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Abstract 

Background Increasing maternal glycaemia across the continuum during pregnancy may predispose offspring 
to subsequent cardiometabolic risk later in life. However, evidence of long‑term impacts of maternal glycemic status 
on offspring amino acid (AA) profiles is scarce. We aimed to investigate the association between maternal antenatal 
glycaemia and offspring mid‑childhood amino acid (AA) profiles, which are emerging cardiometabolic biomarkers.

Methods Data were drawn from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study, a multi‑
ethnic Asian birth cohort. A subset of 422 mother–child dyads from the GUSTO study, who was followed from early 
pregnancy to mid‑childhood, was included. Mothers underwent an oral glucose tolerance test (OGTT) at 26–28 
weeks gestation, with fasting and 2‑h plasma glucose concentrations measured and gestational diabetes mellitus 
(GDM) diagnosed per WHO 1999 guidelines. Offspring fasting plasma samples were collected at mean age 6.1 years, 
from which AA profiles of nine AAs, alanine, glutamine, glycine, histidine, isoleucine, leucine, valine, phenylalanine, 
and tyrosine were measured. Total branched‑chain amino acids (BCAAs) were calculated as the sum of isoleucine, 
leucine, and valine concentrations. Multi‑variable linear regression was used to estimate the association of maternal 
glycemic status and offspring mid‑childhood AA profiles adjusting for maternal age, ethnicity, maternal education, 
parity, family history of diabetes, ppBMI, child sex, age and BMI z‑scores.

Results Approximately 20% of mothers were diagnosed with GDM. Increasing maternal fasting glucose was signifi‑
cantly associated with higher offspring plasma valine and total BCAAs, whereas higher 2‑h glucose was significantly 
associated with higher histidine, isoleucine, valine, and total BCAAs. Offspring born to mothers with GDM had higher 
valine (standardized mean difference 0.27 SD; 95% CI: 0.01, 0.52), leucine (0.28 SD; 0.02, 0.53), and total BCAAs (0.26 
SD; 0.01, 0.52) than their counterparts. Inconsistent associations were found between maternal GDM and other amino 
acids among offspring during mid‑childhood.

Conclusions Increasing maternal fasting and post‑OGTT glucose concentrations at 26–28 weeks gestation were 
significantly associated with mid‑childhood individual and total BCAAs concentrations. The findings suggest that ele‑
vated maternal glycaemia throughout pregnancy, especially GDM, may have persistent programming effects on off‑
spring AA metabolism which were strongly associated with adverse cardiometabolic profiles at mid‑childhood.
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Background
Maternal glycemic status during pregnancy is closely 
related to short- and long-term offspring outcomes [1]. 
Gestational diabetes mellitus (GDM), a state of glucose 
intolerance occurring during pregnancy without pre-
existing diabetes, is a well-established early life risk factor 
for adverse child cardiometabolic health outcomes, such 
as the increased risk of metabolic disorders (e.g., obesity, 
metabolic syndrome, abnormal glucose metabolism) and 
hypertension [1]. However, the mechanistic and biologi-
cal pathways underlying these risks remain unclear. It has 
been postulated that women who developed GDM might 
have already displayed a series of subclinical metabolic 
variations as early as in preconception and early preg-
nancy [2], which may lead to subsequent cardiometabolic 
in-utero programming in offspring, where the relevant 
phenotypes may only clinically manifest later in life.

Emerging evidence suggests that maternal metabo-
lomic profiles, including the lipidome and amino acid 
(AA) concentrations [3], are altered in GDM, which 
would be expected to have knock-on effects on the 
intrauterine environment. For example, a meta-analysis 
of eight studies including 432 participants reported that 
mothers with GDM had higher concentrations of indi-
vidual and total branched-chain amino acids (BCAAs), 
namely leucine, isoleucine, and valine, compared with 
those without GDM [4]. Such changes were also seen in 
offspring born to mothers with GDM. Maternal GDM is 
also associated with infant cord blood AAs (e.g., eleva-
tion in valine, isoleucine, leucine, phenylalanine, gluta-
mate, proline, and alanine) [5, 6]. AAs are associated with 
cardiometabolic health; for example, alanine, glutamine, 
and glycine were found to be protective [7], while phe-
nylalanine, tyrosine, and BCAAs were associated with 
adverse cardiometabolic health [8]. Specific AAs have 
been associated with cardiovascular outcomes, sug-
gesting their pivotal roles in the pathogenesis of cardio-
vascular diseases (CVD). For instance, plasma glycine 
has demonstrated an inverse association with the risk 
of acute myocardial infarction (hazard ratio  [HR] per 
standard deviation [SD]: 0.89; 95% CI, 0.82–0.98), after 
adjusting for major traditional CVD risk factors [9]. In 
addition, a systematic review and meta-analysis included 
10 prospective studies involving 43,895 participants 
and reported a 10% higher risk of CVD per study-spe-
cific SD for isoleucine (pooled relative risk 1.10, 95% CI 
1.03–1.18) [10]. Therefore, maternal glycemic status dur-
ing pregnancy may influence offspring cardiometabolic 

programming via AA metabolism. However, studies to 
date have been mainly limited to cord blood AAs. Evi-
dence regarding the long-term influence of GDM on off-
spring AAs is sparse, and in particular, data on maternal 
glycemia across the continuum (in the absence of GDM) 
may also contribute to offspring AA metabolism.

To address these knowledge gaps, we aimed to investi-
gate the influence of maternal glycemia during mid-late 
pregnancy on offspring AAs in mid-childhood and asso-
ciations of AA profiles and concurrent cardiometabolic 
risk in an ongoing multi-ethnic birth cohort in Singapore. 
We hypothesized that offspring born to mothers with 
abnormal glycemic status during pregnancy were more 
likely to have higher concentrations of AAs related to 
cardiometabolic risk (such as BCAAs) in mid-childhood.

Methods
Study population
The Growing Up in Singapore Towards healthy Outcomes 
(GUSTO) study recruited pregnant women aged ≥ 18 
years from Singapore’s two major public maternity hospi-
tals (National University Hospital and KK Women’s and 
Children’s Hospital) between June 2009 and September 
2010. Inclusion criteria for pregnant women were as fol-
lows: (1) Singaporean residents aged 18 years and above, 
(2) attending either KK Women’s and Children’s Hospital 
(KKH) or National University Hospital (NUH), and (3) 
intending to deliver and reside in Singapore for the next 
5  years. Of 3751 women screened, 2034 met eligibility 
criteria, and 1344 were recruited (response rate 66.1%). 
These women gave birth to 1098 singleton infants. 
GUSTO mothers and children have been followed up 
since birth. At postpartum year-6 follow-up, 953 (86.8%) 
offspring were assessed, of whom 460 (48.3%) provided 
blood samples. Participants were included in the analytic 
sample if they had maternal glucose data and at least one 
AA as an outcome (n = 422, see Additional file 2: Fig. S1). 
Informed written consent was obtained from the women 
at the study entry, and the National Healthcare Group 
Domain Specific Review Board and SingHealth Cen-
tralized Institutional Review Board approved the study. 
Detailed study designs and recruitment have been pub-
lished elsewhere [11].

Maternal glycemic status assessment
At 26–28 weeks of gestation, pregnant women with-
out pre-existing diabetes underwent a 2-h 75 g oral glu-
cose tolerance test (OGTT) after an overnight fast [11]. 
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Fasting and 2-h post-challenge venous blood samples 
were collected in fluoride-containing tubes, and glucose 
concentrations were assessed quantitatively (Advia 2400 
Chemistry system and Beckman LX20 Pro analyzer). 
Women were diagnosed with GDM based on World 
Health Organization’s (WHO) 1999 guidelines (fasting 
plasma glucose ≥ 7.0 mmol/L and/or 2-h glucose ≥ 7.8 
mmol/L]) [12]. Mothers who were diagnosed as having 
GDM were either managed by diet and/or medication 
(i.e., metformin and insulin) according to standard proto-
cols practiced at study sites.

Mid‑childhood offspring amino acids and other biomarkers 
assessments
We collected fasted peripheral blood from 460 chil-
dren at approximately six years of age. Blood samples 
were immediately fractionated, aliquoted, and stored at 
– 80 °C until transported on dry ice to Nightingale Health 
(Helsinki, Finland) for further analyses [13]. Circulating 
metabolite concentrations were quantified using an auto-
mated nuclear magnetic resonance (NMR)-based high 
throughput metabolomics platform [14]. The software 
of NMR platform undertakes automatic quality control 
[14]. After quality control, metabolomic data were avail-
able for 457 children. As the AAs we investigated were 
part of the metabolomic profile measured by the Night-
ingale platform, our analysis is confined to the nine AAs 
analyzed in this study, which included alanine, glutamine, 
glycine, histidine, isoleucine, leucine, valine, phenyla-
lanine, and tyrosine. We calculated total BCAAs as the 
sum of isoleucine, leucine, and valine concentrations and 
aromatic AAs as the sum of phenylalanine and tyros-
ine [14]. Also, among the metabolomic data, fatty acids 
were measured. Measurements of other cardiometabolic 
measures implicated in the development of cardiometa-
bolic diseases, such as homeostasis model assessment 
of insulin resistance (HOMA-IR), interleukin 6 (IL-6), 
high-sensitivity C-reactive protein (hsCRP), low-density 
lipoprotein (LDL) cholesterol, high-density lipoprotein 
(HDL) cholesterol, and triglyceride, are shown in Addi-
tional file 1.

Covariates
At recruitment, maternal age, ethnicity, highest edu-
cation level, parity, pre-pregnancy weight, and family 
history of diabetes were obtained through interviewer-
administered questionnaires. Maternal height was 
measured using SECA 213 Stadiometer (SECA Corp, 
Hamburg, Germany) [15]. Maternal weight during preg-
nancy was measured using SECA 803 Weighing Scale 
(SECA Corp, Hamburg, Germany). Body weight and 
height were used to calculate pre-pregnancy body mass 
index (ppBMI, in kg/m2). Gestational weight gain (GWG) 

was calculated as the difference between the final meas-
ured weight before delivery and self-reported pre-preg-
nancy weight. Excessive GWG was classified according to 
the Institute of Medicine recommendation [16]. Informa-
tion on dietary intakes of women was collected at 26–28 
weeks of gestation using 24-h recalls and 3-day food dia-
ries, from which diet quality (score range: 0–100) was 
measured by the Healthy Eating Index [17].

Date of child age, weight, and height were collected 
at their year-6 follow-up. Child BMI was calculated, 
and sex-specific BMI z-scores were generated using the 
WHO references [18]. Since some AAs, such as BCAAs, 
cannot be synthesized from other metabolites by the 
human body but are derived from diet intake [19], we 
also considered the influence of food intake on blood AA 
concentrations. At the year-5 visit, about 1  year before 
AA measurements, child protein intake in the previous 
month was assessed using an interviewer-administered 
112 food items semi-quantitative food frequency ques-
tionnaire completed by the caregivers [20].

Statistical analyses
Distributions for all variables were checked for skew-
ness and kurtosis. Maternal fasting glucose, 2-h glucose 
concentrations, and all offspring mid-childhood AAs 
were analyzed as continuous variables, and GDM status 
was analyzed as a binary variable (present/absent). Com-
parisons of characteristics between GDM and non-GDM 
participants were analyzed by Student’s t-test, non-para-
metric comparison test, or χ2-test when applicable.

Multi-variable linear regressions were applied to exam-
ine the associations of maternal fasting glucose concen-
tration at test, 2-h glucose concentrations, and GDM 
diagnosis with child AA profiles, using three models: 
unadjusted model; model 1, adjusting for maternal age, 
ethnicity, maternal education, parity, family history of 
diabetes, ppBMI and child sex; and model 2: model 1 and 
additionally adjusting for child age and BMI z-score at 
mid-childhood. Furthermore, we tested the interactions 
between maternal GDM status with maternal age and 
ppBMI, respectively.

In sensitivity analysis, we considered potential con-
founders that were associated with maternal glycemic 
levels and child AAs. Linear regression models were per-
formed with additional adjustments for excessive GWG, 
hypertension diagnosed during pregnancy, maternal 
Health Eating Index during pregnancy, child fatty acids, 
and child protein intake assessed at mid-childhood in 
addition to model 2. As child birthweight and gestational 
age at birth are recognized as significant risk factors for 
child cardiometabolic health, we conducted a sensitivity 
analysis with further adjustment for these two variables, 
in addition to model 2. Also, GDM mothers treated with 
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medication or missing treatment data were excluded to 
investigate the direct effect without medication interven-
tion between GDM and child AAs concentrations. We 
further corrected for multiple comparison using the Ben-
jamini–Hochberg method to control false-discovery rate 
(FDR) [21].

To assess the potential relationships among mid-child-
hood offspring plasma AAs and cardiometabolic risks 
within our cohort, partial Spearman rank correlation 
was performed a posteriori after adjusting for maternal 
age, ppBMI, GDM status, GWG, child sex, age and BMI 
z-score at mid-childhood. The cardiovascular phenotypes 
(i.e., SBP, DBP, carotid intima-media thickness, pulse 
wave velocity, and augmentation index) and metabolic 
phenotypes (i.e., child HOMA-IR, IL-6, hsCRP, total fatty 
acids, total polyunsaturated fatty acids, total saturated 
fatty acids, total monounsaturated fatty acids, LDL cho-
lesterol, HDL cholesterol, and triglyceride) were assessed 
accordingly.

Analyses were performed in Stata 16.0 SE (StataCrop 
LP, TX, USA). For all analyses, we standardized expo-
sures (fasting glucose and 2-h glucose) and outcomes 
(each AA) to present effect size in standardized regres-
sion coefficients. P values and 95% confidence intervals 
(CIs) are presented accordingly. A significant P-value 
(two-tailed) was defined as < 0.05.

Results
Characteristics of the 422 mother–child dyads are pre-
sented in Table 1. Comparisons between sample charac-
teristics with or without amino acids were presented in 
Additional file 2: Table. S1. The mean age of mothers was 
31.0 ± 5.1 years, 56.4% of whom were Chinese, and 43.6% 
were Malay or Indian. Mean maternal fasting glucose and 
2-h fasting glucose were 4.3 ± 0.5 mmol/L and 6.6 ± 1.5 
mmol/L, respectively. According to the 1999 WHO crite-
ria, 19.7% of mothers in the study cohort were diagnosed 
with GDM, comparable to the GDM incidence (18.9%) 
reported in the whole GUSTO cohort [22] and 23.8% in 
Singapore reported by the International Diabetes Federa-
tion 2021 [23]. Except for parity, family history of diabe-
tes and hypertensive disorders during pregnancy, most 
of the maternal characteristics were different between 
GDM and non-GDM mothers, including maternal age, 
ethnicity, education, ppBMI, total GWG, glucose con-
centrations (fasting, 2-h, and GDM), and Healthy Eating 
Index (Table 1).

The mean age and SD of included offspring at mid-
childhood were 6.1 ± 0.1 years; 47.6% were girls. Sum-
mary statistics for nine amino acids, total (BCAAs), and 
total aromatic AAs were shown in Table  1. There were 
significant differences in child leucine, valine, and total 

BCAAs concentrations between GDM and non-GDM 
mothers (P < 0.05 in t-test).

Maternal glycemic levels during pregnancy and offspring 
mid‑childhood AAs profile
In the unadjusted models, higher maternal 26–28-week 
fasting glucose concentration was associated with higher 
offspring mid-childhood plasma valine, total BCAAs, 
tyrosine, and aromatic AAs (Table  2). After the full 
adjustment (model 2), only the association with offspring 
mid-childhood valine remained significant, while total 
BCAAs, tyrosine, and aromatic AAs attenuated. Per SD 
(0.46 mmol/l) increase in maternal fasting glucose at 
26–28 weeks of gestation was associated with a 0.12-SD 
(95% CI: 0.02, 0.22) increment in offspring plasma valine 
in mid-childhood.

Higher maternal 26–28-week 2-h glucose concentra-
tion was associated with higher offspring mid-childhood 
plasma histidine, leucine, valine, and total BCAAs in 
three models. In the fully adjusted model 2, per SD (1.48 
mmol/l) increase in maternal 2-h glucose was associated 
with a 0.14-SD (0.04, 0.24) increment in offspring total 
BCAAs and individual BCAAs in mid-childhood (leu-
cine: 0.14-SD, 0.04, 0.24; valine: 0.13-SD, 0.03, 0.23; iso-
leucine: 0.10-SD, 0.00, 0.21).

Offspring born to mothers with GDM had significantly 
higher plasma leucine, valine, and total BCAAs than 
those born to mothers without GDM, which was consist-
ent across the raw model, adjusted model 1 and adjusted 
model 2 with similar magnitude of effect size (Table  3 
and Fig.  1). For example, in the fully adjusted model 2 
(also presented in Fig. 1), offspring born to mothers with 
GDM had increments of 0.28-SD in plasma concentra-
tions of leucine (0.02, 0.53), 0.27-SD in valine (0.01, 0.52), 
and a 0.26-SD in total BCAAs (0.01, 0.52), compared with 
those born to mothers without GDM (Fig.  1). No asso-
ciations were found between maternal GDM and other 
amino acids among offspring during mid-childhood, such 
as total aromatic AAs, alanine, glutamine, or glycine.

No significant interactions were found between 
maternal GDM status and maternal age or ppBMI in 
relation to the offspring mid-childhood AAs concentra-
tions (Additional file  2: Table. S2). Sensitivity analysis 
for all reported associations remained significant after 
(1) additionally adjusting for excessive GWG, hyper-
tension diagnosed during pregnancy, maternal Healthy 
Eating Index during pregnancy, and child protein intake 
at 5-year-old each (Additional file  2: Table. S3-S5); (2) 
in the sensitivity analysis, where we included further 
adjustments for child birthweight and gestational age 
at birth, we observed consistently stronger associa-
tions across all models (Additional file 2: Table. S6); and 
(3) excluding GDM mothers who were treated with 
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Table 1 GUSTO analytic sample characteristics (n = 422)

a BMI category was based on WHO Asian population cutoffs: BMI < 23 kg/m2 as normal and underweight; BMI ≥ 23.0kg/m2 as overweight and obesity

A significant P-value (two-tailed) was defined as < 0.05

Variables All mothers GDM Non‑GDM P‑value
Mean (SD)/% Mean (SD)/% Mean (SD)/%

Mothers
 Mother age (whole years) 31.0 (5.1) 33.1 (5.0) 30.5 (5.1)  < 0.001
Ethnicity

 Chinese 56.4 59.2 56.4  < 0.01
 Malay 27.5 13.6 30.3

 Indian 16.1 27.2 13.3

Highest education 0.03
 Below university 64.7 54.3 67.3

 University 35.3 45.7 32.7

Parity 0.16

 0 38.6 32.1 40.6

 ≥ 1 61.4 67.9 59.4

 Pre‑pregnancy BMI (kg/m2) 22.77 (4.25) 23.65 (4.06) 22.5 (4.22) 0.03
Categorical ppBMI (WHO)a 0.06

 Normal and underweight 61.4 53.1 64.2

 Overweight or obese 38.6 46.9 35.8

 Total gestational weight gain (kg) 13.81 (5.19) 11.8 (4.76) 14.28 (5.17)  < 0.001
 Excessive GWG (according to IOM, %) 41.6 38.8 49.8 0.08

Glycemia at 26 weeks’ gestation

 Fasting glucose, mmol/L 4.33 (0.46) 4.58 (.58) 4.27 (.4)  < 0.001
 Two‑hour glucose, mmol/L 6.56 (1.48) 8.82 (.97) 6.01 (.97)  < 0.001
 Gestational diabetes (according to 1999 WHO, %) 19.7

Gestational diabetes treatment (%)

 Diet treated 88.9

 Diet and insulin treated 8.6

 Not treated 2.5

 Family history of diabetes (yes, %) 31.0 38.3 29.4 0.12

 Hypertensive disorder (yes, %) 7.8 13.6 6.1 0.08

 Health eating index 53.28 58.21 (13.06) 52.07 (13.49)  < 0.001
Children
 Child age at year 6 visit 6.1 (0.1) 6.05 (.1) 6.05 (.09) 0.64

 Sex (girls, %) 47.6 49.4 47.6 0.61

 Child BMI (kg/m2) 15.46 (2.09) 15.36 (1.73) 15.49 (2.16) 0.68

 Child BMI z‑score  − 0.04 (1.28)  − 0.09 (1.14)  − 0.03 (1.31) 0.77

 Alanine (μmol/L) 266.6 (61.67) 256.02 (58.22) 268.46 (62.22) 0.11

 Glutamine (μmol/L) 645.79 (65.64) 640.32 (68.55) 646.99 (65.57) 0.38

 Glycine (μmol/L) 182.46 (42.87) 175.78 (36.38) 183.64 (44.29) 0.12

 Histidine (μmol/L) 78.2 (10.78) 79.28 (10.17) 77.83 (10.93) 0.36

 Isoleucine (μmol/L) 45.4 (10.81) 46.26 (10.85) 45.18 (10.89) 0.48

 Leucine (μmol/L) 90.7 (16.6) 94.69 (18.36) 89.73 (16.11) 0.02
 Valine (μmol/L) 212.32 (30.8) 218.72 (28.88) 210.72 (31.34) 0.04
 Total branched‑chain amino acids (μmol/L) 348.42 (54.53) 359.67 (54.16) 345.63 (54.77) 0.04
 Phenylalanine (μmol/L) 50.34 (8.8) 50.58 (7.36) 50.08 (8.95) 0.68

 Tyrosine (μmol/L) 63.6 (11.17) 63.38 (11.15) 63.39 (11.16) 0.70

 Total aromatic amino acids (mmol/L) 113.95 (16.66) 113.96 (15.03) 113.47 (16.79) 0.96
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Table 2 Liner regression analyses of mothers’ glycemic level with child amino acids at mid‑childhood

Adjusted model 1 covariates: maternal age, child ethnicity, mothers’ highest education, parity, family history of diabetes, child sex, and pre-pregnancy body mass 
index

Adjusted model 2 covariates: model 1 further added in child year-6 body mass index z-score and age

A significant P-value (two-tailed) was defined as < 0.05

Raw model Adjusted model 1 Adjusted model 2

Effect size (95% CI) p Effect size (95% CI) p Effect size (95% CI) p

Fasting glucose
 Alanine 0.02 (− 0.07, 0.12) 0.64 0.02 (− 0.08, 0.13) 0.63 0.01 (− 0.09, 0.11) 0.87

 Glutamine 0.08 (− 0.02, 0.18) 0.10 0.06 (− 0.04, 0.16) 0.22 0.06 (− 0.04, 0.16) 0.23

 Glycine  − 0.00 (− 0.10, 0.09) 0.96  − 0.00 (− 0.10, 0.10) 0.99 0.00 (− 0.10, 0.11) 0.93

 Histidine 0.05 (− 0.05, 0.14) 0.34 0.05 (− 0.05, 0.16) 0.32 0.06 (− 0.05, 0.16) 0.30

 Isoleucine 0.09 (− 0.00, 0.19) 0.06 0.10 (− 0.01, 0.20) 0.07 0.08 (− 0.03, 0.18) 0.14

 Leucine 0.08 (− 0.01, 0.18) 0.09 0.08 (− 0.02, 0.18) 0.13 0.06 (− 0.04, 0.16) 0.27

 Valine 0.13 (0.03, 0.23) 0.01 0.14 (0.04, 0.24) 0.01 0.12 (0.02, 0.22) 0.02
 Total BCAAs 0.12 (0.02, 0.22) 0.02 0.12 (0.02, 0.22) 0.02 0.10 (− 0.00, 0.20) 0.05

 Phenylalanine 0.09 (− 0.01, 0.18) 0.07 0.09 (− 0.01, 0.19) 0.08 0.06 (− 0.04, 0.15) 0.26

 Tyrosine 0.10 (0.01, 0.20) 0.04 0.07 (− 0.03, 0.18) 0.14 0.05 (− 0.05, 0.15) 0.31

 Aromatic AAs 0.12 (0.02, 0.21) 0.02 0.10 (− 0.00, 0.20) 0.05 0.06 (− 0.03, 0.16) 0.19

Two-hour glucose
 Alanine  − 0.06 (− 0.16, 0.03) 0.20  − 0.02 (− 0.13, 0.08) 0.65  − 0.02 (− 0.12, 0.08) 0.67

 Glutamine  − 0.05 (− 0.15, 0.04) 0.28  − 0.04 (− 0.14, 0.06) 0.41  − 0.04 (− 0.14, 0.06) 0.47

 Glycine  − 0.06 (− 0.16, 0.04) 0.23  − 0.06 (− 0.17, 0.04) 0.23  − 0.06 (− 0.16, 0.05) 0.27

 Histidine 0.10 (0.00, 0.20) 0.04 0.12 (0.01, 0.22) 0.03 0.13 (0.02, 0.23) 0.02
 Isoleucine 0.08 (− 0.01, 0.18) 0.09 0.10 (0.00, 0.21) 0.05 0.10 (0.00, 0.21) 0.05

 Leucine 0.15 (0.06, 0.25) 0.00 0.15 (0.04, 0.25) 0.01 0.14 (0.04, 0.24) 0.01
 Valine 0.13 (0.04, 0.23) 0.01 0.13 (0.03, 0.24) 0.01 0.13 (0.03, 0.23) 0.01
 Total BCAAs 0.14 (0.04, 0.24) 0.01 0.14 (0.04, 0.24) 0.01 0.14 (0.04, 0.24) 0.01
 Phenylalanine 0.06 (− 0.03, 0.16) 0.20 0.09 (− 0.02, 0.19) 0.10 0.09 (− 0.01, 0.19) 0.07

 Tyrosine 0.04 (− 0.06, 0.14) 0.43 0.04 (− 0.06, 0.14) 0.47 0.05 (− 0.05, 0.14) 0.36

 Aromatic AAs 0.06 (− 0.04, 0.16) 0.22 0.07 (− 0.03, 0.17) 0.17 0.08 (− 0.02, 0.18) 0.11

Table 3 Liner regression analyses of GDM (1999 WHO) with child amino acids at mid‑childhood

Adjusted model 1 covariates: maternal age, child ethnicity, mothers’ highest education, parity, family history of diabetes, child sex, and pre-pregnancy body mass 
index

Adjusted model 2 covariates: Model 1 further added in child year-6 body mass index z-score and age

A significant P-value (two-tailed) was defined as < 0.05

Raw model Adjusted model 1 Adjusted model 2

Amino acids Effect size (95% CI) p Effect size (95% CI) p Effect size (95% CI) p

Alanine  − 0.20 (− 0.45, 0.04) 0.11  − 0.16 (− 0.42, 0.09) 0.21  − 0.14 (− 0.39, 0.11) 0.28

Glutamine  − 0.10 (− 0.35, 0.15) 0.42  − 0.12 (− 0.36, 0.13) 0.35  − 0.10 (− 0.35, 0.15) 0.44

Glycine  − 0.18 (− 0.43, 0.06) 0.14  − 0.20 (− 0.46, 0.05) 0.12  − 0.20 (− 0.46, 0.06) 0.13

Histidine 0.14 (− 0.11, 0.38) 0.28 0.14 (− 0.11, 0.40) 0.27 0.18 (− 0.08, 0.44) 0.18

Isoleucine 0.10 (− 0.15, 0.35) 0.43 0.14 (− 0.12, 0.39) 0.30 0.14 (− 0.12, 0.39) 0.30

Leucine 0.30 (0.05, 0.54) 0.02 0.29 (0.03, 0.54) 0.03 0.28 (0.02, 0.53) 0.03
Valine 0.26 (0.01, 0.51) 0.04 0.27 (0.01, 0.52) 0.04 0.27 (0.01, 0.52) 0.04
Total BCAAs 0.26 (0.01, 0.50) 0.04 0.26 (0.01, 0.52) 0.04 0.26 (0.01, 0.52) 0.04
Phenylalanine 0.06 (− 0.18, 0.30) 0.64 0.09 (− 0.17, 0.34) 0.50 0.11 (− 0.13, 0.36) 0.37

Tyrosine  − 0.00 (− 0.25, 0.24) 0.99  − 0.06 (− 0.31, 0.20) 0.67  − 0.03 (− 0.27, 0.21) 0.82

Aromatic AA 0.03 (− 0.21, 0.27) 0.81 0.01 (− 0.24, 0.26) 0.94 0.04 (− 0.20, 0.28) 0.74
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medication (n = 7) or missing treatment data (n = 2, 
Additional file 2: Table. S7). After multiple testing using 
FDR correction, the associations of maternal 2-h glu-
cose concentrations and AAs remained statistically sig-
nificant whereas the significance of the rest associations 
attenuated (Additional file 2: Table. S8).

Correlations of mid‑childhood AA profiles 
and cardiometabolic risks
Offspring mid-childhood cardiometabolic characteris-
tics were presented in Additional file  2: Table. S9; only 
LDL was different between offspring born to GDM or 
non-GDM mothers. We analyzed the cross-sectional 
association of each AA, total BCAAs, and aromatic AAs 
with child cardiometabolic characteristics. AAs like iso-
leucine, leucine, valine, and total BCAAs were positively 
associated with mid-childhood cardiometabolic risks 
like HOMA-IR and hsCRP; whereas AAs like glycine, 
phenylalanine, and aromatic AAs were inversely associ-
ated with cardiometabolic risks like lipid concentrations 
(Additional file 2: Fig. S2).

Discussion
In this study of Singaporean mother–child dyads, we 
reported that increasing maternal glucose concentra-
tions and GDM during mid-late pregnancy was signifi-
cantly and positively associated with adverse offspring 
AA profiles at mid-childhood, even after adjusting for 
child BMI z-scores. Higher maternal fasting glucose 
was associated with higher concentrations of offspring 

valine and total BCAAs in mid-childhood; whereas 
higher maternal 2-h glucose was associated with higher 
concentrations of offspring histidine, isoleucine, valine, 
and total BCAAs in mid-childhood. Offspring born to 
mothers with GDM had higher concentrations of leu-
cine, valine, and total BCAAs during mid-childhood 
compared to mothers with normal glucose concentra-
tions in pregnancy. In addition, isoleucine, leucine, 
valine, and total BCAAs were positively correlated with 
concurrent cardiometabolic profile, including HOMA-
IR, and hsCRP.

Emerging evidence has underpinned the pivotal role 
of AAs in the development of CVDs [10, 24, 25]. For 
instance, a wealth of epidemiological research con-
sistently demonstrated a positive correlation between 
elevated circulating BCAA levels and cardiometabolic 
risks (e.g., overweight/obesity, metabolic syndrome, 
type 2 diabetes) and even CVDs [24, 25]. Findings from 
the Women’s Health Study, which encompassed 25,994 
US women without pre-existing CVD at the outset 
and entailed a median follow-up period of 18.6 years, 
reported a direct association between total BCAAs and 
the incidence of CVD (HR: 1.13; 95% CI: 1.08,  1.18) 
[26]. Remarkably, this association was comparable with 
the other association observed between LDL-choles-
terol and CVD (per SD. LDL-cholesterol HR, 1.12; 95% 
CI: 1.07,  1.17) [26]. Both BCAAs and LDL appeared to 
mediate the path to CVDs by approximately 13% each 
[27]. These results collectively emphasize the pivotal role 
of AAs in the development of CVDs.

Fig. 1 Means and 95%CI of mid‑childhood leucine, valine, and total BCAAs by maternal GDM status
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In addition, a couple of recent systematic review [28] 
and meta-analysis [4] suggested a strong link between 
GDM and maternal AA metabolism during pregnancy, 
particularly BCAAs. Consequently, maternal metabo-
lite changes in response to GDM may further impact 
postnatal metabolomic programming by transplacental 
transfer and/or by altering the expression and function 
of genes involved in AA metabolism in the offspring [29]. 
For instance, Dani et al. reported that term infants with 
GDM mothers had higher concentrations of cord serum 
AAs, such as pyruvate, histidine, alanine, valine, methio-
nine, arginine, and lysine [30]. Infants born to mothers 
with GDM have elevated meconium metabolites, includ-
ing AAs (i.e., taurine, phenylalanine, and tyrosine), com-
pared with those born to mothers without GDM [31]. 
These findings supported that hyperglycemia-induced 
high concentrations of maternal metabolites could lead 
to high concentrations of offspring AA metabolism, and 
based on our findings, the altered offspring AAs may per-
sist into mid-childhood.

Animal studies suggest GDM may change offspring 
metabolic programming through epigenetic mecha-
nisms. Using a GDM mouse model, Zhu et  al. [32] 
explored the impact of maternal hyperglycemia on 
fetal pancreatic metabolome in mice of embryonic day 
18.5. The metabolome profiling of the fetal pancreas 
showed altered metabolites in several important path-
ways, including the BCAAs pathway. Human data have 
demonstrated an association between maternal GDM 
exposure and DNA methylation changes in cord blood, 
placenta, and offspring peripheral blood DNA [33–35]. 
For example, PTPRN2 (receptor-type tyrosine-protein 
phosphatase N2) gene was methylated in cord blood and 
in whole blood of GDM-exposed offspring at age 10.5 
years [35]. These findings suggest epigenetic modifica-
tions may be also involved in the long-term program-
ming of AA metabolism and processing in association 
with GDM.

Elevated circulating concentrations of BCAAs are 
known risk factors for obesity, type 2 diabetes, insulin 
resistance, and adverse CVD outcomes, such as stroke, 
in the general adult population [36]. Emerging evidence 
also suggests a similar relationship in children with 
findings that higher BCAA concentrations (including 
valine, leucine, isoleucine, and downstream interme-
diates of BCAAs catabolism) were more prevalent in 
children with obesity compared to those without, and 
higher circulating BCAAs were also associated with 
insulin resistance in children with obesity [37]. Our 
a posteriori analyses observed correlations between 
BCAAs and mid-childhood HOMA-IR and CRP, which 
are in keeping with these published findings.

We found that higher maternal fasting glucose and 
2-h glucose were associated with higher concentra-
tions of BCAAs and its components, which in turn 
were associated cross-sectionally with adverse cardio-
metabolic profiles. These findings suggest a potential 
opportunity for intervention for future cardiometabolic 
health risks, given that BCAAs are essential AAs that 
can only be obtained from the diet. Furthermore, our 
findings provide evidence of transgenerational meta-
bolic programming due to adverse maternal hyper-
glycemia, underlined by BCAAs. Future studies are 
warranted to verify our findings in larger populations 
with greater race/ethnicity diversity.

The strengths of our study include a relatively large 
sample size of mother–child pairs with ~ 20% GDM 
incidence. Since current evidence of maternal hypergly-
cemia and offspring AAs profile was limited to infancy, 
our is the first to report a long-term effect of maternal 
glycemia during pregnancy on offspring AAs at mid-
childhood. We used standardized protocols to collect 
maternal characteristics and a wide range of poten-
tial confounders, diagnose GDM, and assess child AAs 
profile and other biomarkers. We acknowledge some 
limitations. First, approximately two thirds of offspring 
were followed up at mid-childhood, of whom 50% had 
blood samples collected. Therefore, selection bias can-
not be excluded. However, there were small differences 
between participated mother–child dyads with and 
without complete data (Additional file  2: sTable  1); for 
example, those without completed data had younger 
mothers and higher rate of nulliparous and lower 
Health Eating Index, and there were no differences in 
child sample characteristics. Second, we recognize that 
other AAs, which were not covered by this panel, may 
also play a role in the development of cardiometabolic 
diseases. These unexamined AAs warrant further inves-
tigation. Furthermore, it should be noted that the sig-
nificance of certain associations pertaining to maternal 
GDM or fasting glucose concentrations and AAs attenu-
ated following multiple testing. The interpretation of 
our findings is contingent upon individual research-
ers’ acceptance of the implications of multiple testing. 
Thirdly, other unmeasured residual confounders such 
as paternal BMI and environmental factors could have 
contributed to the associations observed. Fourthly, 
offspring AAs and cardiometabolic risk factors were 
measured cross-sectionally, which limited us to directly 
examine the potential mediating role of AAs in mater-
nal hyperglycemia and child cardiometabolic health. 
Last but not least, our cohort comprises Asian mother–
offspring pairs from a relatively higher socioeconomic 
status; so, our findings may not be generalizable to more 
disadvantaged populations or other race/ethnic groups.
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Conclusions
In summary, we observed that increasing maternal gly-
cemia and GDM during 26-28 weeks of gestation were 
significantly associated with higher concentrations of off-
spring BCAAs in mid-childhood, which have been impli-
cated in the development of cardiometabolic disorders 
later in life. Our findings suggest higher maternal glyce-
mia during mid-to-late pregnancy may have initiated the 
alteration of metabolic programming of the offspring as 
early as in the womb.
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