deviation (SD) 
increase in maternal BMI to facilitate the comparison of 

Fig. 1 Overview of the three analytical approaches used to investigate the effect of maternal body mass index on adverse pregnancy and perinatal 
outcomes. A brief description of each approach is presented in the context of exploring the effect of maternal BMI on APPOs’ risk. Given each 
approach has different strengths and limitations, findings that agree across approaches are likely to be more credible. The description of each 
approach is simplified for illustration purposes. An extensive description of assumptions and sources of bias for each approach has been 
reported previously (e.g. [17–21]). The box around the confounders in the multivariable regression reflects the assumption of the method that all 
confounders were accurately adjusted for in the analyses. BMI, body mass index; APPOs, adverse pregnancy and perinatal outcomes
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results. The analytical code is available at: https:// github. 
com/ gc133 13/ matbmi_ preg.

Multivariable regression analyses
In the main analyses, we used logistic regression with 
two sets of adjustments: (1) maternal age and offspring 
sex and (2) additionally maternal education, par-
ity, smoking during pregnancy, and alcohol use dur-
ing pregnancy where available. We present the fully 
adjusted model as the main analyses and include the 
minimally adjusted model in the supplementary mate-
rial. Similar multivariable linear regression models 
were used for the additional analyses with continuously 
measured outcomes. Study-specific results were com-
bined using fixed-effects metanalyses (inverse-variance 
weighted) for the main analyses assuming that there is 
one true effect size underlying all included studies, and 

random-effects metanalyses (DerSimonian and Laird 
method) for sensitivity analyses.

Mendelian randomisation analysis
We used two-sample Mendelian randomisation, in which 
the effect of interest is estimated by combining sum-
mary data for the association of single nucleotide poly-
morphisms (SNPs) with BMI and with each outcome, as 
summarised in Fig.  2 [61]. This approach allowed us to 
maximise statistical power by including all 14 studies in 
the analyses even when data on maternal BMI was not 
available (i.e. FinnGen and UK Biobank).

We selected 97 SNPs previously reported to be strongly 
associated with BMI (P < 5x10−8 ) from a genome-wide 
association studies (GWAS) metanalysis conducted by 
the Genetic Investigation of ANthropometric Traits 
(GIANT) consortium (Additional file  2: Supplementary 

Table 1 Characteristics of the included studies

Abbreviations: ALSPAC Avon Longitudinal Study of Parents and Children, BiB Born in Bradford, DNBC-GOYA Danish National Birth Cohort-Genetics of Obesity in Young 
Adults Study, DNBC-PTB Danish National Birth Cohort-Preterm Birth Study, EFSOCH Exeter Family Study of Childhood Health, FinnGen FinnGen (release 8), GEN-3G 
Genetics of Glycaemic Regulation in Gestation and Growth, GenR Generation R, HAPO Hyperglycaemia and Adverse Pregnancy Outcome, INMA Infancia y Medio 
Ambiente (English translation = Childhood and the Environment), MoBa Norwegian Mother, Father and Child Cohort Study, NA Not available, NFBC1966 Northern 
Finland 1966 Birth Cohort, NFBC1986 Northern Finland 1986 Birth Cohort
* Studies contributing to Mendelian randomisation analyses adjusted by offspring genotype
a Maximum number of mothers with data on at least one outcome
b Maternal BMI is only reported where collected pre- or early in pregnancy
c The relatively young age at delivery in the NFBC1986 cohort may be explained by the young age of the cohort at the time of the study
d Maternal age in UK Biobank was taken from maternity record linkage on a subsample of participants and may therefore not be representative of the full sample 
included

Cohort Source Country Year Maximum Na BMI measurement Maternal pre-
pregnancy BMI  
[kg/m2]b

Mean (SD)

Maternal age at 
delivery [years] 
Mean (SD)

ALSPAC* [23, 24] UK 1991–1992 11,272 Self‑reported pre‑pregnancy 22.95 (3.82) 28.46 (4.78)

BiB* [26] UK 2007–2010 5018 Measure around 12 weeks of  
gestation

26.63 (5.99) 26.82 (5.96)

DNBC‑GOYA* [28, 29] Denmark 1996–2002 2542 Self‑reported pre‑pregnancy 23.59 (4.30) 29.67 (4.20)

DNBC‑PTB
(controls)*

[32] Denmark 1996–2002 1676 Self‑reported pre‑pregnancy 23.44 (3.98) 29.78 (4.10)

EFSOCH* [34] UK 2000–2004 789 Weight self‑reported pre‑pregnancy, 
height measured during pregnancy

24.02 (4.43) 30.64 (5.03)

FinnGen [37] Finland 1969–2018 190,879 NA NA NA

GEN‑3G [56] Canada 2010–2013 582 Self‑reported pre‑pregnancy 25.04 (5.70) 28.27 (4.34)

GenR [41] Netherlands 2002–2006 4138 Measured before 20 weeks of  
gestation

25.31 (4.89) 28.50 (5.66)

HAPO* [43] USA 1999–2002 1310 Measured between 24 and 32 weeks 
of gestation

28.46 (4.82) 31.31 (5.27)

INMA [46] Spain 1997–2011 1035 Self‑reported pre‑pregnancy 
weight, height measured in the first 
trimester

23.37 (4.25) 30.72 (4.02)

MoBa* [47, 57] Norway 1999–2008 81,795 Self‑reported at 15 weeks gestation 24.05 (4.32) 30.13 (4.72)

NFBC1966 [49] Finland 1966 356 Self‑reported pre‑pregnancy 25.14 (4.78) 30.22 (5.9)

NFBC1986 [51] Finland 1986 883 Self‑reported pre‑pregnancy 24.17 (4.61) 25.43 (2.64)c

UK Biobank [58] UK 2006–2010 153,543 NA NA 29.03 (6.34)d

https://github.com/gc13313/matbmi_preg
https://github.com/gc13313/matbmi_preg
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Table  3) [62].  Unlike more recent BMI GWAS [64], the 
cohorts included in this GWAS were largely independent 
from the studies included in our analyses avoiding poten-
tial biases due to sample overlap [65, 66].

Summary data for the SNP-BMI associations were 
obtained from the GIANT GWAS metanalyses of 
European females (Additional file  2: Supplementary 

table  3) [62], which included up to 171,977 women 
(~ 0.5% of participants were also included in our 
study). We estimated the strength of the genetic 
instruments using the mean F-statistic and total 
R2 for the SNP-BMI association in the GIANT 
GWAS results as previously described [67, 68]. We 
also examined the correlation between SNP-BMI 

Table 2 Case definition and sample size for pregnancy and perinatal outcomes across participating studies

Detailed information on each of the outcomes in each cohort is provided in Additional file 1: Supplementary material and Additional file 2: Supplementary table 1
a Miscarriage and stillbirths in the index pregnancy were used in multivariable regression and paternal negative control analyses, while miscarriage and stillbirth 
reported in previous pregnancies were used in Mendelian randomisation analysis
b Where possible, we applied the International Society for the Study of Hypertension in Pregnancy criteria (ISSHP), which defines any HDP as SBP ≥ 140 mmHg or 
DBP ≥ 90 mmHg, measured on two occasions after 20 weeks’ gestation, with those who are then defined as having pre-eclampsia also having proteinuria (with the 
raised blood pressure) of at least 30 g/Dl and those defined as having gestational hypertension being those who do not meet criteria for pre-eclampsia. By contrast, in 
some studies (e.g. UK Biobank), information on diagnosis was extracted directly from medical records
c Criteria used to define hyperglycaemia first diagnosed in pregnancy varies across studies. Most studies obtained information from questionnaires (i.e. self-reported 
diagnosis) or from medical records [ICD-10 code O24]
d Different reference populations were used to calculate percentiles across studies
* For these a priori selected outcomes, additional Mendelian randomisation analyses were conducted accounting for offspring genotype

Outcomes Case definition N N cases % cases

Binary outcomes

  Miscarriagea Self‑reported in index pregnancy 91,757 107 0.12%

Self‑reported in previous pregnancies 376,434 70,181 15.71%

  Stillbirtha Self‑reported in index pregnancy 91,942 292 0.32%

Self‑reported in previous pregnancies 174,440 4613 2.58%

 Hypertensive disorders of pregnancy Gestational hypertension or  preeclampsiab 416,803 26,867 6.06%

 Gestational hypertension Elevated blood pressure without  proteinuriab 406,103 17,607 4.16%

 Preeclampsia Elevated blood pressure with  proteinuriab 401,184 9827 2.39%

 Gestational diabetes Hyperglycaemia first diagnosed in  pregnancyc 446,526 14,338 3.11%

 Maternal anaemia Maternal anaemia during pregnancy defined as Hb < 110 g/L (1st 
trimester) or Hb < 105 g/L(2nd or  3rd trimesters)

92,002 2425 2.57%

 Perinatal depression Self‑reported diagnosis or assessed depression symptom scales 113,614 9320 7.58%

 Pre‑labour rupture of membranes* Membrane rupture before the onset of contractions 249,265 19,339 7.20%

 Induction of labour* Labour needed induction 114,075 17,351 13.20%

 Caesarean section* Delivery by caesarean section 204,093 27,967 12.05%

 Preterm birth* Gestational age at birth < 37 weeks 261,473 14,090 5.11%

 Large‑for‑gestational age*  >  90th percentile for z‑score of birthweight accounting for sex 
and gestational  aged

118,667 12,386 9.45%

 Small‑for‑gestational age*  <  10th percentile for z‑score of birthweight accounting for sex 
and gestational  aged

118,667 8958 7.02%

 Low birthweight* Birthweight < 2500 g 247,716 14,964 5.70%

 High birthweight* Birthweight ≥ 4000 g 239,460 8142 3.29%

 Low Apgar score at 1 min* Apgar score at 1 min < 7 98,868 5760 5.51%

 Low Apgar score at 5 min* Apgar score at 5 min < 7 99,434 1167 1.16%

 Neonatal intensive care unit (NICU) admission* Neonate admitted to NICU 93,522 8262 8.12%

 Breastfeeding initiation* Ever breastfed 94,116 78,472 45.47%

Continuous outcomes

 Birthweight* NA 326,537 NA NA

 Birth length* NA 95,649 NA NA

 Ponderal index at birth* NA 95,562 NA NA

 Gestational age at birth* NA 118,723 NA NA
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estimates in non-pregnant (data from the GIANT 
consortium) and pregnant women (data from partici-
pating cohorts where information on maternal BMI 
was available to us).

Summary data for the SNP-outcomes associations 
were obtained from each contributing study using logis-
tic (or linear) regression assuming an additive model. 
For each SNP, we meta-analysed cohort-specific SNP-
outcome associations using inverse-variance weighted 

fixed-effects for the main analyses and random effects 
(DerSimonian and Laird method) for sensitivity analyses.

The main two-sample MR analyses were carried out 
using the inverse variance weighted (IVW) method 
[67]. In addition, we also conducted a leave-one-out 
analysis at the study level where the pooled IVW esti-
mates were re-computed removing one study at a time 
to check whether pooled results were driven by a single 
study.

Fig. 2 Overview of the two‑sample Mendelian randomisation analyses framework. We selected 97 SNPs as instruments for maternal BMI 
from a genome‑wide association studies (GWAS) metanalysis conducted by the Genetic Investigation of ANthropometric Traits (GIANT) consortium 
[62, 63], including 339,226 males and females. For the selected SNPs, we extracted summary data for the SNP‑BMI associations from the GIANT 
GWAS metanalyses of European ancestry females (N = 171,977) and SNP‑outcomes associations from European ancestry females from the MR‑PREG 
collaboration (N range = 92,002 to 446,526). After harmonising SNP‑BMI and SNP‑outcomes’ summary data, two‑sample MR analyses were carried 
out using the inverse variance weighted (IVW) method, and a series of sensitivity analyses was performed to assess the plausibility of the core 
Mendelian randomisation assumptions as specified in the figure. For two studies (Generation R and INMA), summary data was only available 
to us for 32 SNPs reported in an earlier GIANT BMI GWAS [63], of which 12 SNPs overlapped with the 97 selected SNPs and were included in our 
metanalyses
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We conducted a series of sensitivity analyses to explore 
the plausibility of the core Mendelian randomisation 
assumption that any effect of SNPs on the outcomes is 
fully mediated by maternal BMI. We explored the poten-
tial presence of invalid instruments (e.g. due to SNPs 
affecting the outcomes through pathways not mediated 
by BMI) by (i) assessing between-SNP heterogeneity and 
directional pleiotropy in effect estimates using Cochran’s 
Q-statistic and the MR-Egger intercept test [68], respec-
tively, and (ii) using other Mendelian randomisation 
methods that are more robust to invalid instruments 
than IVW (MR-Egger [68], weighted median [69], and 
weighted mode [70]). For offspring outcomes (Table  2), 
we explored whether IVW estimates might be biased by 
genetic confounding since maternal BMI genetic variants 
might influence offspring outcomes (e.g. birthweight) due 
to the foetus inheriting these variants from the mother 
rather than due to a causal effect of maternal BMI on 
the intra-uterine environment [71–73]. This was done by 
repeating the IVW analyses using summary data for the 
SNP-outcomes associations adjusted for offspring geno-
type, which were obtained by regressing each outcome 
on the maternal genotype for each SNP including the 
offspring genotype for the respective SNP as a covariable 
in the model (all genotypes were coded as the number of 
BMI-increasing alleles).

Paternal negative control analyses
We used paternal BMI as a negative control exposure to 
explore whether the associations of maternal BMI with 
pregnancy and perinatal outcomes could be explained 
by residual confounding due to shared familial environ-
ment influencing BMI in both partners [18, 74]. These 
analyses included paternal BMI data from ALSPAC 
(N = 2821–6952), calculated from weight and height self-
reported by the father during the first trimester; GenR 
(N = 596–911), measured during the first trimester; and 
MoBa (N = 39,243–57,170), reported by the mother at 
15 weeks of gestation. We used multivariable regression 
to estimate the association of paternal BMI with the out-
comes of interest adjusting (where available) for paternal 
age, number of children, education, smoking, and alcohol 
intake around the time of their partners’ pregnancy, as 
well as their partners’ BMI to account for the correlation 
between maternal and paternal BMI due to assortative 
mating or shared lifestyle [74, 75] (correlation coefficients 
ranging from 0.17 in ALSPAC to 0.24 in MoBa). Results 
were then contrasted between the mutually adjusted 
maternal and paternal BMI (negative control) analy-
ses. The adjusted maternal regression estimates used 
for comparison with paternal BMI associations in the 
negative control analysis differ from the multivariable 
regression estimates used in the main analysis (that are 

compared to the Mendelian randomisation estimates). 
In the paternal negative control comparison, the mater-
nal regression estimates were additionally adjusted for 
paternal BMI and paternal confounders and therefore 
restricted to studies reporting both maternal and pater-
nal BMI. Similar estimates between maternal and pater-
nal BMI analyses indicate maternal BMI is unlikely to 
be a cause of pregnancy and perinatal outcomes via 
intrauterine mechanisms assuming comparable sources 
of biases. Conversely, associations that are specific or 
stronger in the maternal compared to the paternal BMI 
analyses would support a causal effect of maternal BMI.

Patient and public involvement
The current research was not informed by patient and 
public involvement because it used secondary data. This 
means that patients and the public were not involved in 
setting the research question or the outcome measures, 
nor were they involved in developing plans for the design 
or implementation of the study. No study participants 
were asked to advise on interpretation or writing up of 
results. The results of the research will be disseminated 
to study participants on request, and to stakeholders and 
the broader public as relevant.

Results
Study and participant characteristics
The characteristics of the 14 included studies are shown 
in Table  1. Mean maternal BMI ranged from 23.0 to 
28.5 kg/m2 across studies, and mean maternal age ranged 
from 25 to 31 years old. The maximum sample size from 
each study ranged from 356 (NFBC1966) to 190,879 
(FinnGen). The number of cases ranged from 107 for 
miscarriage in the index pregnancy (used in multivari-
able regression and paternal negative control analyses) to 
78,472 for breastfeeding initiation (Table 2).

Main analyses results
Results for the main multivariable regression (fully 
adjusted model) and Mendelian randomisation (IVW) 
analyses are shown in Figs.  3 and 4 (binary outcomes) 
and Additional file  3: Supplementary Fig.  1 (continuous 
outcomes).

In the main multivariable regression analyses, mater-
nal BMI was associated with 19 out of the 20 binary 
outcomes. Higher maternal BMI was associated with 
a higher risk of miscarriage, stillbirth, HDP, GH, PE, 
GDM, pre-labour membrane rupture, induction of 
labour, caesarean section, PTB, LGA, high birthweight, 
low Apgar score at 1 min, low Apgar score at 5 min, and 
NICU admission. In addition, women with higher BMI 
were less likely to have maternal anaemia, have a baby 
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Fig. 3 Comparison of A adjusted multivariable regression and main Mendelian randomisation estimates and B mutually adjusted multivariable 
regression estimates and paternal negative control (exposure, paternal body mass index)—for the association of maternal body mass index 
with binary outcomes (Part 1). Paternal BMI was used as a negative control exposure to explore the potential presence, direction, and magnitude 
of bias in multivariable estimates for associations of maternal BMI with outcomes.. Results are expressed as odds ratios per SD unit of maternal BMI 
and paternal BMI for ‘Multivariable regression’ and ‘Paternal negative control’, respectively. Multivariable regression results were adjusted for paternal 
BMI, maternal age, parity, education, smoking during pregnancy, alcohol use during pregnancy, and offspring sex where available. Paternal negative 
control results were adjusted for maternal BMI, paternal age, number of children (ALSPAC only), paternal education, paternal smoking, paternal 
alcohol use, and offspring sex. BMI, body mass index; NICU, neonatal intensive care unit

Fig. 4 Comparison of A adjusted multivariable regression and main Mendelian randomisation estimates and B mutually adjusted multivariable 
regression estimates and paternal negative control (exposure, paternal body mass index)—for the association of maternal body mass index 
with binary outcomes (Part 2). Paternal BMI was used as a negative control exposure to explore the potential presence, direction, and magnitude 
of bias in multivariable estimates for associations of maternal BMI with outcomes.. Results are expressed as odds ratios per SD unit of maternal BMI 
and paternal BMI for ‘Multivariable regression’ and ‘Paternal negative control’, respectively. Multivariable regression results were adjusted for paternal 
BMI, maternal age, parity, education, smoking during pregnancy, alcohol use during pregnancy, and offspring sex where available. Paternal negative 
control results were adjusted for maternal BMI, paternal age, number of children (ALSPAC only), paternal education, paternal smoking, paternal 
alcohol use, and offspring sex. BMI, body mass index; NICU, neonatal intensive care unit
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SGA or with low birthweight, and initiate breastfeed-
ing (Figs. 3 and 4). There was little evidence of maternal 
BMI being associated with the risk of perinatal depres-
sion (Fig. 3). Higher maternal BMI was associated with 
higher values of most continuous outcomes (i.e. birth-
weight, birth length, and ponderal index) (Additional 
file 3: Supplementary Fig. 1).

For the Mendelian randomisation analyses, we esti-
mated that the total R2 and mean F-statistic for the 
association of SNPs with BMI were 2.7% and 36, 
respectively, for the set of 97 SNPs using female-spe-
cific data from the GIANT GWAS. We observed a 
positive correlation (r = 0.67) between SNP-BMI esti-
mates from females in the GIANT GWAS and SNP-
BMI (pre-/early-pregnancy) estimates pooled across 
participating cohorts (Additional file  3: Supplemen-
tary Fig.  2). In agreement with multivariable regres-
sion analyses, findings from Mendelian randomisation 
indicated that higher maternal BMI is related to higher 
risk of HDP, GH, PE, GDM, pre-labour membrane rup-
ture, induction of labour, caesarean section, LGA, high 
birthweight, low Apgar score at 1  min, NICU admis-
sion, lower risk of having maternal anaemia, a SGA 
baby, lower odds of initiating breastfeeding, and not 
associated with perinatal depression. On the other 
hand, in contrast with multivariable regression analy-
ses, Mendelian randomisation findings did not provide 
support for a positive association of maternal BMI with 
miscarriage, stillbirth, and PTB. As expected, given 
the lower statistical power, confidence intervals were 
wider for Mendelian randomisation compared to mul-
tivariable regression analyses and included the null 
value for some of these outcomes (Figs.  3 and 4). For 
two binary outcomes (i.e. low Apgar score at 5 min and 
low birthweight), it was less clear whether estimates 
from multivariable and Mendelian randomisation are 
in agreement given the substantial uncertainty in the 
latter. For most continuous outcomes (i.e. birthweight, 
birth length, and ponderal index), findings from Men-
delian randomisation indicated that higher maternal 
BMI was associated with higher values of continuous 
outcomes in agreement with multivariable regression 
analyses (Additional file 3: Supplementary Fig. 1).

Paternal negative control results supported the role of 
maternal BMI on stillbirth, HDP, GH, PE, GDM, mater-
nal anaemia, pre-labour membrane rupture, induction of 
labour, caesarean section, SGA, LGA, high birthweight, 
low Apgar score at 1 min, NICU admission, and breast-
feeding initiation (Figs. 3 and 4). The association of pater-
nal BMI with maternal perinatal depression was also 
close to the null, consistent with maternal multivariable 
and Mendelian randomisation results. Associations with 
miscarriage, PTB, low birthweight, and low Apgar score 

at 5  min were imprecise and/or more similar in direc-
tion and magnitude between paternal and maternal BMI 
analyses. Results for continuous outcomes were strongly 
attenuated for paternal BMI in relation to birthweight 
and length (Additional file 3: Supplementary Fig. 3).

Sensitivity analyses
Overall, findings from the main multivariable regres-
sion analyses were consistent across studies (Additional 
file 3: Supplementary Fig. 4), when using random-effect 
metanalyses (Additional file  3: Supplementary Fig.  5), 
and with minimally adjusted models (Additional file 3: 
Supplementary Fig.  6). Between-study heterogeneity 
was substantial (i.e. Cochrane’s Q p-value < 0.05) for 
GDM, maternal anaemia, low Apgar score at 1  min, 
gestational age, and birthweight (Additional file 3: Sup-
plementary table 4).

Overall, findings from the main Mendelian randomi-
sation analyses were not driven by any individual study 
as indicated by the leave-one-out analyses, although in 
some cases removing one study resulted in attenuation 
and substantial imprecision of effect estimates, such 
as for GDM when removing FinnGen and for delivery 
outcomes when removing MoBa (Additional file 3: Sup-
plementary Fig.  7). Results were similar when using 
fixed- or random-effect meta-analyses to pool SNP-
outcome estimates across studies (Additional file  3: 
Supplementary Fig. 8). There was evidence of substan-
tial SNP heterogeneity in the IVW analyses of maternal 
BMI with 11 out of 20 binary outcomes and 1 out of 
4 continuous outcomes (Additional file  2: Supplemen-
tary table 5). Despite that, there was no clear evidence 
of directional pleiotropy as evidenced by the MR-Egger 
intercept test (except for GDM and gestational age) 
(Additional file  2: Supplementary table  5). Further-
more, Mendelian randomisation results were generally 
consistent when using different Mendelian randomisa-
tion methods (Additional file 3: Supplementary Fig. 9), 
although estimates from MR-Egger were imprecise for 
some outcomes. Effect estimates adjusting for offspring 
genotype were more imprecise due to the smaller sam-
ple size; however, overall, point estimates were not sub-
stantially different compared to the main analyses with 
a few exceptions, such as pre-labour rupture of mem-
branes, LGA, and high birthweight, where adjusted 
results were attenuated (Additional file 3: Supplemen-
tary Fig. 10).

Findings from the main paternal negative control 
analyses were consistent between studies (Additional 
file 3: Supplementary Fig. 11 for maternal associations 
additionally adjusted for partners BMI and Additional 
file 3: Supplementary Fig. 12 for paternal associations) 
and when comparing different models (Additional 
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file  3: Supplementary Figs.  13–15). Findings from the 
main multivariable regression analyses were similar 
when stratified by BMI taken pre-pregnancy compared 
to during pregnancy (Additional file  3: Supplementary 
Fig. 16).

Discussion
By triangulating different analytical approaches, our find-
ings are compatible with higher maternal BMI being 
causally related to 14 out of 20 pregnancy and perinatal 
outcomes, including a higher risk of HDP, GH, PE, GDM, 
pre-labour membrane rupture, induction of labour, cae-
sarean section, LGA, high birthweight, low Apgar score 
at 1  min, NICU admission, and lower odds of maternal 
anaemia, SGA, or breastfeeding initiation. In addition, we 
did not find supportive evidence for a relation of mater-
nal BMI with perinatal depression. For other outcomes, 
evidence is uncertain due to inconsistencies across mul-
tiple approaches (i.e. multivariable regression results for 
miscarriage, stillbirth, and PTB were not supported by 
Mendelian randomisation) or substantial imprecision in 
effect estimates from Mendelian randomisation (i.e. low 
birthweight and low Apgar score at 5 min).

Consistent with our results, a previous study using 
multivariable regression reported higher maternal BMI 
(across the whole distribution) was associated with 
increased risk of HDP, GDM and LGA, and reduced risk 
of SGA based on data from 265,270 mother–offspring 
pairs (samples partly overlapping with our study) [10]. In 
addition, there was some evidence of a non-linear asso-
ciation with odds of PTB, which were higher in women 
who were underweight or obese [10]. In agreement with 
these findings, a larger study (9,282,486 mother–infant 
pairs in the USA) focussed on offspring outcomes indi-
cated that higher maternal BMI was associated with a 
higher risk of high birthweight, LGA, and low Apgar 
score and reported a non-linear relationship with PTB 
risk [76]. Other observational studies using multivariable 
regression have reported that maternal BMI is associated 
with a higher risk of stillbirths [77], induction [78], cae-
sarean section [78], and not initiating breastfeeding [79]. 
Previous Mendelian randomisation studies have focused 
on a limited set of outcomes and are supportive of higher 
maternal BMI being related to higher mean offspring 
birthweight [4, 27, 80] (N ~ 9,000 to 400,000) and GDM 
[81] (N = 5485 cases and 347,856 controls).

Recent systematic reviews of randomised controlled 
trials (RCTs) of diet and physical activity during preg-
nancy (N range: 12,526–34,546) reported some evidence 
of reduced risk of GDM, LGA, and caesarean section 
in those randomised to the intervention, but no effect 
or mixed results of the intervention on HDP, PTB, and 
NICU admission [82–84]. Of note, these studies aimed at 

managing weight gain during pregnancy rather than tar-
geting weight reduction prior to pregnancy with a mod-
est mean difference of − 0.7 to − 1.2  kg between women 
in the intervention compared to those randomised to 
standard care. In addition, evidence for many outcomes 
is uncertain due to the relatively small number of cases.

Although mechanisms are not fully understood, higher 
maternal BMI is likely to influence a range of processes 
that are involved in the aetiology of some of the out-
comes of interest, such as insulin resistance, endothelial 
dysfunction, inflammation, and susceptibility to infection 
[85]. In addition, maternal dysmetabolism resulting from 
excess adiposity has a well-recognised impact on mater-
nal circulating nutrients, such as glucose, lipids, and 
amino acids, some of which can cross the placenta and 
influence offspring outcomes, such as growth [4, 86, 87].

Strengths and limitations
Key strengths of this study include exploring the poten-
tial role of maternal BMI on a wide range of pregnancy 
and perinatal outcomes in large samples from multiple 
studies using different approaches. The credibility of 
findings from each approach relies on the plausibility of 
assumptions that are often not possible to verify, such 
as no unmeasured confounding in multivariable regres-
sion, similar confounding, selection and measurement 
error between paternal and maternal BMI analyses, and 
no confounding or horizontal pleiotropy in Mendelian 
randomisation. Therefore, results in agreement across 
approaches strengthen the evidence on the relation of 
maternal BMI with the outcome. Where possible, we 
explored the plausibility of assumptions underlying each 
method. In particular, we conducted extensive sensitivity 
analyses to explore the plausibility of the core Mendelian 
randomisation assumptions and found overall these did 
not suggest Mendelian randomisation results were driven 
by weak, invalid instruments or confounding by offspring 
genotype.

Key limitations of this study are as follows. First, 
despite the large scale of our study, statistical power var-
ied across outcomes as some outcomes have lower prev-
alence and/or were not collected in all cohorts. Second, 
despite our efforts to capture the best and most homo-
geneous definition for outcomes across studies, this was 
not always possible as exemplified by GDM, for which 
the data collected was notably variable across studies (e.g. 
from self-report to medical records-derived informa-
tion), and index miscarriage (which was used for multi-
variable regression and paternal negative control analyses 
but is poorly captured in birth cohorts during the early 
pregnancy period). Third, while we were interested in 
maternal pre-pregnancy BMI, only maternal weight 
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reflecting early-/mid-pregnancy was available in four 
studies. Fourth, our analyses assumed a linear effects of 
BMI, which may not be the case for some outcomes like 
PTB, and were restricted to women of European ancestry 
given most studies had scarce data on women from other 
ancestries. While this reduces the risk of confounding by 
ethnicity or population structure, it may limit the gener-
alisability to other populations of pregnant women.

Conclusions
Our findings support a causal role for higher mater-
nal BMI on a range of adverse pregnancy and perinatal 
outcomes. Given the high prevalence of overweight and 
obesity, our findings emphasise the need for develop-
ment and testing of pre-conception interventions to sup-
port women maintaining a healthy BMI. This should be a 
key target to reduce the burden of obstetric and neonatal 
complications.
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