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Abstract 

Background Pyroptosis, mediated by gasdermins with the release of multiple inflammatory cytokines, has emerged 
as playing an important role in targeted therapy and immunotherapy due to its effectiveness at inhibiting tumor 
growth. Melanoma is one of the most commonly used models for immunotherapy development, though an inad-
equate immune response can occur. Moreover, the development of pyroptosis-related therapy and combinations 
with other therapeutic strategies is limited due to insufficient understanding of the role of pyroptosis in the context 
of different tumor immune microenvironments (TMEs).

Methods Here, we present a computational model (pyroptosis-related gene score, PScore) to assess the pyroptosis 
status. We applied PScore to 1388 melanoma samples in our in-house cohort and eight other publicly available inde-
pendent cohorts and then calculated its prognostic power of and potential as a predictive marker of immunotherapy 
efficacy. Furthermore, we performed association analysis for PScore and the characteristics of the TME by using bulk, 
single-cell, and spatial transcriptomics and assessed the association of PScore with mutation status, which contributes 
to targeted therapy.

Results Pyroptosis-related genes (PRGs) showed distinct expression patterns and prognostic predictive ability 
in melanoma. Most PRGs were associated with better survival in metastatic melanoma. Our PScore model based 
on genes associated with prognosis exhibits robust performance in survival prediction in multiple metastatic mela-
noma cohorts. We also found PScore to be associated with BRAF mutation and correlate positively with multiple 
molecular signatures, such as KRAS signaling and the IFN gamma response pathway. Based on our data, melanoma 
with an immune-enriched TME had a higher PScore than melanoma with an immune-depleted or fibrotic TME. Addi-
tionally, monocytes had the highest PScore and malignant cells and fibroblasts the lowest PScore based on single-cell 
and spatial transcriptome analyses. Finally, a higher PScore was associated with better therapeutic efficacy of immune 
checkpoint blockade, suggesting the potential of pyroptosis to serve as a marker of immunotherapy response.
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Conclusions Collectively, our findings indicate that pyroptosis is a prognostic factor and is associated 
with the immune response in metastatic melanoma, as based on multiomics data. Our results provide a theoretical 
basis for drug combination and reveal potential immunotherapy response markers.

Keywords Pyroptosis, Metastatic melanoma, Tumor microenvironment, Immunotherapy, Multiomics

Background
Malignant melanoma is the most aggressive skin can-
cer, with poor prognosis. Recently, rapid development 
of immunotherapies and targeted therapies has enabled 
significant improvements in overall survival (OS) and 
disease-free survival as well as impressive response rates 
in melanoma [1–3]. However, only 19–45% of patients 
respond to these therapeutic modalities, and some 
patients may even experience relapse [2, 3]. Accord-
ingly, there is an urgent need to elucidate the molecular 
mechanisms underlying melanoma pathogenesis to help 
discover novel therapeutic strategies for improving the 
efficacy of cancer treatment.

Pyroptosis, a type of regulated cell death executed by 
the gasdermin (GSDM) protein family that is accompa-
nied by cell membrane pore formation and IL18/IL1β 
release, plays an essential role in the immune response 
[4–6]. As pyroptotic cells release inflammatory fac-
tors, damaged plasma membranes induce chemokine 
production and recruit a variety of immune cells [7, 8]. 
Studies have shown that pyroptosis results in amplified 
cellular immunity, as toxic lymphocytes, including natu-
ral killer (NK) and CD8 + T cells, release granzymes such 
as GZMA and GZMB to cleave GSDMB and GSDME, 
respectively [9–11]. A recent study has shown that induc-
ing breast tumor cell pyroptosis with trimethylamine 
N-oxide (TMAO) promotes antitumor immunity [12]. 
It has also been reported that pyroptosis of a few tumor 
cells is sufficient to enhance antitumor immunity and 
synergize with immune checkpoint therapy in a 4T1 
tumor model [13]. BRAF and MEK inhibitor combina-
tions induce GSDME-dependent pyroptosis, and resist-
ant cells do not acquire drug sensitivity unless GSDME 
cleavage and pyroptosis are reinduced [14]. Furthermore, 
the key molecule of pyroptosis NLRP3 is required for 
the TH2 cell transcriptome program in CD4( +) T cells, 
and NLRP3 deficiency promotes melanoma growth [15]. 
Paradoxically, NLRP3 plays an immunosuppressive role 
in melanoma tumor cells by recruiting myeloid-derived 
suppressor cells (MDSCs) [16, 17]. In addition, in  vivo 
experiments show that inhibiting GSDMC transcrip-
tion and thereby suppressing pyroptosis alleviates tumor 
necrosis symptoms and prolongs the survival of tumor-
bearing mice [18]. These results suggest that pyroptosis is 
a double-edged sword in tumors and point to the impor-
tance of the executor involved and the cell type in which 

the process occurs. Overall, there is a lack of in-depth 
research on the role pyroptosis plays in melanoma.

There have been several attempts thus far to establish 
prognostic models related to pyroptosis [19–29]. The 
majority of them have been built based on least absolute 
shrinkage and selection operator (LASSO) regression 
[30] with distinct gene sets as input. Previous studies only 
included some pyroptosis-related genes (PRGs), which 
may lead to loss of information. In addition, due to the 
nature of LASSO regression, these models more reflect 
efficacy for prognosis than the state of pyroptosis itself. 
Thus, the status and heterogeneity of pyroptosis in mela-
noma determined by the expression pattern of all PRGs 
remains unclear.

In this study, we evaluated pyroptosis status using 
single-sample gene set enrichment analysis (ssGSEA), 
followed by comprehensive analysis to understand the 
molecular alterations and biological effects of pyroptosis. 
We observed that pyroptosis can act as an independent 
prognostic factor and validated it using eight independ-
ent datasets. We found distinct roles for pyroptosis in 
primary and metastatic melanoma patients, with a cer-
tain association between pyroptosis and BRAF muta-
tion status, revealing a potential combination strategy of 
drug usage in melanoma. Functionally, pyroptosis levels 
correlated positively with multiple immune response-
related pathways but negatively with carcinogenesis-
related pathways. Mechanistically, we investigated the 
association between pyroptosis level and immune or 
DNA damage features. Then, we assessed the heteroge-
neity in pyroptosis status among different cell subtypes 
in the tumor immune microenvironment (TME) at bulk, 
single-cell, and spatial transcriptome levels. Finally, we 
determined the therapeutic value of different pyroptosis 
statuses in immunotherapy.

Methods
Data collection and processing
Multiomics data and clinical data for cutaneous mela-
noma (CM) were downloaded from The Cancer Genome 
Atlas (TCGA) data portal (https:// portal. gdc. cancer. 
gov/). Independent melanoma cohorts with or without 
immunotherapy were downloaded from Gene-Expres-
sion Omnibus (GEO), Sequence Read Archive (SRA), 
and Database of Genotypes and Phenotypes (dbGaP) 

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
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(Additional file 1: Table S1). In-house data with immuno-
therapy were downloaded from Table S9 of our previous 
study [31]. Melanoma patients with anti-PD1 treatment 
were collected from Xiangya Hospital and Fudan Univer-
sity Shanghai Cancer Center, and the study was approved 
by our hospital ethics committee (Committee number: 
202103213).

Processed single-cell transcriptome data for mela-
noma were retrieved from TISCH (http:// tisch. comp- 
genom ics. org/) under accession numbers GSE72056 
(4645 single cells including malignant, immune, stro-
mal, and endothelial cells from 19 melanoma samples) 
and GSE115978 (7186 single cells including malignant, 
immune, stromal, and endothelial cells from 33 mela-
noma samples). We extracted cells belonging to meta-
static patients by using the “subset” function. Spatial 
transcriptome data of melanoma were obtained from 
the BayesSpace package [32, 33]. Processed proteomics 
data and clinical data of melanoma treated with anti-PD1 
were obtained from Harel and Beck et al. [34, 35].

Construction of the pyroptosis‑related gene score (PScore) 
model to estimate pyroptosis status in melanoma
We collected 75 PRGs from publications [4, 5, 9, 10, 36–
81] and Molecular Signatures Database (MSigDB, https:// 
www. gsea- msigdb. org/ gsea/ msigdb) [82–84], and 74 of 
them were retained for analysis (Table 1). Specifically, we 
collected 62 PRGs from the published literature [4, 5, 9, 10, 
36–81] (Table 1, colored green) and supplemented them 
with gene sets from MSigDB, including “GOBP_PYROP-
TOSIS.v2023.1.Hs.grp” and “REACTOME_PYROPTO-
SIS.v2023.1.Hs.grp” [82–84]. MIR223 was removed from 
the ensuing analysis because it was not detected in the 
expression matrix of skin cutaneous melanoma (SKCM) 
cohort from TCGA (TCGA-SKCM, Table  1, colored 
gray). Thus, 74 genes remained for analysis. Genes 
derived from the literature can be functionally divided 
into inflammasome activation-related molecules, inflam-
masomes, adaptor proteins, cleavage proteins, executors, 
pore-forming-related proteins, released substances, and 
negative regulators (Table  1). Different forms of gene 
names, such as symbols and gene IDs, were also detailed 
in Table  1. The nonnegative matrix factorization (NMF) 
algorithm [85] was used to identify different expression 
patterns of PRGs and whether these genes have an impact 
on the survival rate of primary or metastatic melanoma 
patients. We calculated PScore based on significant genes 
screened by univariate Cox regression by using data for 
metastatic patients and by combining the expression cor-
relations of these significant genes. Prognostic protective 
genes were selected due to clinical outcome and distinct 
expression patterns. Therefore, the PScore model that was 
established to represent the state of pyroptosis contained 

31 genes: AIM2, APIP, CASP1, CASP3, CASP4, CASP5, 
CASP8, CFLAR, CHMP2B, CHMP4A, CHMP5, DFNB59, 
GSDMB, GSDMD, GZMA, GZMB, IL18, IL1B, IRF1, 
IRF2, MEFV, NAIP, NLRC4, NLRP1, NLRP3, NLRP6, 
NLRP7, NOD2, TLR4, TNFRSF1B, and ZBP1. Overall, 
PScore, which was built to computationally dissect the 
pyroptosis status of tissue samples and cell lines, was 
defined by the enrichment score of these genes calculated 
by ssGSEA using the R package “GSVA” (Additional file 2: 
Table S2) [84, 86]. PScore was validated by using 3 pyrop-
tosis-related datasets from GEO.

Survival analysis and multivariate Cox regression analysis
The R package “survival” was used to perform survival 
analysis, with grouping based on NMF clusters, PScore 
groups, and/or mutation types. Considering the hetero-
geneity of the melanoma patients in different datasets, 
the “surv_cutpoint” function in the R package “sur-
vminer” was used to determine the optimal cutoff point 
and reduce the calculated batch effect. The parameter 
“minprop” refers to the minimal proportion of observa-
tions per group and was set as 0.4 and 0.2 when analyzing 
treatment-naïve and immune checkpoint blockade (ICB) 
therapy datasets, respectively. Then, age, sex, and stage 
were included as variables, and multivariate Cox regres-
sion model analysis was performed to assess whether 
PScore is an independent predictor in treatment-naïve 
cohorts. Kaplan‒Meier (KM) curves were used for sur-
vival analysis based on the log-rank test.

Analysis of immune features and DNA damage features
The R package “MCPcounter” was used to evaluate 
immune infiltration reflected by microenvironment cell 
population (MCP) abundance [87]. The GEP score of 
each sample was computed based on the GEP gene sig-
nature from Ayers et  al. [88] using GSVA. CYT scores 
were calculated by using the geometric mean of the 
gene expression of two cytolytic markers, GZMA and 
PRF1 [89]. Stimulatory immune checkpoints, the rich-
ness of T/B-cell receptor (TCR/BCR) of TCGA-SKCM 
samples, aneuploidy, homologous recombination defi-
ciency (HRD), and LOH_n_seg were acquired from 
Thorsson et al. [90] (https:// gdc. cancer. gov/ about- data/ 
publi catio ns/ panim mune); the files are “NIHMS958212-
supplement-2.xlsx” and “NIHMS958212-supplement-7.
xlsx.” Stimulatory immune checkpoints were obtained 
from column “Immune Checkpoint” and column 
“Gene” of “NIHMS958212-supplement-7.xlsx.” The oth-
ers were from columns “Aneuploidy Score,” “Homolo-
gous Recombination Defects,” “BCR Richness” and 
“TCR Richness” of “NIHMS958212-supplement-2.xlsx.” 

PScore = ssGSEA_Score (31 prognostic protective genes)

http://tisch.comp-genomics.org/
http://tisch.comp-genomics.org/
https://www.gsea-msigdb.org/gsea/msigdb
https://www.gsea-msigdb.org/gsea/msigdb
https://gdc.cancer.gov/about-data/publications/panimmune
https://gdc.cancer.gov/about-data/publications/panimmune
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Table 1 Pyroptosis-related genes used in this study

Symbol ID Aliase or full name Gene ID Ensembl ID Known functions 
reported by previous 
studies

Source PMID

NOD2 NLRC2 64,127 ENSG00000167207 Activation of inflamma-
some

Literature 25,879,280

TNFRSF1A TNFR1 7132 ENSG00000067182 Activation of inflamma-
some

Literature 25,879,280

TNFRSF1B TNFR2 7133 ENSG00000028137 Activation of inflamma-
some

Literature 25,879,280

TLR4 7099 ENSG00000136869 Activation of inflamma-
some

Literature 25,879,280

AIM2 9447 ENSG00000163568 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

33,692,549

NLRP1 22,861 ENSG00000091592 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

33,692,549

NLRP3 114,548 ENSG00000162711 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

33,692,549

ZBP1 81,030 ENSG00000124256 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

32,729,116; 34,471,287

NLRC4 58,484 ENSG00000091106 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

33,692,549

NAIP BIRC1; NLRB1; psiNAIP 4671 ENSG00000249437 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

31,662,274

NLRP6 171,389 ENSG00000174885 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

35,138,947

NLRP7 199,713 ENSG00000167634 Inflammasome Literature 22,361,007

NLRP9 338,321 ENSG00000185792 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

35,138,947; 28,636,595; 
28,731,031

DHX9 1660 ENSG00000135829 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

28,636,595; 28,731,031

NLRP12 91,662 ENSG00000142405 Inflammasome Literature 32,838,963; 32,295,623

MEFV 4210 ENSG00000103313 Inflammasome Literature; MSigDB-
GOBP_PYROPTOSIS

25,879,280

PYCARD ASC 29,108 ENSG00000103490 Adaptor protein Literature; MSigDB-
GOBP_PYROPTOSIS

33,692,549

CASP1 834 ENSG00000137752 Cleavage protein Literature; MSigDB-
GOBP_PYROPTOSIS; 
MSigDB-REACTOME_
PYROPTOSIS

32,553,275; 32,109,412; 
31,216,460

CASP4 837 ENSG00000196954 Cleavage protein Literature; MSigDB-
GOBP_PYROPTOSIS; 
MSigDB-REACTOME_
PYROPTOSIS

32,109,412; 31,216,460; 
22,895,188; 25,119,034

CASP5 838 ENSG00000137757 Cleavage protein Literature; MSigDB-
REACTOME_PYROP-
TOSIS

32,109,412; 31,216,460; 
25,119,034

CASP3 836 ENSG00000164305 Cleavage protein Literature; MSigDB-
REACTOME_PYROP-
TOSIS

28,459,430; 32,188,940; 
28,392,147

CASP6 839 ENSG00000138794 Cleavage protein MSigDB-GOBP_PYROP-
TOSIS

CASP8 841 ENSG00000064012 Cleavage protein Literature; MSigDB-
GOBP_PYROPTOSIS

30,381,458; 31,748,744; 
31,723,262; 30,361,383; 
34,012,073

GZMA 3001 ENSG00000145649 Cleavage protein Literature; MSigDB-
GOBP_PYROPTOSIS

32,299,851
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Table 1 (continued)

Symbol ID Aliase or full name Gene ID Ensembl ID Known functions 
reported by previous 
studies

Source PMID

GZMB 3002 ENSG00000100453 Cleavage protein Literature; MSigDB-
GOBP_PYROPTOSIS; 
MSigDB-REACTOME_
PYROPTOSIS

32,188,940

ELANE 1991 ENSG00000197561; 
ENSG00000277571

Cleavage protein Literature; MSigDB-
GOBP_PYROPTOSIS; 
MSigDB-REACTOME_
PYROPTOSIS

29,539,421

CTSG 1511 ENSG00000100448 Cleavage protein Literature 33,692,549

GSDMA 284,110 ENSG00000167914 Executor Literature; MSigDB-
GOBP_PYROPTOSIS

29,362,479; 31,690,840; 
29,695,864; 35,110,732

GSDMB 55,876 ENSG00000073605 Executor Literature; MSigDB-
GOBP_PYROPTOSIS

32,299,851; 29,362,479; 
31,690,840

GSDMC 56,169 ENSG00000147697 Executor Literature; MSigDB-
GOBP_PYROPTOSIS

29,362,479

GSDMD 79,792 ENSG00000104518; 
ENSG00000278718

Executor Literature; MSigDB-
GOBP_PYROPTOSIS; 
MSigDB-REACTOME_
PYROPTOSIS

32,553,275; 32,109,412; 
26,375,003; 26,375,259; 
26,611,636; 27,281,216; 
27,383,986; 27,339,137; 
27,418,190; 27,573,174; 
29,195,811; 29,274,245; 
29,362,479; 31,690,840

DFNA5 GSDME 1687 ENSG00000105928 Executor Literature; MSigDB-
GOBP_PYROPTOSIS; 
MSigDB-REACTOME_
PYROPTOSIS

28,459,430; 32,188,940; 
29,362,479; 31,690,840

DFNB59 PJVK 494,513 ENSG00000204311 Executor Literature 29,362,479

PLCG1 5335 ENSG00000124181 Pore-forming Literature 29,937,272

RRAGA RAGA 10,670 ENSG00000155876 Pore-forming Literature 34,289,345; 35,058,659

RRAGC RAGC 64,121 ENSG00000116954 Pore-forming Literature 34,289,345; 35,058,659

LAMTOR1 C11orf59 55,004 ENSG00000149357 Pore-forming Literature 34,289,345; 35,058,659

LAMTOR2 28,956 ENSG00000116586 Pore-forming Literature 34,289,345; 35,058,659

MAPKSP1 LAMTOR3 8649 ENSG00000109270 Pore-forming Literature 34,289,345; 35,058,659

C7orf59 LAMTOR4 389,541 ENSG00000188186 Pore-forming Literature 34,289,345; 35,058,659

HBXIP LAMTOR5 10,542 ENSG00000134248 Pore-forming Literature 34,289,345; 35,058,659

FNIP2 57,600 ENSG00000052795 Pore-forming Literature 34,289,345; 35,058,659

FLCN Folliculin 201,163 ENSG00000154803 Pore-forming Literature 34,289,345; 35,058,659

NINJ1 4814 ENSG00000131669 Pore-forming Literature 33,472,215

IL1A 3552 ENSG00000115008 Released substance MSigDB-REACTOME_
PYROPTOSIS

IL1B 3553 ENSG00000125538 Released substance Literature; MSigDB-
REACTOME_PYROP-
TOSIS

29,195,811; 29,274,245

IL18 3606 ENSG00000150782 Released substance Literature; MSigDB-
REACTOME_PYROP-
TOSIS

29,195,811; 29,274,245

HMGB1 3146 ENSG00000189403 Released substance Literature; MSigDB-
REACTOME_PYROP-
TOSIS

33,692,549

GPX4 2879 ENSG00000167468 Negative regulators Literature 29,937,272

CHMP1A 5119 ENSG00000131165 Negative regulators Literature 30,467,171; 32,669,618

CHMP1B 57,132 ENSG00000255112 Negative regulators Literature 30,467,171; 32,669,618

CHMP2A 27,243 ENSG00000130724 Negative regulators Literature; MSigDB-
REACTOME_PYROP-
TOSIS

30,467,171; 32,669,618
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Table 1 (continued)

Symbol ID Aliase or full name Gene ID Ensembl ID Known functions 
reported by previous 
studies

Source PMID

CHMP2B 25,978 ENSG00000083937 Negative regulators Literature; MSigDB-
REACTOME_PYROP-
TOSIS

30,467,171; 32,669,618

VPS24 CHMP3 51,652 ENSG00000115561 Negative regulators Literature; MSigDB-
REACTOME_PYROP-
TOSIS

30,467,171; 32,669,618

CHMP4A 29,082 ENSG00000254505; 
ENSG00000285302

Negative regulators Literature; MSigDB-
REACTOME_PYROP-
TOSIS

30,467,171; 32,669,618

CHMP4B 128,866 ENSG00000101421 Negative regulators Literature; MSigDB-
REACTOME_PYROP-
TOSIS

30,467,171; 32,669,618

CHMP4C 92,421 ENSG00000164695 Negative regulators Literature; MSigDB-
REACTOME_PYROP-
TOSIS

30,467,171; 32,669,618

CHMP5 51,510 ENSG00000086065 Negative regulators Literature 30,467,171; 32,669,618

CHMP6 79,643 ENSG00000176108 Negative regulators Literature; MSigDB-
REACTOME_PYROP-
TOSIS

30,467,171; 32,669,618

CHMP7 91,782 ENSG00000147457 Negative regulators Literature; MSigDB-
REACTOME_PYROP-
TOSIS

30,467,171; 32,669,618

KIAA0174 CHMP8; IST1 9798 ENSG00000182149 Negative regulators Literature 30,467,171; 32,669,618

CFLAR cFILP 8837 ENSG00000003402 Negative regulators Literature 32,193,329

DDX3X 1654 ENSG00000215301 Negative regulators Literature 31,511,697

MIR223 MicroRNA 223 407,008 ENSG00000284567 Negative regulators Literature; MSigDB-
GOBP_PYROPTOSIS

23,772,809

APIP 51,074 ENSG00000149089 MSigDB-GOBP_PYROP-
TOSIS

ZAK MAP3K20 51,776 ENSG00000091436 MSigDB-GOBP_PYROP-
TOSIS

TREM2 54,209 ENSG00000095970 MSigDB-GOBP_PYROP-
TOSIS

DPP9 91,039 ENSG00000142002 MSigDB-GOBP_PYROP-
TOSIS

BAK1 578 ENSG00000030110 MSigDB-REACTOME_
PYROPTOSIS

TP63 8626 ENSG00000073282 MSigDB-REACTOME_
PYROPTOSIS

BAX 581 ENSG00000087088 MSigDB-REACTOME_
PYROPTOSIS

IRF1 3659 ENSG00000125347 MSigDB-REACTOME_
PYROPTOSIS

IRF2 3660 ENSG00000168310 MSigDB-REACTOME_
PYROPTOSIS

TP53 7157 ENSG00000141510 MSigDB-REACTOME_
PYROPTOSIS

CYCS 54,205 ENSG00000172115 MSigDB-REACTOME_
PYROPTOSIS

1. MSigDB-GOBP_PYROPTOSIS: 28 genes

2. MSigDB-REACTOME_PYROPTOSIS: 27 genes

3. MSigDB-GOBP_PYROPTOSIS and MSigDB-REACTOME_PYROPTOSIS were downloaded from MSigDB, with the files named “MSigDB-GOBP_PYROPTOSIS.v2023.1.Hs.
grp” and “MSigDB-REACTOME_PYROPTOSIS.v2023.1.Hs.grp”
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LOH_n_seg is in the file “ABSOLUTE_scores.tsv.” For 
the cancer hallmark pathways, we obtained the gene set 
“h.all.v2023.1.Hs.symbols.gmt” from MSigDB [82–84] 
and performed pathway enrichment analysis using the 
fgsea package [91].

Single‑cell and spatial transcriptome analysis of melanoma 
datasets
The Seurat [92] and BayesSpace [32] packages were used 
to analyze single-cell transcriptome data and spatial 
transcriptome data, respectively. Spatial transcriptome 
data were preprocessed by performing PCA on the top 
2000 most highly variable genes (HVGs) and then clus-
tered based on the first seven principal components with 
10,000 Markov chain Monte Carlo algorithm (MCMC) 
iterations. PScore was calculated using the PScore model 
algorithm described above.

Statistical analyses
Pearson’s correlation r was used to measure statistical 
dependence between the normalized and log2-transformed 
expression levels of different genes. Correlation analyses 
between PScore and immune or DNA damage features 
were based on the Pearson method. The Wilcoxon rank 
sum test was employed to determine a significant difference 
in PScore between different groups. For multiple compari-
sons, the p-value was adjusted by using the BH method for 
multiple testing. Statistical analysis was performed using R 
(v4.1.2, https:// cran.r- proje ct. org/). The threshold for con-
sidering p-value or p-value corrected by the FDR method 
as significant was set at 0.05. For forest plot or Cox regres-
sion analysis, HR > 1 and p-value < = 0.05 indicated risk 
factors, and HR < 1 and p-value < = 0.05 indicated protec-
tive factors; p-value > 0.05 indicated nonsignificant factors. 

Specific details can be viewed in R codes (GitHub: https:// 
github. com/ Wenqi ong9/ melan oma_ PScore).

Results
Pyroptosis can act as a prognostic factor in metastatic 
cutaneous melanoma
To explore the role of pyroptosis in melanoma patients, 
we collected 75 experimentally validated PRGs from 
the literature and MSigDB (Table  1) [4, 5, 9, 10, 18, 36, 
37, 39–75, 82–84, 93]. By evaluating 74 PRGs (except 
for MIR223, see Methods), we found that these genes 
showed distinct expression patterns in primary and 
metastatic melanoma from the TCGA-SKCM cohort 
(Additional file  1: Fig. S1A, B). For both primary 
and metastatic melanoma, these genes were divided 
into three categories based on hierarchical cluster-
ing. Although the correlation was very high in meta-
static disease, it was partially lost in primary disease. 
For example, CASP4, NLRP1, MEFV, IL18, and NINJ1 
correlated positively with GSDMD in metastatic mela-
noma patients but not in primary melanoma patients 
(Additional file  1: Fig. S1C). Thus, we performed NMF 
to classify primary and metastatic melanoma based 
on PRGs (Additional file  1: Fig. S1D, E). For metastatic 
melanoma, patients in cluster 3 with high expression of 
PRGs showed a survival advantage compared to those in 
cluster 1 (Fig. 1A, B, HR = 0.46, 95% CI = 0.33–0.63, log-
rank test, P = 9.9E − 07). We further performed univariate 
Cox regression analysis for the 74 PRGs in melanoma and 
found that 34 PRGs had a significant effect on the OS of 
metastatic melanoma patients, with most acting as pro-
tective factors (Fig.  1C). Moreover, most of these PRGs 
showed significantly positive expression correlations, 
except for BAK1, DPP9, and BAX, which were unfavora-
ble prognostic factors (Additional file 1: Fig. S1F). Many 
pairwise correlations between these 34 genes were not 

Fig. 1 Clinical relevance of pyroptosis-related genes in metastatic cutaneous melanoma. A Heatmap showing expression of 74 PRGs in different 
NMF clusters or PScore groups of metastatic patients in the TCGA-SKCM cohort; red and blue denote high and low expression, respectively. 
The horizontal axis represents the patients, and the vertical axis represents the PRGs. Progression-free survival (PFS), overall survival (OS), PScore, 
and patient identities are shown above the heatmap, and the units of PFS and OS in the bar chart are days. Light green and green are used 
to represent “Low_PS” and “High_PS,” and the grouping threshold was determined by the surv_cutpoint function. Red, blue, and orange represent 
“Cluster 1,” “Cluster 2” and “Cluster 3” derived from NMF. The results of univariate Cox regression analysis of PRGs are annotated on the left, as well 
as the PRGs selected as features during NMF. PRGs were partitioned into three subclusters (PRGs_cluster) labeled 1, 2, and 3 on the vertical axis 
by k-means clustering. B Kaplan‒Meier (KM) curves for OS in metastatic melanoma patients stratified by the NMF algorithm (see the “Methods” 
section for statistical analysis). The figure above shows the KM curves, with the x-axis showing OS (unit: year) and the vertical axis showing OS rate. 
The colors of the KM curves represent different clusters. The figure below shows the number of patients at risk at the corresponding time point. 
C Forest plot showing univariate Cox regression analysis of 74 PRGs in metastatic melanoma patients. The x-axis represents HR, and the y-axis 
represents PRGs. Insignificant factors and significant protective and risk factors are shown in yellow, blue, and red, respectively. When HR > 1 
and p-value < 0.05, the gene was considered a risk factor; when HR < 1 and p-value < 0.05, the gene was considered a protective factor. D 
Comparison of PScore across NMF-derived clusters. The x-axis represents NMF-derived clusters and the y-axis represents PScore. E KM curves for OS 
in metastatic melanoma patients stratified by PScore in TCGA-SKCM. F–H KM curves for OS in metastatic melanoma patients stratified by PScore 
using 3 independent validation datasets with traditional treatment

(See figure on next page.)

https://cran.r-project.org/
https://github.com/Wenqiong9/melanoma_PScore
https://github.com/Wenqiong9/melanoma_PScore
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found in primary melanoma (Additional file 1: Fig. S1B, 
S1F), as mentioned above (Additional file  1: Fig. S1C). 
This suggests that these 31 PRGs, which are favorable 
prognostic factors, can serve as a signature gene set to 
indicate pyroptosis activity and predict prognosis. Thus, 
we constructed a pyroptosis-related gene score (PScore) 

model based on the 31 prognostic protective PRGs, most 
of which correlated positively based on ssGSEA [84, 86] 
(see the “Methods” section). We validated the perfor-
mance and robustness of the PScore model by compar-
ing it among known pyroptosis statuses in three publicly 
available datasets from GEO (GSE57253, GSE153494, 

Fig. 1 (See legend on previous page.)
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and GSE192714). The results showed that samples under 
pyroptotic conditions had a significantly higher PScore 
than controls (Additional file  1: Fig. S2), indicating the 
robustness of the model. Cluster 2 and 3, with a favora-
ble prognosis, had a significantly higher PScore than 
Cluster 1 (Fig. 1D; Wilcoxon rank-sum test, P < 2.2E − 16, 
P = 3.5E − 12), and metastatic melanoma patients with 
a higher PScore showed better OS (Fig.  1E, log-rank 
test, HR = 0.45, 95% CI = 0.34–0.60, P = 4.1E − 08). The 
reliability of PScore was validated in three independ-
ent melanoma cohorts obtained from GEO (Fig.  1F–H. 
GSE19234: HR = 0.19, 95% CI = 0.043–0.59, P = 0.019. 
GSE54467: HR = 0.31, 95% CI = 0.15–0.64, P = 8.6E − 04. 
GSE65904: HR = 0.48, 95% CI = 0.31–0.72, P = 3.6E − 04). 
To examine whether PScore can serve as an independent 
prognostic factor, we performed multivariate Cox regres-
sion analysis including it and clinical characteristics (e.g., 
age, sex, and tumor stage) and it to be a robust and inde-
pendent prognostic biomarker for evaluating outcomes 
of metastatic melanoma (Additional file  1: Fig. S3A, 
HR = 0.39, 95% CI = 0.28–0.54, P < 0.001). This result was 
confirmed in three other publicly available independ-
ent cohorts (Additional file  1: Fig. S3B–D. GSE19234: 
HR = 0.14, 95% CI = 0.026–0.76, P = 0.023; GSE54467: 
HR = 0.46, 95% CI = 0.22–0.97, P = 0.041; GSE65904: 
HR = 0.42, 95% CI = 0.27–0.67, P < 0.001).

Primary melanoma was classified into 3 clusters based 
on expression levels of PRGs using NMF (Additional 
file  1: Figs. S1D, S4A), with no significant difference in 
survival among these clusters (Additional file 1: Fig. S4B). 
Additionally, three genes showed significant associations 
with OS (Additional file 1: Fig. S4C). Cluster 3 had high 
expression of these genes, such as NOD2 and IL18, and 
high PScore (Additional file 1: Fig. S4D), but according to 
survival analysis, this model based on metastatic mela-
noma patients may not be suitable for primary melanoma 
patients (Additional file 1: Fig. S4E).

In summary, the results indicate that PScore can pre-
dict the prognosis of metastatic melanoma and be used 
to reflect the potential pyroptosis status based on tran-
scriptome data.

PScore is associated with druggable mutations
CM has a high mutation load, and targeted therapy is an 
important therapeutic method for melanoma with driver 
gene alterations (i.e., BRAF, NRAS, and KIT). We next 
explored whether an interaction exists between pyrop-
tosis and these clinically targetable driver mutations and 
high-frequency mutations (Additional file  1: Fig. S5A–
B). First, the mutation status and PScore of the same 
patients were visualized using a heatmap, with a signifi-
cantly higher BRAF mutation frequency in the group 
with a higher PScore (Fig. 2A, B). Next, we compared the 

PScore of the mutated and wild-type groups under dif-
ferent gene mutation conditions to determine any differ-
ences (Fig. 2C, Additional file 1: Fig. S5C, D). Melanoma 
patients with BRAF mutations also showed a significantly 
higher PScore than patients without BRAF mutations 
(Fig.  2C). The effect of BRAF mutation on metastatic 
melanoma is controversial [94, 95], though our study 
found that metastatic patients with BRAF mutations in 
the TCGA-SKCM cohort had favorable survival (Fig. 2D, 
P = 0.024). To further investigate the clinical implication 
of BRAF mutation and PScore, we divided patients into 
four groups and performed survival analysis by com-
bining mutation status and PScore. The patients in the 
HighPS_BRAF group and HighPS_WT group had bet-
ter prognosis (Fig.  2E, P = 1.3E − 08, Additional file  1: 
Fig. S5E, P < 0.001), suggesting that pyroptosis may be 
related to BRAF mutation and that promoting pyroptosis 
in patients and combining it with BRAF-targeted therapy 
may improve treatment outcomes.

Pyroptosis is associated with cancer and immune features
To explore the mechanism of pyroptosis in melanoma, 
we performed association analysis between PScore and 
the enrichment score of hallmark gene sets from MSigDB 
[82–84] across seven melanoma datasets. We observed 
significantly positive correlations between PScore and 
immune-related hallmark pathways in all datasets, includ-
ing TNFA_signaling_via_NFKB, KRAS_signaling_up, 
IFN_gamma_response, IFN_alpha_response, inflammatory_
response, IL6_JAK_STAT_signaling, IL2_STAT5_signaling, 
and complement pathway, among others (Fig.  3A). In con-
trast, multiple carcinogenic signaling pathways were found 
to correlate significantly negatively with PScore in multiple 
datasets, such as the MYC_targets_V2 and DNA_repair path-
ways (Fig. 3A). In addition, PScore showed a slightly negative 
correlation with chromatin instability (Fig. 3B–D), including 
loss of heterozygosity (LOH), aneuploidy, and homologous 
recombination deficiency (HRD).

Regarding immune features, PScore was also associ-
ated with immune cell infiltration, as calculated using the 
MCP-counter method. NK cells, T cells, cytotoxic lym-
phocytes, monocytic lineage cells, and B lineage cells were 
enriched in the metastatic_High_PS group compared 
with the metastatic_Low_PS group (Fig.  4A). The corre-
lation between PScore and these cell types was validated 
across seven datasets (Additional file 1: Fig. S6) showing 
that pyroptosis correlated positively with most stimu-
latory immune checkpoints (Fig.  4B), such as CXCL9 
and ICOS, which are associated with T-cell activation, 
and IFNG, which plays crucial roles in activating effec-
tor immune cells and enhancing antigen presentation 
[96]. PScore was also positively related to T-cell receptor 
richness (TCR, Fig.  4C), B-cell receptor richness (BCR, 
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Fig. 2 Combining clinical targetable mutations and PScore distinguishes the survival of BRAF-mutated melanoma patients. A Heatmap showing 
different mutation statuses and corresponding PScore groups of metastatic patients in the TCGA-SKCM cohort. The top 10 high-frequency 
mutations, common therapeutic targets, and PRGs with frequencies greater than 10% are displayed. Mutation marked with “***” on the left 
indicates significant differences in PScore. B Chi-square test for different PScore groups and BRAF mutations. The x-axis represents the PScore group, 
the y-axis represents the proportion of patients, and different colors in the bar graph represent BRAF mutation status. C Comparison of PScore 
between BRAF-mutated and non-BRAF-mutated groups in all metastatic melanoma. The x-axis represents BRAF mutation status, and the y-axis 
represents PScore. D Survival analysis based on whether BRAF is mutated in metastatic melanoma patients. The x-axis represents survival time (unit: 
year), the y-axis represents OS rate. E Survival analysis based on BRAF mutation and PScore groups in metastatic melanoma patients

Fig. 3 Pyroptosis is associated with cancer hallmark pathways and multiple cancer features. A Correlation of PScore with cancer hallmark pathways 
in multiple melanoma cohorts. The horizontal axis is the pathway names, and the vertical axis is the dataset identifiers. “TCGA_metastatic” refers 
to metastatic TCGA-SKCM patients. Red and blue denote high and low correlation coefficients, respectively. Significant points are labeled using 
black diamonds. B-D Correlation of PScore with DNA damage measures in metastatic melanoma. The x-axis is PScore, and the y-axis represents 
loss of heterozygosity (LOH), aneuploidy, and homologous recombination deficiency (HRD) from left to right. Each point represents a patient, 
and the blue line is the fitted correlation line. Log10(LOH_n_seg) denotes the LOH data were log10-transformed
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Fig. 4D), cytolytic activity (CYT, Fig. 4E), and the T-cell-
inflamed gene expression profile (GEP, Fig.  4F). These 
results indicate that pyroptosis may be closely related to 

immunogenicity and that patients with a high PScore may 
tend to have “hot tumors,” accompanied by higher TCR/
BCR clone richness, CYT score, GEP level, and thus an 

Fig. 4 Pyroptosis is associated with multiple immune features. A Heatmap showing the microenvironmental cell population of different clusters 
in TCGA-SKCM patients. The x-axis represents different patients, and these patients were divided into 4 clusters. In each cluster, patients were ranked 
by PScore from lowest to highest. Cell types are annotated on the right of the plot. *** indicates P < 0.001 and represents a significant difference 
in the degree of immune infiltration between the “metastatic_High_PS” and “metastatic_Low_PS” groups. Red and blue denote high and low 
expression, respectively. Progression-free survival (PFS), overall survival (OS), and patient clusters are shown above the heatmap. B Correlation 
of PScore with stimulated immune checkpoints in multiple melanoma cohorts. Red and blue indicate the magnitudes of correlations: red, high; 
blue, low. Significant points are labeled using black diamonds. The horizontal axis is the checkpoints, and the vertical axis is the dataset identifiers. 
“TCGA_metastatic” refers to metastatic TCGA-SKCM patients. (C-D) Correlation of PScore with TCR/BCR diversity in metastatic TCGA-SKCM patients. 
The x-axis is PScore, and the y-axis is log2(TCR/BCR diversity). Each point represents a patient, and the blue line is the fitted correlation line. E–F Bar 
plots showing the correlation between PScore and cell toxicity signatures (E: CYT; F: GEP) in metastatic TCGA-SKCM and GEO datasets. The x-axis 
represents the Pearson correlation coefficient, and the y-axis represents different datasets; the color of the bar graph represents the − log10 (p-value)
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activated immune microenvironment. These features may 
explain, at least in part, the survival advantage of mela-
noma patients with a higher PScore.

Heterogeneity of pyroptosis status in the TME at the bulk/
single‑cell and spatial transcriptome levels
As we found pyroptosis to be associated with multiple 
immune response pathways and immune cells (Figs.  3A 
and 4A), we further dissected the relationships and 
assessed the four TME subtypes [97] that act as gener-
alized immunotherapy biomarkers across many cancer 
types (“immune-depleted” (D)-; “fibrotic” (F)-; “immune-
enriched, nonfibrotic” (IE)-; and “immune-enriched, 
fibrotic” (IE/F)-TME subtypes) in multiple independent 
melanoma datasets (Fig.  5A). We observed that PScore 
in the D-TME subtype was consistently lower than that 
in the other three subtypes across the six melanoma 
datasets. This result suggests that low-PScore tumors 
may represent “cold tumors,” which are associated with 
immunotherapy resistance.

Considering the heterogeneity of the TME, we further 
explored pyroptosis status at a single-cell resolution. We 
built PScore to represent the pyroptosis status for each 
single cell according to the same method as described 
above; for GSE115878, a variety of cells underwent 
pyroptosis with obviously different PScore (Fig.  5B–C). 
PScore was generally lowest for malignant cells and fibro-
blasts but higher for immune cells, such as T cells, mono-
cytes, and B cells. Consistent results were observed when 
using another independent melanoma single-cell RNA-
seq dataset (Fig. 5D–E, GSE72056).

Although scRNA-seq achieves high-throughput and 
single-cell level profiling of gene expression, spatial 
information is not retained because tissue is dissoci-
ated for sample preparation. To investigate the spatial 
characteristics of pyroptosis in the TME, we obtained 
spatial transcriptome melanoma data and clustered and 
annotated cell types, as previously described [32]. We 
observed that annotated macrophages (yellow) and a few 
T/B cells (cyan) infiltrated around the tumor cells (gray, 
Fig.  5F). Interestingly, PScore was higher in the tumor 
border with high infiltration of macrophages and in 
regions enriched with T/B cells than in the tumor center 
and stromal regions (Fig. 5G, H). Moreover, the expres-
sion of key genes for pyroptosis, such as AIM2, GSDMD, 
IL18, IRF1, and NLRP1, exhibited trends similar to 
PScore (Additional file  1: Figs. S7, S8). Furthermore, 
different cells were dominated by different pyroptotic 
pathways. Regarding caspases, tumor cells exhibited pre-
dominantly high expression of CASP4, and immune cells 
showed high expression of CASP1, CASP4, and CASP8, 
while CASP5 plays an important role in stromal cells 
(Additional file 1: Fig. S8). All of these findings indicate 

heterogeneity of pyroptosis status among TME cell popu-
lations; in particular, there was a predominant difference 
in PScore between malignant cells and immune cells. 
Thus, inducing pyroptosis in tumor cells may be a new 
cancer treatment strategy.

Correlation between pyroptosis status 
and immunotherapy efficacy
To verify whether PScore can predict the clinical out-
comes of melanoma patients treated with immuno-
therapy, we visualized expression of the PRGs used to 
calculate PScore in our in-house data cohort [31] and 
observed higher expression in patients who responded 
to anti-PD1 immunotherapy than in nonresponders 
(Fig. 6A). Then, we found that immunotherapy respond-
ers had a significantly higher PScore than nonrespond-
ers in our in-house data and two other independent 
ICB treatment datasets [98, 99] (Fig.  6B, in-house data: 
P = 4.9E − 03; GSE35640: P = 7.5E − 03; PRJEB23709: 
P = 0.022). In addition, a significantly higher percent-
age of responders was found in the High_PS group in 
these three ICB treatment datasets (Fig.  6C, in-house 
data: P = 1.2E − 03; GSE35640: P = 0.043; PRJEB23709: 
P = 0.013). Survival analyses showed that patients with a 
high PScore had significantly better therapeutic outcomes 
than those with a low PScore, consistent with the previ-
ous results (Fig.  6D–E, in-house data: HR = 0.24, 95% 
CI = 0.12–0.48, P = 1.6E − 05; GSE91061: HR = 0.43, 95% 
CI = 0.21–0.92, P = 0.025; PRJEB23709: HR = 0.24, 95% 
CI = 0.076–0.76, P = 8.7E − 03; phs00452.v3: HR = 0.56, 
95% CI = 0.35–0.90, P = 0.014; TCGA: HR = 0.29, 95% 
CI = 0.13–0.65, P = 1.5E − 03). Finally, we performed 
the analysis using protein data and obtained the same 
results (Fig.  6F–H, 6F: P = 0.048; 6G: P = 4.4E − 03; 6H: 
P = 0.023). These findings suggest that pyroptosis is a pro-
tective factor in melanoma and has the potential to serve 
as a marker for immunotherapy response.

Discussion
Pyroptosis has received extensive attention because of 
its great potential in cancer treatment [14], and there 
are at least 6 relevant clinical trials in progress [100]. In 
this study, we constructed the PScore model to evalu-
ate pyroptosis status in melanoma patients, as there 
is as yet no applicable and quick method to estimate 
pyroptosis status other than electron microscopy or 
PCR [101–103]. Although some pyroptosis-related 
models based on RNA sequencing [104, 105] have been 
explored to predict the clinical outcome of cutaneous 
melanoma patients, in-depth research is still lacking. 
We found that PRGs have different expression patterns 
in primary and metastatic tumors and that the NMF 
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method based on PRGs can predict the prognosis of 
metastatic patients but not primary patients. By inte-
grating the single-cell and spatial transcriptome, we 

revealed the heterogeneity of the expression patterns 
of pyroptosis-related genes at single-cell and spatial 
levels, partially explaining the side effects of pyroptosis 

Fig. 5 Single-cell and spatial transcriptomic landscapes of PScore. A Boxplots show PScore in different TME subtypes of TCGA and five other 
datasets, including GSE19234, GSE35640, GSE54467, GSE65904, and PRJEB23709. The x-axis is TME subtype, and the y-axis is PScore. B, D 
Dimensionality reduction plots and feature plots of PScore in two melanoma single-cell datasets. The same cell types in both datasets are colored 
with the same color. The change in the gray, blue, and cyan colors in the legend represents the change in PScore from low to high. C, E Violin plots 
and dot plots to visualize PScore in different cell types. The x-axis is the TME subtype, and the y-axis of the violin plot is PScore. The color of different 
cells is the same as the dimensionality reduction plots above. For dot plot, the changes in the blue, white, and red colors in the legend represent 
the change in PScore from low to high, and the size of the dot indicates the expression ratio. F, G Cell type annotation and corresponding level 
of PScore in spatial transcriptome data. The whole tissue plane is annotated into four cell types: macrophages (yellow), stromal cells (purple), 
melanoma cells (dark gray), and T/B cells (cyan). Blue, white, and purple indicate the magnitudes of PScore: blue, low; purple, high. H Violin plot 
to visualize comparison of PScore in different clusters consistent with (F). The x-axis is cell type, and the y-axis is PScore
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drugs. We analyzed the performance of this model in 
metastatic melanoma patients receiving immunother-
apy and found that it can serve as a predictive model 
for the immune response in melanoma patients treated 

with immunotherapy, including one in-house and three 
public RNA-seq cohorts and one proteomics cohort.

First, we collected PRGs as comprehensively as possi-
ble based on previous studies (Table 1). Compared with 
published pyroptosis-related prognostic models, PScore 

Fig. 6 Clinical relevance of PScore in melanoma cohorts treated with ICB therapy. A Heatmap showing expression of 31 PRGs and corresponding 
clinical features of our in-house data; red and blue denote high and low expression, respectively. The horizontal axis represents the patients, 
and the y-axis represents the PRGs. Legends on the right, including age, sex, subtype, immune response, PScore, and PScore group, are annotated 
above the heatmap. B Boxplots show PScore in different immune responses of in-house data, PRJEB23709 and GSE35640. The x-axis represents 
the immune response (NR, nonresponder; R, responder). C Bar plots show chi-square test results of immune response and PScore groups 
of in-house data, PRJEB23709 and GSE35640. The x-axis represents the PScore group, the y-axis represents the proportion of patients, and the colors 
represent the immune response. D–F KM curves for PFS or OS of in-house data, GSE91061, PRJEB23709, phs000452.v3, TCGA-SKCM patients 
with immunotherapy and proteomics data. The x-axis represents survival time (unit: year or month), and the y-axis represents OS or PFS rate. 
G Boxplots show PScore in different immunotherapy responses of proteomics data. The x-axis represents the immune response, and the y-axis 
represents PScore. H Bar plot showing the chi-square test results of immunotherapy response and PScore groups of proteomics data. The x-axis 
represents the PScore group, and the y-axis represents the proportion of patients
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showed superior performance in multiple independent 
datasets (Additional file 1: Fig. S9A, B, Additional file 2: 
Table  S3). We also investigated whether a larger initial 
gene set leads to better model performance. We analyzed 
the correlation between the number of input genes and 
the c-index and found no significant correlation (Addi-
tional file 1: Fig. S10).

Moreover, considering the difference between primary 
and metastatic tumors, we analyzed them separately 
and found that PRGs indeed have different manifesta-
tions in primary and metastatic melanoma. Most PRGs 
act as protective factors in metastatic melanoma but not 
significantly in primary melanoma. BRAF kinase is the 
core component of the RAS-RAF-MEK-ERK signaling 
cascade (MAPK signaling) pathway, and BRAF mutation 
generally indicates poor prognosis. We conclude that 
PScore is related to BRAF mutation and KRAS signal-
ing, and we infer that pyroptosis protects against overac-
tivated MAPK signaling. A previous study also supports 
the protective effect of pyroptosis on melanoma: BRAFi 
and MEKi targeted therapy induces GSDME cleavage 
and mediates pyroptosis, but BRAFi + MEKi-resistant 
disease lacks pyroptosis markers [14], suggesting possi-
ble interaction with pyroptosis and the RAS-RAF-MEK-
ERK (MAPK) pathway. However, whether pyroptosis is 
directly involved in MAPK pathway regulation or has an 
indirect correlation needs further study.

Furthermore, studies on pyroptosis are focusing on 
inducing tumor cell pyroptosis by GSDME cleavage [106, 
107]. Our single-cell analyses suggest that pyroptosis can 
occur in any type of cell and that inducing “repairable” 
pyroptosis in immune cells may provide a new perspec-
tive for future treatment. Our results suggest an associa-
tion between pyroptosis and immunotherapy response, 
indicating the potential of pyroptosis in tumor treat-
ment. We investigated the heterogeneity of pyropto-
sis levels among different components of the TME and 
observed significantly distinct levels, whereby tumor 
cells showed a significantly lower PScore than immune 
cells and immune cell subpopulations displayed differ-
ent levels of pyroptosis. All of the above findings indicate 
that the whole TME, rather than a specific cell type such 
as monocytes, affects the prognosis of patients. None-
theless, it is still meaningful to study the role of pyrop-
totic tumor-associated macrophages (TAMs) in tumor 
progression because the TAM PScore was the highest, 
which makes these cells relatively easy to study. Spatial 
transcriptome data also revealed a consistent pattern of 
pyroptosis in the TME. The pyroptosis status of immune 
cells was higher than that of tumor cells, also suggesting 
potential side effects when using pyroptosis-inducing 

drugs. Ideally, we should only induce pyroptosis of bad 
players (tumor cells and immune or stromal cells that 
promote tumor growth), whereas immune cells or stro-
mal components that have antitumor effects should be 
protected from pyroptosis or be repaired. We look for-
ward to future development of pyroptosis-targeting 
drugs, and we anticipate that nanoparticles and aptam-
ers loaded with pyroptosis-related drugs that can be 
selectively enriched in tumor cells will be available in the 
future.

Limitations
The mechanism of pyroptosis primarily involves the acti-
vation of protein cleavage. Our model predominantly 
relies on transcriptome data. Although we did endeavor 
to incorporate proteome data, importantly, only a subset 
of model features could be identified using the protein 
dataset. As a result, additional validation at the protein 
level remains imperative for verification.

Conclusions
A variety of cells undergoing pyroptosis in melanoma 
constitute a heterogeneous environment for tumors. 
Pyroptosis can act as a predictor of survival and immune 
response and a therapeutic target in melanoma patients.
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Additional file 1:  Table S1. Summary of human melanoma datasets. 
Fig. S1. Expression pattern and NMF clustering of PRGs in TCGA-SKCM. 
(A) Gene expression correlation of 74 pyroptosis-related genes in primary 
(bottom left) and metastatic (top right) samples. Blue and red indicate 
the magnitudes of correlations: blue, high; red, low. Significant points are 
labeled using *. Hierarchical clustering based on gene expression was 
used. (B) The bar graph shows the number of PRGs correlating positively 
or negatively with each PRG, with the primary tumor group on the left 
and metastatic tumor group on the right. The X axis represents the 
number of positively or negatively correlating PRGs, and the Y axis repre-
sents the PRGs. The positive and negative signs of the X axis coordinates 
represent positive or negative correlations. A significant correlation was 
considered when the absolute value of Pearson correlation coefficient 
was greater than 0.3 and p-value < 0.05. (C) Venn diagram showing PRGs 
correlating with GSDMD expression in primary and metastatic tumors. The 
number of genes in each part of the Venn diagram and their percentage 
in the overall population (26 genes) are indicated in the figure. Meta-
static: 13 (50%); overlap: 9 (34.6%); primary: 4 (15.4%). (D-E) Optimal NMF 
clustering of mRNA expression profiles for primary (D) and metastatic (E) 
samples. The left image shows the parameters of NMF clustering, and 
the optimal rank was selected as the front point of the line segment 
with the minimum slope in the cophenetic plot. The image on the right 
is the consensus matrix drawn based on the features extracted by the 
NMF algorithm. (F) Gene expression correlation of 34 PRGs in metastatic 
samples. Both the horizontal and vertical axes are 34 PRGs. Blue and 
red indicate the magnitudes of the correlations: blue, high; red, low. 
Significant points are labeled using black asterisks. Fig. S2. Validation 
of the PScore model using 3 pyroptosis-related datasets. Pyroptosis-
related datasets, including GSE57253, GSE153494 and GSE192714, were 
obtained from GEO, and PScore was calculated with significant genes 
using univariate Cox regression analysis. The x axis represents the control 
group and experimental groups in the corresponding dataset. PScore was 
significantly higher in the experimental groups than the control group 
(GSE57253: left, Kruskal‒Wallis, P = 5.7E-03; GSE153494: middle, Kruskal‒
Wallis, P = 0.014; GSE192714: right, Wilcoxon, P = 0.029). In GSE57253, 
NLRC4-macrophage activation syndrome (MAS) and neonatal-onset 
multisystem inflammatory disease (NOMID) are related to NLRC4 or 
NLRP3, respectively, and accompanied by IL-1β and IL-18 overproduction 
and increased pyroptosis. GSE153494 was used to describe the progres-
sion status of myocardial infarction associated with pyroptosis over time. 
Mll4 knockout elicits GSDMD-mediated pyroptosis in GSE192714. Fig. S3. 
Forest plot representation of multivariate Cox regression analyses using 4 
datasets. Multivariate Cox regression analyses of PScore and 3 other vari-
ables, including sex, age and stage, in TCGA-SKCM (A) and 3 independent 
melanoma datasets, including GSE19234 (B), GSE54467 (C) and GSE65904 
(D). Risk factors: HR > 1 and p-value <= 0.05; protective factors: HR < 1 and 
p-value <= 0.05; nonsignificant factors: p-value > 0.05. Fig. S4. Clinical 
relevance of PRGs in primary cutaneous melanoma. (A) Heatmap show-
ing expression of 74 PRGs in different NMF clusters or PScore groups of 
primary patients in the TCGA-SKCM cohort; red and blue denote high and 
low expression, respectively. The horizontal axis represents the individual 
patients, and the vertical axis represents the PRGs. PFS, OS and patient 
identities are shown above the heatmap. Light green and green are used 
to represent the ‘Low_PS’ and ‘High_PS’ groups. Red, blue and orange rep-
resent ‘Cluster_1’, ‘Cluster_2’ and ‘Cluster_3’ derived from NMF. The results 
of univariate Cox regression analysis of PRGs are annotated on the left, 
as are the PRGs selected as features during NMF. PRGs were divided into 
three subclusters (PRGs_cluster) using k-means clustering. (B) KM curves 
for OS in primary samples stratified by the NMF algorithm. The x-axis 
represents survival time (unit: year), and the y-axis represents OS rate. 
The colors of the KM curves represent different NMF-derived clusters. (C) 

Forest plot showing univariate Cox regression analysis of OS with 74 PRGs 
in primary melanoma patients. The x-axis represents the HR, and the y-axis 
represents the different PRGs. Yellow and blue indicate nonsignificant 
and protective genes, respectively. Protective genes: HR < 1 and p-value 
<= 0.05; nonsignificant genes: pvalue > 0.05. (D) Comparison of PScore 
across NMF-derived clusters. The x-axis represents NMF-derived clusters, 
and the y-axis represents PScore. Colors correspond to the heatmap (A) 
and KM curve (B). (E) Kaplan‒Meier curves for OS in primary samples 
stratified by PScore. The x-axis represents survival time (unit: year), and the 
y-axis represents OS rate. The colors of the KM curves represent different 
PScore groups. Fig. S5. Combining druggable mutations and PScore 
distinguishes the survival of metastatic BRAF-mutated melanoma patients. 
(A-B) Mutation landscapes of the top 10 high-frequency mutations and 
PRGs. The horizontal axis of the heatmap represents the patients, and the 
vertical axis represents the genes. (C-D) Boxplots show PScore in different 
mutation statuses in metastatic TCGA-SKCM. C: Top 10 high-frequency 
genes. D: Common therapeutic targets and top four PRGs. The x-axis 
represents mutation statuses, and the y-axis represents PScore. (E) Forest 
plot showing the HR of survival analysis related to Figure 2E. Risk factors: 
HR > 1 and p-value <= 0.05; protective factors: HR < 1 and p-value <= 
0.05; nonsignificant factors: pvalue > 0.05. Fig. S6. Immune cell scores 
calculated with MCPcounter for seven datasets. Correlation of PScore with 
immune cell scores in multiple melanoma cohorts. The x-axis represents 
the type of infiltrating cells, and the y-axis represents the different data-
sets. ‘TCGA_metastatic’ refers to metastatic TCGA-SKCM patients. The color 
of the lattice represents the correlation coefficient. Significant points are 
labeled using black diamonds. Fig. S7. Violin plots showing expression 
of the 31 genes used to calculate PScore corresponding to Figure 5B-E. 
(A) GSE115978, (B) GSE72056. The x-axis represents the 31 PRGs, and the 
y-axis represents the different cell subpopulations. The colors of the violin 
plot reflect cell types that are consistent with Figure 5B-E. Fig. S8. Spatial 
expression of the 31 genes used to calculate PScore corresponding to 
Figure 5G-H. Blue, white and purple indicate the magnitudes of PRGs: 
blue, low; white, middle; purple, high. The corresponding cell annotations 
can be found in Figure 5F. These genes are sorted alphabetically. Fig. S9. 
Comparisons of the PScore model and other pyroptosis-related models. 
(A) Forest plot showing HR and confidence intervals of different methods 
in multiple datasets. The horizontal axis represents log10(HR), and the 
vertical axis represents different methods and datasets. (B) Bar chart show-
ing the c-index of different methods in multiple datasets. The c-index 
performance of 11 methods, including ssGSEA using 31 protective PRGs 
(PScore) and 10 obtainable pyroptosis-related models, were compared 
across four datasets. The horizontal axis represents different methods, 
the vertical axis represents the c-index, and the colors of the bar graph 
represent different datasets. Fig. S10. Correlation between the number of 
input genes and the c-index. The correlation of gene input size for the 11 
methods mentioned in Fig. S9 with concordance (c-index) across different 
datasets was analyzed. The x-axis represents the number of genes used in 
each method, and the y-axis represents the c-index.

Additional file 2: Table S2. PScore of all samples in different data-
sets. Datasets: in-house data, TCGA_metastatic, GSE19234, GSE35640, 
GSE54467, GSE65904, GSE115978, GSE72056, PRJEB23709, 2018_thrane_
melanoma. Note: PScore was calculated for all samples in the single-cell 
datasets (GSE115978, GSE72056), but only metastatic samples were used 
in subsequent analyses. Table S3. HR and c-index of pyroptosis-related 
models.

Acknowledgements
We are very grateful to Gene-Expression Omnibus (GEO) and the Cancer 
Genome Atlas (TCGA) database for providing the multi-omics and clinical 
information.

Authors’ contributions
W.C., X.C., Y.Y., and H.L. conceived and supervised the project. W.C., G.Z.2, and 
Y.Y. designed the research. W.C., Y.H., and G.Z.1 collected the data. W.C. ana-
lyzed and interpreted the data. W.C., Y.Y., Y.H., and G.Z.2 wrote the manuscript 
and W.C., H.L., Y.Y., and G.Z.2 revised the paper with input from all the other 
authors. All authors read and approved the final manuscript.

https://doi.org/10.1186/s12916-023-03175-0
https://doi.org/10.1186/s12916-023-03175-0


Page 17 of 19Chen et al. BMC Medicine           (2024) 22:24  

Funding
This work was supported by the National Natural Science Foundation of China 
(62102455), China Postdoctoral Science Foundation (2020M682587), Hunan 
Outstanding Postdoctoral Innovative Talents Program (2021RC2035), the Sci-
ence and Technology Innovation Program of Hunan Province (2023RC3078), 
the key project of National Natural Science Foundation of China (81830096, 
82130090), Science Found for Creative Research Groups of the National Natural 
Science Foundation of China (82221002), National Key Research and Develop-
ment Program of China (2022YFC2504700, 2019YFE0120800, 2019YFA0111600), 
the Natural Science Foundation of China for outstanding Young Scholars 
(82022060), Talent Young Scholars of Hunan Province (2019RS2009), and the 
Project of Intelligent Management Software for Multimodal Medical Big Data 
for New Generation Information Technology, Ministry of Industry and Informa-
tion Technology of People’s Republic of China (TC210804V).

Availability of data and materials
All data used in our analyses were described in the “Meth” section in the “col-
lection and processing” section. The resources and tools used in our analyses 
were described in each method section in the methods.

Declarations

Ethics approval and consent to participate
The experimental protocol was established, according to the ethical guide-
lines of the Helsinki Declaration and was approved by the Medical Ethics Com-
mittee of Xiangya Hospital, Central South University. The Ethics Committee 
number of our in-house data is 202103213. Written informed consent was 
obtained from individual or guardian participants.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 The Department of Dermatology, Xiangya Hospital, Central South University, 
Changsha, China. 2 Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan 
Engineering Research Center of Skin Health and Disease, Xiangya Hospital, 
Changsha, China. 3 National Clinical Research Center for Geriatric Disorders, 
Xiangya Hospital, Changsha, China. 4 Xiangya Clinical Research Center for Can-
cer Immunotherapy, Central South University, Changsha, China. 5 National 
Engineering Research Center of Personalized Diagnostic and Therapeutic 
Technology, Changsha, China. 6 Furong Laboratory, Changsha, Hunan, China. 
7 Department of Immunology and Microbiology, Shanghai Institute of Immu-
nology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, 
China. 8 Research Center of Molecular Metabolomics, Xiangya Hospital, Central 
South University, Changsha, China. 9 Big Data Institute, Central South Univer-
sity, Changsha 410083, China. 

Received: 6 March 2023   Accepted: 14 November 2023

References
 1. Dobry AS, Zogg CK, Hodi FS, Smith TR, Ott PA, Iorgulescu JB. Manage-

ment of metastatic melanoma: improved survival in a national cohort 
following the approvals of checkpoint blockade immunotherapies and 
targeted therapies. Cancer Immunol Immunother. 2018;67(12):1833–44.

 2. Rozeman EA, Hoefsmit EP, Reijers ILM, Saw RPM, Versluis JM, Krijgs-
man O, Dimitriadis P, Sikorska K, van de Wiel BA, Eriksson H, et al. 
Survival and biomarker analyses from the OpACIN-neo and OpACIN 
neoadjuvant immunotherapy trials in stage III melanoma. Nat Med. 
2021;27(2):256–63.

 3. Wolchok JD, Chiarion-Sileni V, Gonzalez R, Grob JJ, Rutkowski P, Lao CD, Cowey 
CL, Schadendorf D, Wagstaff J, Dummer R, et al. Long-Term Outcomes With 
Nivolumab Plus Ipilimumab or Nivolumab Alone Versus Ipilimumab in 
Patients With Advanced Melanoma. J Clin Oncol. 2022;40(2):127–37.

 4. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, 
Alnemri ES, Altucci L, Amelio I, Andrews DW, et al. Molecular mecha-
nisms of cell death: recommendations of the Nomenclature Committee 
on Cell Death 2018. Cell Death Differ. 2018;25(3):486–541.

 5. Liu X, Xia S, Zhang Z, Wu H, Lieberman J. Channelling inflamma-
tion: gasdermins in physiology and disease. Nat Rev Drug Discov. 
2021;20(5):384–405.

 6. Hanggi K, Ruffell B. Cell death, therapeutics, and the immune response 
in cancer. Trends Cancer. 2023;9(5):381–96.

 7. Wang W, Prokopec JS, Zhang Y, Sukhoplyasova M, Shinglot H, Wang 
MT, Linkermann A, Stewart-Ornstein J, Gong YN. Sensing plasma 
membrane pore formation induces chemokine production in survivors 
of regulated necrosis. Dev Cell. 2022;57(2):228–245 e226.

 8. Anderton H, Wicks IP, Silke J. Cell death in chronic inflammation: 
breaking the cycle to treat rheumatic disease. Nat Rev Rheumatol. 
2020;16(9):496–513.

 9. Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, 
Mok TMY, Ansara J, et al. Gasdermin E suppresses tumour growth by 
activating anti-tumour immunity. Nature. 2020;579(7799):415–20.

 10. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y 
et al: Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trig-
ger pyroptosis in target cells. Science 2020, 368(6494).

 11. Nicolai CJ, Raulet DH. Killer cells add fire to fuel immunotherapy. Sci-
ence. 2020;368(6494):943–4.

 12. Wang H, Rong X, Zhao G, Zhou Y, Xiao Y, Ma D, Jin X, Wu Y, Yan Y, Yang 
H, et al. The microbial metabolite trimethylamine N-oxide promotes 
antitumor immunity in triple-negative breast cancer. Cell Metab. 
2022;34(4):581–594 e588.

 13. Wang Q, Wang Y, Ding J, Wang C, Zhou X, Gao W, Huang H, Shao F, Liu 
Z. A bioorthogonal system reveals antitumour immune function of 
pyroptosis. Nature. 2020;579(7799):421–6.

 14. Erkes DA, Cai W, Sanchez IM, Purwin TJ, Rogers C, Field CO, Berger AC, 
Hartsough EJ, Rodeck U, Alnemri ES, et al. Mutant BRAF and MEK Inhibi-
tors Regulate the Tumor Immune Microenvironment via Pyroptosis. 
Cancer Discov. 2020;10(2):254–69.

 15. Bruchard M, Rebe C, Derangere V, Togbe D, Ryffel B, Boidot R, Hum-
blin E, Hamman A, Chalmin F, Berger H, et al. The receptor NLRP3 
is a transcriptional regulator of TH2 differentiation. Nat Immunol. 
2015;16(8):859–70.

 16. Theivanthiran B, Evans KS, DeVito NC, Plebanek M, Sturdivant M, Wachs-
muth LP, Salama AK, Kang Y, Hsu D, Balko JM, et al. A tumor-intrinsic 
PD-L1/NLRP3 inflammasome signaling pathway drives resistance to 
anti-PD-1 immunotherapy. J Clin Invest. 2020;130(5):2570–86.

 17. Tengesdal IW, et al. Targeting tumor-derived NLRP3 reduces melanoma 
progression by limiting MDSCs expansion. Proc Natl Acad Sci U S A. 
2021;118(10).

 18. Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu JM, Nie L, Chen Y, Wang YC, 
Liu C, et al. PD-L1-mediated gasdermin C expression switches apopto-
sis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell 
Biol. 2020;22(10):1264–75.

 19. Zaffaroni N, Beretta GL. The Therapeutic Potential of Pyroptosis in Mela-
noma. Int J Mol Sci. 2023;24(2).

 20. Ju A, Tang J, Chen S, Fu Y, Luo Y. Pyroptosis-related gene signatures can 
robustly diagnose skin cutaneous melanoma and predict the progno-
sis. Front Oncol. 2021;11:709077.

 21. Xu Y, Chen Y, Niu Z, Xing J, Yang Z, Yin X, Guo L, Zhang Q, Qiu H, Han Y. 
A novel pyroptotic and inflammatory gene signature predicts the prog-
nosis of cutaneous melanoma and the effect of anticancer therapies. 
Front Med (Lausanne). 2022;9:841568.

 22. Wu Z, Chen L, Jin C, Xu J, Zhang X, Yao Y. A novel pyroptosis-associated 
gene signature for immune status and prognosis of cutaneous mela-
noma. PeerJ. 2021;9:e12304.

 23. Wang YY, Shi LY, Zhu ZT, Wang QJ. A new pyroptosis model can predict 
the immunotherapy response and immune microenvironment charac-
teristics and prognosis of patients with cutaneous melanoma based on 
TCGA and GEO databases. Ann Transl Med. 2022;10(6):353.

 24. Wang D, Fu Z, Gao L, Zeng J, Xiang Y, Zhou L, Tong X, Wang XQ, Lu J. 
Increased IRF9-STAT2 Signaling Leads to Adaptive Resistance toward 
Targeted Therapy in Melanoma by Restraining GSDME-Dependent 
Pyroptosis. J Invest Dermatol. 2022;142(9):2476–87.



Page 18 of 19Chen et al. BMC Medicine           (2024) 22:24 

 25. Zhu Y, Han D, Duan H, Rao Q, Qian Y, Chen Q, Du X, Ni H, Wang S. Iden-
tification of Pyroptosis-relevant signature in tumor immune microen-
vironment and prognosis in skin cutaneous melanoma using network 
analysis. Stem Cells Int. 2023;2023:3827999.

 26. Wu G, Chen B, Jiang J, Chen Y, Chen Y, Wang H. Identification of 
a pyroptosis-based model for predicting clinical outcomes from 
immunotherapy in patients with metastatic melanoma. Cancer Med. 
2023;12(4):4921–37.

 27. Shi Z, Gu J, Yao Y, Wu Z. Identification of a predictive gene signature 
related to pyroptosis for the prognosis of cutaneous melanoma. Medi-
cine (Baltimore). 2022;101(36):e30564.

 28. Li AA, Zhang Y, Tong WL, Chen JW, Huang SH, Liu JM, Liu ZL. Identifica-
tion of a novel pyroptosis-related gene signature indicative of disease 
prognosis and treatment response in skin cutaneous melanoma. Int J 
Gen Med. 2022;15:6145–63.

 29. Niu Z, Xu Y, Li Y, Chen Y, Han Y. Construction and validation of a novel 
pyroptosis-related signature to predict prognosis in patients with 
cutaneous melanoma. Math Biosci Eng. 2022;19(1):688–706.

 30. Tibshirani R. Regression Shrinkage and Selection Via the Lasso. J Roy 
Stat Soc: Ser B (Methodol). 1996;58(1):267–88.

 31. He Y, Dong Y, Chen Y, Zhang G, Zhang H, Lei G, Du Y, Chen X, Ye Y, Liu H. 
Multi-omics characterization and therapeutic liability of ferroptosis in 
melanoma. Signal Transduct Target Ther. 2022;7(1):268.

 32. Zhao E, Stone MR, Ren X, Guenthoer J, Smythe KS, Pulliam T, Williams SR, 
Uytingco CR, Taylor SEB, Nghiem P, et al. Spatial transcriptomics at subs-
pot resolution with BayesSpace. Nat Biotechnol. 2021;39(11):1375–84.

 33. Thrane K, Eriksson H, Maaskola J, Hansson J, Lundeberg J. Spatially 
resolved transcriptomics enables dissection of genetic hetero-
geneity in stage iii cutaneous malignant melanoma. Cancer Res. 
2018;78(20):5970–9.

 34. Harel M, Ortenberg R, Varanasi SK, Mangalhara KC, Mardamshina M, 
Markovits E, Baruch EN, Tripple V, Arama-Chayoth M, Greenberg E, 
et al. Proteomics of Melanoma Response to Immunotherapy Reveals 
Mitochondrial Dependence. Cell. 2019;179(1):236–50.

 35. Beck L, Harel M, Yu S, Markovits E, Boursi B, Markel G, Geiger T. Clinical 
proteomics of metastatic melanoma reveals profiles of organ specificity 
and treatment resistance. Clin Cancer Res. 2021;27(7):2074–86.

 36. Wang K, Sun Q, Zhong X, Zeng M, Zeng H, Shi X, Li Z, Wang Y, Zhao Q, 
Shao F, et al. Structural Mechanism for GSDMD Targeting by Auto-
processed Caspases in Pyroptosis. Cell. 2020;180(5):941–955 e920.

 37. Deng W, Bai Y, Deng F, Pan Y, Mei S, Zheng Z, Min R, Wu Z, Li W, Miao R, 
et al. Streptococcal pyrogenic exotoxin B cleaves GSDMA and triggers 
pyroptosis. Nature. 2022;602(7897):496–502.

 38. Man SM, Kanneganti TD. Regulation of inflammasome activation. 
Immunol Rev. 2015;265(1):6–21.

 39. Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K, 
Han J. Pyroptosis is driven by non-selective gasdermin-D pore and its 
morphology is different from MLKL channel-mediated necroptosis. Cell 
Res. 2016;26(9):1007–20.

 40. Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and Apoptosis 
Pathways Engage in Bidirectional Crosstalk in Monocytes and Mac-
rophages. Cell Chem Biol. 2017;24(4):507–514 e504.

 41. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC. The Pore-Forming 
Protein Gasdermin D Regulates Interleukin-1 Secretion from Living 
Macrophages. Immunity. 2018;48(1):35–44 e36.

 42. Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC, Shao F. Pore-
forming activity and structural autoinhibition of the gasdermin family. 
Nature. 2016;535(7610):111–6.

 43. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, 
Wu H, Kelliher MA, et al. Pathogen blockade of TAK1 triggers caspase-
8-dependent cleavage of gasdermin D and cell death. Science. 
2018;362(6418):1064–9.

 44. Tuladhar S, Kanneganti TD. NLRP12 in innate immunity and inflamma-
tion. Mol Aspects Med. 2020;76:100887.

 45. Chen H, Deng Y, Gan X, Li Y, Huang W, Lu L, Wei L, Su L, Luo J, Zou B, 
et al. NLRP12 collaborates with NLRP3 and NLRC4 to promote pyropto-
sis inducing ganglion cell death of acute glaucoma. Mol Neurodegener. 
2020;15(1):26.

 46. Khare S, Dorfleutner A, Bryan NB, Yun C, Radian AD, de Almeida L, 
Rojanasakul Y, Stehlik C. An NLRP7-containing inflammasome mediates 

recognition of microbial lipopeptides in human macrophages. Immu-
nity. 2012;36(3):464–76.

 47. Kayagaki N, Kornfeld OS, Lee BL, Stowe IB, O’Rourke K, Li Q, Sandoval W, 
Yan D, Kang J, Xu M, et al. NINJ1 mediates plasma membrane rupture 
during lytic cell death. Nature. 2021;591(7848):131–6.

 48. Zhang JY, Zhou B, Sun RY, Ai YL, Cheng K, Li FN, Wang BR, Liu FJ, Jiang 
ZH, Wang WJ, et al. The metabolite alpha-KG induces GSDMC-depend-
ent pyroptosis through death receptor 6-activated caspase-8. Cell Res. 
2021;31(9):980–97.

 49. Zheng Z, et al. The Lysosomal Rag-Ragulator Complex Licenses RIPK1 and 
Caspase-8-mediated Pyroptosis by Yersinia. Science. 2021;372(6549).

 50. Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, Cao L, Xie M, Ran Q, Kroemer 
G, et al. Lipid Peroxidation Drives Gasdermin D-Mediated Pyroptosis in 
Lethal Polymicrobial Sepsis. Cell Host Microbe. 2018;24(1):97–108 e104.

 51. Nozaki K, Li L, Miao EA. Innate Sensors Trigger Regulated Cell Death to 
Combat Intracellular Infection. Annu Rev Immunol. 2022;40:469–98.

 52. Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F. Inflammatory 
caspases are innate immune receptors for intracellular LPS. Nature. 
2014;514(7521):187–92.

 53. Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H, Lieberman J. 
Inflammasome-activated gasdermin D causes pyroptosis by forming 
membrane pores. Nature. 2016;535(7610):153–8.

 54. Aglietti RA, Estevez A, Gupta A, Ramirez MG, Liu PS, Kayagaki N, Ciferri 
C, Dixit VM, Dueber EC. GsdmD p30 elicited by caspase-11 during 
pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A. 
2016;113(28):7858–63.

 55. Sborgi L, Ruhl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, 
Muller DJ, Broz P, Hiller S. GSDMD membrane pore formation constitutes 
the mechanism of pyroptotic cell death. EMBO J. 2016;35(16):1766–78.

 56. Broz P, Pelegrin P, Shao F. The gasdermins, a protein family executing 
cell death and inflammation. Nat Rev Immunol. 2020;20(3):143–57.

 57. Heilig R, Dick MS, Sborgi L, Meunier E, Hiller S, Broz P. The Gasdermin-D 
pore acts as a conduit for IL-1beta secretion in mice. Eur J Immunol. 
2018;48(4):584–92.

 58. Santa Cruz Garcia AB. Schnur KP, Malik AB, Mo GCH: Gasdermin D pores 
are dynamically regulated by local phosphoinositide circuitry. Nat Com-
mun. 2022;13(1):52.

 59. He WT, Wan H, Hu L, Chen P, Wang X, Huang Z, Yang ZH, Zhong CQ, Han 
J. Gasdermin D is an executor of pyroptosis and required for interleukin-
1beta secretion. Cell Res. 2015;25(12):1285–98.

 60. Kambara H, Liu F, Zhang X, Liu P, Bajrami B, Teng Y, Zhao L, Zhou S, Yu H, 
Zhou W, et al. Gasdermin D Exerts Anti-inflammatory Effects by Promot-
ing Neutrophil Death. Cell Rep. 2018;22(11):2924–36.

 61. Liu J, Kang R, Tang D. ESCRT-III-mediated membrane repair in cell death 
and tumor resistance. Cancer Gene Ther. 2021;28(1–2):1–4.

 62. Ruhl S, Shkarina K, Demarco B, Heilig R, Santos JC, Broz P. ESCRT-
dependent membrane repair negatively regulates pyroptosis down-
stream of GSDMD activation. Science. 2018;362(6417):956–60.

 63. Samir P, Kesavardhana S, Patmore DM, Gingras S, Malireddi RKS, Karki R, 
Guy CS, Briard B, Place DE, Bhattacharya A, et al. DDX3X acts as a live-
or-die checkpoint in stressed cells by regulating NLRP3 inflammasome. 
Nature. 2019;573(7775):590–4.

 64. Ruan J, Xia S, Liu X, Lieberman J, Wu H. Cryo-EM structure of the gasder-
min A3 membrane pore. Nature. 2018;557(7703):62–7.

 65. Evavold CL, Hafner-Bratkovic I, Devant P, D’Andrea JM, Ngwa EM, Borsic 
E, Doench JG, LaFleur MW, Sharpe AH, Thiagarajah JR, et al. Control of 
gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-
mTORC1 pathway. Cell. 2021;184(17):4495–4511 e4419.

 66. Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang 
F, Shao F. Cleavage of GSDMD by inflammatory caspases determines 
pyroptotic cell death. Nature. 2015;526(7575):660–5.

 67. Wang Y, Gao W, Shi X, Ding J, Liu W, He H, Wang K, Shao F. Chemo-
therapy drugs induce pyroptosis through caspase-3 cleavage of a 
gasdermin. Nature. 2017;547(7661):99–103.

 68. Muendlein HI, Jetton D, Connolly WM, Eidell KP, Magri Z, Smirnova I, 
Poltorak A. cFLIPL protects macrophages from LPS-induced pyroptosis 
via inhibition of complex II formation. Science. 2020;367(6484):1379–84.

 69. Van Opdenbosch N, Lamkanfi M. Caspases in Cell Death, Inflammation, 
and Disease. Immunity. 2019;50(6):1352–64.



Page 19 of 19Chen et al. BMC Medicine           (2024) 22:24  

 70. Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM, Monack 
DM. Caspase-11 increases susceptibility to Salmonella infection in the 
absence of caspase-1. Nature. 2012;490(7419):288–91.

 71. Kayagaki N, Stowe IB, Lee BL, O’Rourke K, Anderson K, Warming S, 
Cuellar T, Haley B, Roose-Girma M, Phung QT, et al. Caspase-11 cleaves 
gasdermin D for non-canonical inflammasome signalling. Nature. 
2015;526(7575):666–71.

 72. Fritsch M, Gunther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach 
JP, Schiffmann LM, Stair N, Stocks H, Seeger JM, et al. Caspase-8 is the 
molecular switch for apoptosis, necroptosis and pyroptosis. Nature. 
2019;575(7784):683–7.

 73. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, 
Bunnell SC, Shao F, Green DR, et al. Caspase-8 induces cleavage of gas-
dermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad 
Sci U S A. 2018;115(46):E10888–97.

 74. Liu Z, Wang C, Yang J, Chen Y, Zhou B, Abbott DW, Xiao TS. Caspase-1 
Engages Full-Length Gasdermin D through Two Distinct Interfaces 
That Mediate Caspase Recruitment and Substrate Cleavage. Immunity. 
2020;53(1):106–114 e105.

 75. Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, 
Roose-Girma M, Modrusan Z, Sagolla MS, Webster JD, et al. Activity of 
caspase-8 determines plasticity between cell death pathways. Nature. 
2019;575(7784):679–82.

 76. Xue Y, Enosi Tuipulotu D, Tan WH, Kay C, Man SM. Emerging Activators 
and Regulators of Inflammasomes and Pyroptosis. Trends Immunol. 
2019;40(11):1035–52.

 77. Haneklaus M, Gerlic M, O’Neill LA, Masters SL. miR-223: infection, inflam-
mation and cancer. J Intern Med. 2013;274(3):215–26.

 78. Lee S, Karki R, Wang Y, Nguyen LN, Kalathur RC, Kanneganti TD. AIM2 
forms a complex with pyrin and ZBP1 to drive PANoptosis and host 
defence. Nature. 2021;597(7876):415–9.

 79. Zheng M, Kanneganti TD. The regulation of the ZBP1-NLRP3 inflam-
masome and its implications in pyroptosis, apoptosis, and necroptosis 
(PANoptosis). Immunol Rev. 2020;297(1):26–38.

 80. Ngo C, Man SM. NLRP9b: a novel RNA-sensing inflammasome complex. 
Cell Res. 2017;27(11):1302–3.

 81. Zhu S, Ding S, Wang P, Wei Z, Pan W, Palm NW, Yang Y, Yu H, Li HB, Wang 
G, et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal 
epithelial cells. Nature. 2017;546(7660):667–70.

 82. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. 
The Molecular Signatures Database (MSigDB) hallmark gene set collec-
tion. Cell Syst. 2015;1(6):417–25.

 83. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, 
Mesirov JP. Molecular signatures database (MSigDB) 30. Bioinformatics. 
2011;27(12):1739–40.

 84. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette 
MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, et al. Gene set 
enrichment analysis: a knowledge-based approach for interpret-
ing genome-wide expression profiles. Proc Natl Acad Sci U S A. 
2005;102(43):15545–50.

 85. Gaujoux R, Seoighe C. A flexible R package for nonnegative matrix 
factorization. BMC Bioinformatics. 2010;11:367.

 86. Mootha VK, Lindgren CM, Eriksson KF, Subramanian A, Sihag S, 
Lehar J, Puigserver P, Carlsson E, Ridderstrale M, Laurila E, et al. 
PGC-1alpha-responsive genes involved in oxidative phosphoryla-
tion are coordinately downregulated in human diabetes. Nat Genet. 
2003;34(3):267–73.

 87. Becht E, Giraldo NA, Lacroix L, Buttard B, Elarouci N, Petitprez F, Selves 
J, Laurent-Puig P, Sautes-Fridman C, Fridman WH, et al. Estimating the 
population abundance of tissue-infiltrating immune and stromal cell 
populations using gene expression. Genome Biol. 2016;17(1):218.

 88. Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, 
Albright A, Cheng JD, Kang SP, Shankaran V, et al. IFN-gamma-related 
mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 
2017;127(8):2930–40.

 89. Roh W, Chen PL, Reuben A, Spencer CN, Prieto PA, Miller JP, et al. Inte-
grated molecular analysis of tumor biopsies on sequential CTLA-4 and 
PD-1 blockade reveals markers of response and resistance. Sci Transl 
Med. 2017;9(379).

 90. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-
Pardo E, Gao GF, Plaisier CL, Eddy JA, et al. The Immune Landscape of 
Cancer. Immunity. 2018;48(4):812–30.

 91. Korotkevich G, Sukhov V, Sergushichev A. Fast gene set enrichment 
analysis. bioRxiv. 2019. https:// doi. org/ 10. 1101/ 060012.

 92. Stuart T, Butler A, Hoffman P, Hafemeister C, Papalexi E, Mauck WM 3rd, 
Hao Y, Stoeckius M, Smibert P, Satija R. Comprehensive Integration of 
Single-Cell Data. Cell. 2019;177(7):1888–1902 e1821.

 93. Pierini R, Juruj C, Perret M, Jones CL, Mangeot P, Weiss DS, Henry T. 
AIM2/ASC triggers caspase-8-dependent apoptosis in Francisella-
infected caspase-1-deficient macrophages. Cell Death Differ. 
2012;19(10):1709–21.

 94. Long GV, Menzies AM, Nagrial AM, Haydu LE, Hamilton AL, Mann GJ, 
Hughes TM, Thompson JF, Scolyer RA, Kefford RF. Prognostic and clin-
icopathologic associations of oncogenic BRAF in metastatic melanoma. 
J Clin Oncol. 2011;29(10):1239–46.

 95. Cancer Genome Atlas N. Genomic Classification of Cutaneous Mela-
noma. Cell. 2015;161(7):1681–96.

 96. Hisamatsu H, Shimbara N, Saito Y, Kristensen P, Hendil KB, Fujiwara T, 
Takahashi E, Tanahashi N, Tamura T, Ichihara A, et al. Newly identified 
pair of proteasomal subunits regulated reciprocally by interferon 
gamma. J Exp Med. 1996;183(4):1807–16.

 97. Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, Osokin N, 
Kozlov I, Frenkel F, Gancharova O, et al. Conserved pan-cancer microen-
vironment subtypes predict response to immunotherapy. Cancer Cell. 
2021;39(6):845–865 e847.

 98. Gide TN, Quek C, Menzies AM, Tasker AT, Shang P, Holst J, Madore J, Lim 
SY, Velickovic R, Wongchenko M, et al. Distinct Immune Cell Popula-
tions Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-
CTLA-4 Combined Therapy. Cancer Cell. 2019;35(2):238–55.

 99. Ulloa-Montoya F, Louahed J, Dizier B, Gruselle O, Spiessens B, Lehmann 
FF, Suciu S, Kruit WH, Eggermont AM, Vansteenkiste J, et al. Predictive 
gene signature in MAGE-A3 antigen-specific cancer immunotherapy. J 
Clin Oncol. 2013;31(19):2388–95.

 100. Coll RC, Schroder K, Pelegrin P. NLRP3 and pyroptosis blockers for treat-
ing inflammatory diseases. Trends Pharmacol Sci. 2022;43(8):653–68.

 101. Basiorka AA, McGraw KL, Abbas-Aghababazadeh F, McLemore AF, 
Vincelette ND, Ward GA, Eksioglu EA, Sallman DA, Ali NA, Padron E, 
et al. Assessment of ASC specks as a putative biomarker of pyroptosis 
in myelodysplastic syndromes: an observational cohort study. Lancet 
Haematol. 2018;5(9):e393–402.

 102. Zwack EE, Brodsky IE. Analysis of Inflammasome Activation in Response 
to Yersinia Infection by Fluorescence Microscopy Detection of Active 
Caspase-1 Puncta. Methods Mol Biol. 2019;2010:231–40.

 103. Francke MI, van Domburg B, van de Velde D, Hesselink DA, de Winter 
BCM. The use of freeze-dried blood samples affects the results of a 
dried blood spot analysis. Clin Biochem. 2022;104:70–3.

 104. Lou X, Li K, Qian B, Li Y, Zhang D, Cui W. Pyroptosis correlates with tumor 
immunity and prognosis. Commun Biol. 2022;5(1):917.

 105. Wu G, Chen B, Jiang J, Chen Y, Chen Y, Wang H. Identification of 
a pyroptosis-based model for predicting clinical outcomes from 
immunotherapy in patients with metastatic melanoma. Cancer Med. 
2023;12(4):4921–37.

 106. Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, Sun RY, Zhou D, 
Han J, Wu Q. Tom20 senses iron-activated ROS signaling to promote 
melanoma cell pyroptosis. Cell Res. 2018;28(12):1171–85.

 107. Cai W, Nguyen MQ, Wilski NA, Purwin TJ, Vernon M, Tiago M, Aplin AE. 
A Genome-Wide Screen Identifies PDPK1 as a Target to Enhance the 
Efficacy of MEK1/2 Inhibitors in NRAS Mutant Melanoma. Cancer Res. 
2022;82(14):2625–39.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1101/060012

	Multiomics characterization of pyroptosis in the tumor microenvironment and therapeutic relevance in metastatic melanoma
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Data collection and processing
	Construction of the pyroptosis-related gene score (PScore) model to estimate pyroptosis status in melanoma
	Survival analysis and multivariate Cox regression analysis
	Analysis of immune features and DNA damage features
	Single-cell and spatial transcriptome analysis of melanoma datasets
	Statistical analyses

	Results
	Pyroptosis can act as a prognostic factor in metastatic cutaneous melanoma
	PScore is associated with druggable mutations
	Pyroptosis is associated with cancer and immune features
	Heterogeneity of pyroptosis status in the TME at the bulksingle-cell and spatial transcriptome levels
	Correlation between pyroptosis status and immunotherapy efficacy

	Discussion
	Limitations

	Conclusions
	Anchor 24
	Acknowledgements
	References


