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Abstract 

Background Preliminary evidence demonstrates some parameters of metabolic control, including glycaemic 
control, lipid control and insulin resistance, vary across the menstrual cycle. However, the literature is inconsistent, 
and the underlying mechanisms remain uncertain. This study aimed to investigate the association between the men‑
strual cycle phase and metabolites and to explore potential mediators and moderators of these associations.

Methods We undertook a cross‑sectional cohort study using UK Biobank. The outcome variables were glucose; tri‑
glyceride; triglyceride to glucose index (TyG index); total, HDL and LDL cholesterol; and total to HDL cholesterol ratio. 
Generalised additive models (GAM) were used to investigate non‑linear associations between the menstrual cycle 
phase and outcome variables. Anthropometric, lifestyle, fitness and inflammatory markers were explored as potential 
mediators and moderators of the associations between the menstrual cycle phase and outcome variables.

Results Data from 8694 regularly menstruating women in UK Biobank were analysed. Non‑linear associations were 
observed between the menstrual cycle phase and total (p < 0.001), HDL (p < 0.001), LDL (p = 0.012) and total to HDL 
cholesterol (p < 0.001), but not glucose (p = 0.072), triglyceride (p = 0.066) or TyG index (p = 0.100). Neither anthropo‑
metric, physical fitness, physical activity, nor inflammatory markers mediated the associations between the menstrual 
cycle phase and metabolites. Moderator analysis demonstrated a greater magnitude of variation for all metabolites 
across the menstrual cycle in the highest and lowest two quartiles of fat mass and physical activity, respectively.

Conclusions Cholesterol profiles exhibit a non‑linear relationship with the menstrual cycle phase. Physical activity, 
anthropometric and fitness variables moderate the associations between the menstrual cycle phase and metabolite 
concentration. These findings indicate the potential importance of physical activity and fat mass as modifiable risk 
factors of the intra‑individual variation in metabolic control across the menstrual cycle in pre‑menopausal women.
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Background
The prevalence of impaired metabolic control is 
increasing in pre-menopausal women [1]. Impaired 
metabolic control is typically characterised by 
decreased insulin sensitivity, fasting hyperglycaemia 
and dyslipidaemia [2]. Additionally, recent evidence 
indicates that glycaemic and lipidemic variability are 
integral components of metabolic control [3–6]. Dys-
regulation in parameters of metabolic control contrib-
utes to the pathophysiology of metabolic disorders, 
such as metabolic syndrome and type 2 diabetes (T2D) 
[7]. Therefore, it is crucial to examine factors that affect 
metabolic control in pre-menopausal women.

The menstrual cycle is a fundamental biological 
rhythm governing female physiology in pre-menopau-
sal women. Regulated across an approximately 4-weekly 
duration, the menstrual cycle is characterised by cycli-
cal fluctuations in pituitary hormones (luteinising hor-
mone and follicle-stimulating hormone) and ovarian 
hormones (estradiol and progesterone) [8, 9]. Ovarian 
hormones exert regulatory roles within lipid and glu-
cose homeostasis [10, 11]. Correspondingly, previous 
research has reported cyclical variation in parameters 
of metabolic control across the menstrual cycle, in 
association with fluctuations in ovarian hormone pro-
files [12–24]. However, findings are inconsistent; other 
studies report no effect of the menstrual cycle phase on 
parameters of metabolic control [25, 26]. These incon-
sistencies may be caused by the small sample sizes and 
heterogenous female populations recruited in these 
studies. Recent research demonstrates that variation 
in metabolic control across the menstrual cycle dif-
fers by categories of adiposity, cardiorespiratory fitness 
and physical activity [27]. However, further research 
is required to elucidate the role of these factors in 
the relationship between menstrual cycle phase and 
metabolites.

One mechanism which may contribute to the varia-
tion in metabolic control across the menstrual cycle is 
low-grade inflammation. Several inflammatory cytokines 
undergo rhythmic fluctuation across the menstrual cycle, 
including C-reactive protein (CRP), interleukin-4 (IL-4), 
insulin-like growth factor-1 (IGF-1) and tumour necro-
sis alpha (TNF-a) [25, 28–31]. Low-grade inflammation 
is positively associated with impaired metabolic control, 
including insulin resistance, hyperglycaemia and dys-
lipidaemia [25, 32–34]. Together, these are suggestive of 
inflammation being a potential mediator of the variation 
in metabolic control across the menstrual cycle; however, 
further research is needed to elucidate this role.

This study aimed to investigate the association between 
the menstrual cycle phase and metabolite concentrations. 
Following this, we aimed to explore whether adiposity, 

fitness, physical activity and inflammatory markers medi-
ate and/or moderate these associations.

Methods
Study protocol
UK Biobank is a large prospective, population-based 
study which recruited 502,682 participants between 
March 2007 and December 2010 [35]. Individuals aged 
37–73  years living within a 10-mile radius of 1 of 22 
assessment centres across England, Scotland and Wales 
were invited to participate by post (5.5% response rate 
[36]). During the baseline assessment visit, participants 
undertook a self-completed touch-screen questionnaire, 
a brief computer-assisted interview, physical and func-
tional measures and sampling of blood, urine and saliva, 
as described in detail elsewhere [35, 37]. The outcomes 
of interest in the current study were glucose; triglyceride; 
triglyceride and glucose index (TyG); total, HDL and LDL 
cholesterol; and total to HDL cholesterol. The exposure 
in this study was the menstrual cycle phase at the time of 
sampling.

Participant inclusion criteria
Menstrual cycle length was assessed in pre-menopausal 
women (Fig.  1); 66,447 participants answered the ques-
tion “How many days since your last menstrual period?”. 
Women were excluded from the current analysis based 
on factors that alter hormonal concentrations across 
the menstrual cycle: menstrual cycle duration < 21 or 
> 36  days; > 36  days since last period; menstrual bleed-
ing occurring after cycle day 7; estradiol concentration 
< 31 pmol/L or > 2864 pmol/L; < 1 year since last gave 
birth; < 1  year since last used contraceptive pill; or < 
1 year since last used hormone replacement therapy. Par-
ticipants were further excluded if they reported T2D or 
cancer diagnoses at baseline assessment. Blood samples 
were not collected following an overnight fast; therefore, 
participants were excluded from analysis if they recorded 
a fasting time ≤ 4 h.

Exposure variables
The menstrual cycle phase was assessed using self-
reported answers to the questions “How many days 
since your last menstrual period?” and “How many days 
is your usual menstrual cycle?”. Each participant pro-
vided responses to these questions at one timepoint. To 
account for the non-uniformity of participant menstrual 
cycle lengths, standardised time within the menstrual 
cycle was calculated relative to each participant using 
the formula: (days since last menstrual period/days in 
usual menstrual cycle) whereby 0 represents the start of 
the menstrual cycle and 1 represents the end of the men-
strual cycle. This corresponds to the approximate phases: 
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follicular phase 0.00–0.54 and luteal phase 0.54–1.00 
[38]. At this point, participants were further excluded 
from the current study if their menstrual cycle phase was 
greater than 1.

Outcome variables
The blood sampling protocol and biochemical analysis 
have previously been outlined and validated elsewhere 
[39, 40]. Serum concentrations of glucose; triglyceride; 
total, HDL and LDL cholesterol; and CRP were assessed 
using the AU5800 (Beckman Coulter, CA, USA). Serum 
concentration of estradiol was assessed using the DXI 
800 (Beckman Coulter, CA, USA). Serum concentration 
of IGF-1 was assessed using the Liaison XL (DiaSorin, 
Saluggia, Italy). Serum concentration of glycated hae-
moglobin (HBA1c) was assessed using the Variant II 
Turbo (BioRad, CA, USA). Manufacturers’ analytical 
ranges for these analytes were as follows [41, 42]: glu-
cose 0.6–45  mmol/L, triglyceride 0.1–11.3  mmol/L, 
total cholesterol 0.5–18.0  mmol/L, HDL cholesterol 
0.05–4.65  mmol/L, LDL cholesterol 0.26–10.3  mmol/L, 
CRP 0.08–80.00  mg/L, estradiol 72–17,621  pmol/L, 
IGF-1 1.3–195.0 nmol/L and  HBA1c 15–184 mmol/mol. 
The TyG index was calculated as (Ln[(triglyceride mg/

dL) × fasting glucose mg/dL)/2]) [43]. Total cholesterol 
to HDL ratio (total to HDL cholesterol mmol/L) was cal-
culated as (total cholesterol mmol/L)/(HDL cholesterol 
mmol/L).

Confounding variables
Age was calculated from self-reported date of birth and 
assessment date. Ethnicity was self-reported and cat-
egorised as white, black, Asian, Chinese, other or mixed. 
Area-level socioeconomic deprivation was assessed by 
the Townsend score based on self-reported home post-
code [44].

Potential mediators and moderators
Anthropometric measurements
Anthropometric measurements were obtained by trained 
personnel according to standard protocols and using 
calibrated equipment [37]. Height was measured with-
out shoes using a Seca 202 height measure. Whole body 
mass, fat mass and fat-free mass were measured with-
out shoes and outdoor clothing to the nearest 0.1  kg 
using the Tanita BC-418 MA body composition analyser. 
Body mass index (BMI) was calculated as mass in kilo-
grammes divided by the square of height in metres. Body 

Fig. 1 Flow diagram depicting participant inclusion in the current study
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composition was expressed as fat mass and fat-free mass 
in kilogrammes, both as absolute values and as percent-
age of total body mass. Quartiles of fat and fat-free mass 
percentage were derived.

Fitness
A subset of participants in UK Biobank underwent car-
diorespiratory fitness testing, 1412 of whom were eligi-
ble for inclusion in this study. Cardiorespiratory fitness 
was assessed using a submaximal 6-min cycle ergom-
eter test with workload adjusted for participant age, sex, 
height, weight and resting heart rate [45]. Heart rate 
was measured pre-, during and post-exercise via a four-
lead electrocardiogram. Predicted maximal work rate 
was calculated by extrapolating heart rate and work-
load before exercise and at the end of exercise to predict 
maximal heart rate (208 − (0.7 × age year)) [46], assum-
ing a linear relationship [47]. Maximal oxygen uptake 
was predicted using the standard equation for oxygen 
utilisation during cycle ergometry (metabolic equiva-
lents (METs): 7 + (workload W × 10.8/body mass kg)/3.5 
[47]. Grip strength was measured using a Jamar J00105 
hydraulic hand dynamometer [48]. Isometric grip force 
was assessed from a 3-s maximal grip effort of the left- 
and right-side arms. The mean of the left- and right-side 
values was calculated and expressed in kilogrammes. 
Age-specific cardiorespiratory fitness and grip strength 
z-scores were derived.

Physical activity
Self-reported physical activity was assessed using the 
International Physical Activity Questionnaire (IPAQ). 
Data processing guidelines published by IPAQ were 
followed [49]. Time spent at each level of activity was 
weighted by metabolic energy equivalent (MET) (walking 
3.3 METs, moderate intensity 4.0 METs, vigorous inten-
sity 8.0 METs), then summated to calculate total MET 
hours per week of physical activity. Participants were 
assigned to low, moderate and high categories of physi-
cal activity based on standard data processing guidelines 
[49].

Menstrual cycle symptoms
Physical symptoms associated with the menstrual cycle, 
known as dysmenorrhea (abdominal discomfort, abdom-
inal pain, menstrual cramps or other problems), were 
assessed via questionnaire responses. “Degree bothered 
by menstrual cramps or other problem with your period 
during the last 3 months” was self-reported as “not both-
ered at all”, “bothered a little” or “bothered a lot”. Dis-
comfort or pain occurring only during menstrual cycle 
bleeding during the last 3  months was self-reported as 
“yes” or “no”.

Fasting duration
Time since the last meal or drink, excluding plain water, 
was self-reported and recorded in hours.

Statistical analyses
All data analyses were conducted using R version 3.6.3 
[50], together with the libraries: emmeans [51], lme4 
[52], mgcv [53], tidymv [54] and tidyverse [55]. Sample 
sizes varied across the analyses due to missing data. Con-
tinuous variables were reported as mean and standard 
deviations and categorical variables were reported as the 
number of observations and their respective percentage.

To assess the relationship between the menstrual cycle 
phase and metabolites (glucose; triglyceride; TyG index; 
total, HDL and LDL cholesterol; and total to HDL cho-
lesterol), spline model fitting was conducted using gen-
eralised additive models (GAM) [53]. A cyclic cubic 
regression spline was fitted to the menstrual cycle phase, 
which constrains the start and end points of the smooth 
to the same value.

Mediator analyses
To identify factors as potential mediators of the relation-
ship between the menstrual cycle phase and metabolites, 
we first examined the association between metabolite 
concentration and potential mediators. Factors consid-
ered as potential mediators were BMI, fat mass %, fat-free 
mass %, total physical activity, grip strength, cardiorespi-
ratory fitness, CRP and IGF-1. The associations between 
metabolites and potential mediators were examined 
using GAMs fitted with a thin palate regression spline. To 
avoid over-fitting the parts of the distribution with low N, 
the top 1% of values were removed for CRP and IGF-1 
(CRP > 16.23  mg/L, IGF-1 >37.9 mmol/L). To investi-
gate whether the associations between the menstrual 
cycle phase and metabolites were mediated by these 
factors, separate GAM models fitted with a cyclic cubic 
regression spline were run that included each potential 
mediator as a continuous covariate. To test whether the 
inclusion of the covariate improved model fit, an F-test 
was conducted.

Moderator analyses
To investigate whether the associations between men-
strual cycle phase and metabolites differed by anthro-
pometric, physical activity and fitness factors, potential 
moderators were coded as quartiles and included as an 
interaction term in the GAM models fitted with a cyclic 
cubic regression spline. Where multiple measures for a 
similar physiological parameter were available, only one 
measure from each physiological parameter was selected 
for moderator analysis to avoid multicollinearity. For 
anthropometric variables, the indices most sensitive to 
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body composition were selected: fat mass (%) and fat-free 
mass (%). For physical activity levels, IPAQ total physical 
activity categories were selected because this index sum-
mates walking, moderate and vigorous physical activity 
levels and the categories reflect current physical activity 
recommendations [49]. The significance of model fit was 
tested for each category of the sub-groups investigated. 
To test whether the inclusion of the interaction term 
improved the model fit, an F-test was conducted.

In all GAM analyses, the smoothing parameter was 
estimated by the generalised cross-validation method. 
Non-linearity was tested using likelihood ratio tests. All 
GAM analyses were adjusted for confounding factors 
(age, ethnicity and deprivation). A p-value < 0.05 was 
considered statistically significant in all analyses.

Sensitivity analyses
To examine whether the semi-fasted nature of blood 
samples affected the results, sensitivity analysis was con-
ducted by adjusting all GAM models for fasting dura-
tion. Additionally, one-way ANOVAs were conducted to 
examine whether metabolite concentrations differed by 
reported fasting duration, categorised in hourly incre-
ments from 0 to 8  h. Pairwise comparisons were con-
ducted with Tukey adjustment after significant ANOVA 
results. Additional sensitivity analysis was conducted 
to examine if any behavioural or physiological effects of 
menstrual cycle symptoms affected results by restricting 
the cohort to women who did not report any menstrual 
cycle symptoms.

All scripts used for analysis and figure generation 
can be found at https:// github. com/ kirst in- macgr egor/ 
MCmet ab_ Bioba nk.

Results
Participant characteristics
The women in this cohort were predominantly (89.5%) of 
white ethnicity, with a mean age of 45 years (SD 3 years); 
48.3% were normal weight (Table 1). As expected, some 
participant characteristics (weight, BMI, % and absolute 
fat mass, % fat-free mass, walking, vigorous and total 
physical activity, grip strength, cardiorespiratory fitness, 
estradiol, CRP and IGF-1) demonstrated non-linear rela-
tionships with menstrual cycle phase (Additional file  1: 
Table S1).

Associations between menstrual cycle phase 
and metabolites
Menstrual cycle phase was associated with total choles-
terol (estimated degrees of freedom (EDF) 3.4, p < 0.001), 
HDL cholesterol (EDF 2.9, p < 0.001), LDL cholesterol 
(EDF 3.6, p = 0.012) and total to HDL cholesterol (EDF 
5.4, p < 0.001) (Table 2). No significant associations were 

observed between the menstrual cycle phase and glucose 
(EDF 1.3, p = 0.072), triglyceride (EDF 4.0, p = 0.066) or 
TyG index (EDF 3.6, p = 0.100). Phase-specific metabo-
lite values for the early follicular phase, ovulatory phase 
and mid-luteal phase are presented in Additional file  1: 
Table S2.

Table 1 Participant characteristics

BMI body mass index, CRP C-reactive protein, HBA1c glycated haemoglobin, 
HDL high-density lipoprotein, IGF-1 insulin-like growth factor-1, LDL low-density 
lipoprotein, TyG index triglyceride to glucose index. Continuous variables are 
reported as mean ± 1 SD for continuous variables and categorical variables are 
reported as the number of observations and their respective percentage

Characteristic Mean ± SD or n (%)

Age (years) 44.9 ± 2.8

Weight (kg) 70.4 ± 14.3

Height (m) 1.6 ± 0.1

BMI (kg/m2) 26.2 ± 5.2

Fat mass (kg) 25.0 ± 10.3

Fat mass (%) 34.3 ± 7.2

Fat‑free mass (kg) 45.4 ± 5.0

Fat‑free mass (%) 27.0 ± 3.7

Nutritional status

 Under‑weight, BMI < 18.5 75 (0.9)

 Normal‑weight, BMI ≤ 18.5 to < 25 4203 (48.3)

 Over‑weight, BMI ≤ 25 to < 30 2800 (32.2)

 Obese, BMI ≥ 30 1590 (18.3)

Ethnicity

 White 7782 (89.5)

 Black 123 (1.4)

 Mixed 228 (2.6)

 Asian 321 (3.6)

 Chinese 67 (0.7)

 Other 150 (1.7)

Physical activity

 Walking (MET min/week) 1050.9 ± 1093.2

 Moderate (MET min/week) 774.0 ± 1049.1

 Vigorous (MET min/week) 664.4 ± 1022.8

 Summed (MET min/week) 2489.4 ± 2405.3

Grip strength (kg) 26.9 ± 6.0

Cardiorespiratory fitness (METs) 9.6 ± 2.4

Estradiol (pmol/L) 560.1 ± 383.8

IGF‑1 (mmol/L) 23.8 ± 5.4

CRP (mg/L) 2.0 ± 3.6

HBA1c (mmol/mol) 33.0 ± 3.6

Glucose (mmol/L) 4.78 ± 0.49

Triglyceride (mmol/L) 1.20 ± 0.66

TyG index (mmol/L) 4.50 ± 0.23

Total cholesterol (mmol/L) 5.37 ± 0.90

HDL cholesterol (mmol/L) 1.55 ± 0.34

LDL cholesterol (mmol/L) 3.27 ± 0.71

Total to HDL cholesterol (mmol/L) 3.59 ± 0.93

https://github.com/kirstin-macgregor/MCmetab_Biobank
https://github.com/kirstin-macgregor/MCmetab_Biobank
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Association between anthropometric, lifestyle, fitness 
and inflammatory markers and metabolites
BMI, fat mass %, fat-free mass %, cardiorespiratory fit-
ness, CRP and IGF-1 were associated with all metabo-
lites (all p < 0.01) (Table 3). Grip strength was associated 
with glucose, triglcyeride, HDL, total to HDL choles-
terol and TyG index (all p < 0.01), but non-significant 
associations were found for LDL (p = 0.166) and choles-
terol (p = 0.096). Total physical activity was associated 
with total, LDL and HDL cholesterol; triglyceride; total 
to HDL cholesterol; and TyG index (all p < 0.05), but the 
association with glucose was non-significant (p = 0.413).

Anthropometric, lifestyle, fitness and inflammatory 
markers as potential mediators of the associations 
between metabolites and menstrual cycle phase
Anthropometric, physical activity, strength and fitness 
markers which were significantly associated with metab-
olite concentrations were next considered as potential 
mediators (Table 4). The associations between menstrual 
cycle phase and glucose, triglyceride and TyG index 
remained non-significant when including each of the 
mediator variables in the model (all p > 0.05), except the 
mediators BMI (p = 0.010), fat mass % (p = 0.026), fat-free 
mass % (p = 0.036), cardiorespiratory fitness (p = 0.015), 
CRP (p = 0.008) and IGF-1 (p = 0.004) for the outcome 
variable triglyceride, and the mediators BMI (0.022), 
cardiorespiratory fitness (0.012), CRP (p = 0.009) and 
IGF-1 (p = 0.003) for the outcome variable TyG index. 
Menstrual cycle phase was associated with total, LDL 
and total to HDL cholesterol following the inclusion of 
the mediator variables BMI, fat mass %, muscle mass %, 
summed PA and IGF-1 in the model (all p < 0.01), but 
not cardiorespiratory fitness (p = 0.292). Menstrual cycle 
phase was associated with HDL following the inclusion 

of each of the mediator variables (p < 0.05). Model fit was 
improved by the inclusion of each of the mediator vari-
ables for all metabolites (p < 0.001), except for the media-
tor grip strength for the outcome variable glucose and 
the mediator physical activity for the outcome variable 
LDL cholesterol. The inclusion of each of the mediator 
variables increased the percentage of deviance explained 
in the models for all metabolites. Phase-specific metabo-
lite values for the early follicular phase, ovulatory phase 
and mid-luteal phase are presented in Additional file  1: 
Table S3.

Anthropometric, lifestyle and fitness markers as potential 
effect modifiers of the association between menstrual 
cycle phase and metabolites
The menstrual cycle phase was significantly associated 
with triglyceride; TyG index; total, LDL and HDL cho-
lesterol; and total to HDL cholesterol in above median 
categories of fat mass and fat-free mass % (Figs. 2 and 3; 
Additional file  1: Table  S4). In below median categories 
of fat mass, menstrual cycle phase was only significantly 
associated with total, HDL and total to HDL cholesterol. 
In below median categories of fat-free mass, menstrual 
cycle phase was significantly associated with glucose, 
total cholesterol and HDL. In low and/or medium cat-
egories of physical activity, menstrual cycle phase was 
significantly associated with glucose and total, HDL and 
LDL cholesterol. In the high physical activity category 
menstrual cycle phase was only significantly associated 
with HDL. In below median categories of cardiorespira-
tory fitness, the menstrual cycle phase was significantly 
associated with glucose, triglyceride, TyG index, HDL 
and total to HDL cholesterol. No consistent findings were 
observed when including categories of grip strength in 
models. The inclusion of the interaction terms improved 

Table 2 Associations between menstrual cycle phase and metabolite concentration menstrual cycle phase

P-values represent the significance level for smoothed terms in the GAM. Boldface text denotes a significant p-value (< 0.05). Analyses were adjusted for age, ethnicity 
and deprivation. Menstrual cycle (MC) phase values are shown on a scale of 0–1; this corresponds to the approximate phases: follicular phase, 0–0.54; luteal phase, 
0.54–1 [38]

Dev exp deviance explained in percentage, EDF estimated degrees of freedom, HDL high-density lipoprotein, LDL low-density lipoprotein, TyG index, triglyceride to 
glucose index

Variable (mmol/L) N EDF Dev exp p-value Minimum (mmol/L 
(MC phase))

Maximum (mmol/L 
(MC phase))

Variation 
(mmol/L 
(%))

Glucose 7780 1.3 0.68 0.072 4.77 (0.46) 4.79 (0.96) 0.02 (0.43)

Triglyceride 8653 4.0 1.81 0.066 1.18 (0.92) 1.24 (0.67) 0.06 (5.32)

TyG index 7778 3.6 2.84 0.100 4.50 (0.96) 4.52 (0.67) 0.02 (0.45)

Total cholesterol 8651 3.4 2.30  < 0.001 5.32 (0.88) 5.44 (0.25) 0.12 (2.27)

HDL cholesterol 7779 2.9 1.88  < 0.001 1.53 (0.88) 1.59 (0.46) 0.06 (3.85)

LDL cholesterol 8638 3.6 1.59 0.012 3.25 (0.88) 3.32 (0.21) 0.07 (2.15)

Total to HDL cholesterol 7776 5.4 1.46  < 0.001 3.50 (0.50) 3.65 (0.13) 0.15 (4.17)
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Table 3 Association between metabolites and anthropometric, lifestyle, fitness and inflammatory markers

Potential mediator Metabolite (mmol/L) N val EDF Dev exp p-value

BMI (kg/m2) Glucose 7548 1.86 1.20  < 0.001
Triglyceride 8387 4.94 16.39  < 0.001
TyG index 7546 4.45 19.37  < 0.001
Total cholesterol 8385 3.34 3.88  < 0.001
LDL 8372 4.26 7.28  < 0.001
HDL 7547 4.40 16.08  < 0.001
Total to HDL cholesterol 7544 5.07 21.22  < 0.001

Fat mass (%) Glucose 7458 6.01 1.30  < 0.001
Triglyceride 8289 4.29 14.60  < 0.001
TyG index 7456 3.94 17.64  < 0.001
Total cholesterol 8287 3.74 4.38  < 0.001
LDL 8274 4.05 7.98  < 0.001
HDL 7457 3.92 14.18  < 0.001
Total to HDL cholesterol 7454 4.74 19.65  < 0.001

Fat‑free muscle mass (%) Glucose 7450 2.42 0.95  < 0.001
Triglyceride 8281 5.67 13.48  < 0.001
TyG index 7448 4.09 16.38  < 0.001
Total cholesterol 8279 3.95 4.59  < 0.001
LDL 8266 4.47 8.06  < 0.001
HDL 7449 3.98 12.56  < 0.001
Total to HDL cholesterol 7446 4.41 18.05  < 0.001

Grip strength (kg) Glucose 7550 1.00 0.55  < 0.001
Triglyceride 8388 2.41 1.99  < 0.001
TyG index 7548 1.71 2.85  < 0.001
Total cholesterol 8386 1.00 1.94 0.166

LDL 8373 1.35 1.39 0.096

HDL 7549 2.24 1.65 0.002
Total to HDL cholesterol 7546 2.48 1.45  < 0.001

Cardiorespiratory fitness (METs) Glucose 1505 1.00 3.24  < 0.001
Triglyceride 1601 4.61 9.72  < 0.001
TyG index 1505 2.77 12.65  < 0.001
Total cholesterol 1602 2.32 4.17  < 0.001
LDL 1602 4.09 5.90  < 0.001
HDL 1506 2.59 7.99  < 0.001
Total to HDL cholesterol 1505 4.17 11.68  < 0.001

Summed PA (MET min/week) Glucose 6413 5.11 0.58 0.413

Triglyceride 7130 3.89 2.91  < 0.001
Total cholesterol 7128 2.38 2.11 0.004
TyG index 6411 4.99 3.79  < 0.001
LDL 7117 3.26 2.05  < 0.001
HDL 6411 4.28 2.81  < 0.001
Total to HDL cholesterol 6408 4.36 2.90  < 0.001

CRP (mg/dL) Glucose 7572 1.00 0.66 0.001
Total cholesterol 8409 5.49 3.10  < 0.001
Triglyceride 8411 7.40 12.57  < 0.001
LDL 8396 6.12 4.14  < 0.001
HDL 7571 4.57 8.72  < 0.001
Total to HDL cholesterol 7568 6.42 11.97  < 0.001
TyG index 7570 7.30 14.68  < 0.001



Page 8 of 15MacGregor et al. BMC Medicine          (2023) 21:488 

the overall model fit for each of the sub-groups for all 
metabolites (p < 0.05). Phase-specific metabolite values 
for the early follicular phase, ovulatory phase and mid-
luteal phase are presented in Additional file 1: Table S5.

Sensitivity analyses
The severity of menstrual cycle symptoms is positively 
associated with variations in physical activity levels and 
inflammatory markers across the menstrual cycle [56, 
57]. When we excluded women with any menstrual cycle 
symptoms (abdominal discomfort, abdominal pain, men-
strual cramps or other problems with their menstrual 
cycle), the relationships between metabolites and men-
strual cycle phase were generally similar in the mediator 
and sub-group analyses, except for lipids in some models 
(Additional file 1: Tables 6, 7 and 8). When we adjusted 
each GAM model for fasting duration, similar results 
were obtained for all metabolites in the mediator and 
sub-group analyses (Additional file 1: Table S9, S10 and 
S11).

Discussion
In this population-based study using data on 8694 UK 
Biobank participants, we observed significant non-linear 
associations between menstrual cycle phase and total, 
HDL, LDL and total to HDL cholesterol, but not glucose, 
triglyceride or TyG index. The associations between the 
menstrual cycle phase and metabolite concentrations 
were not mediated by anthropometric, physical fitness, 
physical activity or inflammatory markers. In contrast, 
the inclusion of anthropometric, fitness, physical activ-
ity and inflammatory markers improved the model fit 
and increased the proportion of deviance explained by 
the models for metabolite concentrations. Sub-group 
analyses determined that the associations between men-
strual cycle phase and metabolite concentrations were 

predominantly restricted to women with above median 
fat mass and fat-free muscle mass, low or medium levels 
of physical activity and below median cardiorespiratory 
fitness.

During the luteal phase of the menstrual cycle, circulat-
ing glucose is reduced [13, 18] and is accompanied by an 
increase in whole-body insulin resistance [18–24]. How-
ever, results are inconsistent [25, 26, 58, 59]. Our data do 
not provide evidence supporting variations in glucose 
or TyG index, markers of whole-body insulin sensitivity 
across the menstrual cycle, prior to including anthropo-
metric, physical fitness, physical activity or inflamma-
tory markers in the model. The women in this study had 
a higher BMI and age (26.2 ± 5.2 kg/m2; 44.9 ± 2.8 years) 
compared with some previous studies [13, 18–22, 24], 
which may have contributed to discrepancies in findings.

Significant non-linear associations with menstrual 
cycle phase were observed for cholesterol profiles, but 
not triglyceride concentration. Total, LDL and total 
to HDL cholesterol were highest in the early follicu-
lar phase and declined during the luteal phase, whereas 
HDL cholesterol reached a peak during the late-follicu-
lar phase. This finding was consistent with other studies 
that reported favourable lipid profiles in the mid-luteal 
phase and confirmed this pattern of rhythmicity existed 
in a larger population [12, 13, 16, 26]. Elevated circulating 
endogenous estradiol during the mid-luteal phase pro-
motes the synthesis of very-LDL cholesterol and inhib-
its lipoprotein lipase, thereby reducing LDL cholesterol 
and increasing HDL cholesterol formation [60]. Thus, 
our findings are congruent with the reported effects of 
endogenous estradiol on lipoprotein metabolism.

Low-grade inflammation is involved in the develop-
ment of insulin resistance [61–64] and accordingly is an 
independent risk factor associated with hyperglycaemia 
[63, 65], hyperinsulinemia [63, 66] and dyslipidaemia 

Table 3 (continued)

Potential mediator Metabolite (mmol/L) N val EDF Dev exp p-value

IGF‑1 (mmol/L) Glucose 7572 2.69 0.91  < 0.001

Triglyceride 8411 1.00 2.24  < 0.001

TyG index 7570 1.00 3.33  < 0.001

Total cholesterol 8409 2.51 2.17 0.003

LDL 8396 1.32 1.72  < 0.001

HDL 7571 2.64 2.11  < 0.001

Total to HDL cholesterol 7568 1.00 1.88  < 0.001

P-values represent the significance level for smoothed terms in the GAM. Boldface text denotes a significant p-value (< 0.05). Analyses were adjusted for age, ethnicity 
and deprivation

CRP C-reactive protein, EDF estimated degrees of freedom, HDL high-density lipoprotein, IGF-1 insulin-like growth factor-1, LDL low-density lipoprotein, TyG index 
triglyceride to glucose index
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Table 4 Effect of anthropometric, lifestyle, fitness and inflammatory markers on the association between metabolite concentration 
with menstrual cycle phase

Variable (mmol/L) Potential mediator N val EDF Dev exp Minimum 
(mmol/L (MC 
phase))

Maximum 
(mmol/L (MC 
phase))

Variation 
(mmol/L 
(%))

Model
p-value

Interaction
p-value

Glucose BMI (kg/m2) 7754 1.26 1.47 4.77 (0.46) 4.79 (0.96) 0.02 (0.40) 0.080  < 0.001
Fat mass (%) 7657 1.32 1.67 4.77 (0.50) 4.79 (0.00) 0.02 (0.43) 0.070  < 0.001
Fat‑free muscle mass 
(%)

7649 1.35 1.32 4.77 (0.50) 4.79 (0.96) 0.02 (0.44) 0.065  < 0.001

Grip strength (kg) 7757 1.31 0.72 4.77 (0.46) 4.79 (0.96) 0.02 (0.43) 0.074 0.320

Cardiorespiratory fitness 
(METs)

1540 3.61 4.12 4.83 (0.42) 4.93 (0.71) 0.10 (2.04) 0.030  < 0.001

CRP (mg/dL) 7759 1.27 1.06 4.77 (0.46) 4.79 (0.96) 0.02 (0.40) 0.086  < 0.001
IGF‑1 (mmol/L) 7780 0.00 1.01 4.78 (0.50) 4.78 (0.96) 0.00 (0.00) 0.532  < 0.001

Triglyceride BMI (kg/m2) 8627 4.30 16.23 1.17 (0.88) 1.25 (0.63) 0.08 (6.35) 0.010  < 0.001
Fat mass (%) 8522 3.99 14.63 1.17 (0.88) 1.23 (0.63) 0.06 (5.08) 0.026  < 0.001
Fat‑free mass (%) 8514 4.02 13.55 1.17 (0.88) 1.23 (0.63) 0.06 (4.97) 0.036  < 0.001
Summed PA (MET min/
week)

7328 0.34 2.92 1.20 (0.96) 1.20 (0.50) 0.01 (0.42) 0.296  < 0.001

Grip strength (kg) 8628 3.96 2.10 1.18 (0.92) 1.24 (0.67) 0.06 (5.13) 0.079  < 0.001
Cardiorespiratory fitness 
(METs)

1638 3.53 10.89 1.14 (0.88) 1.26 (0.58) 0.12 (9.99) 0.015  < 0.001

CRP (mg/dL) 8629 3.73 12.14 1.17 (0.92) 1.23 (0.63) 0.06 (5.31) 0.008  < 0.001
IGF‑1 (mmol/L) 8653 4.07 2.39 1.16 (0.92) 1.24 (0.63) 0.08 (6.69) 0.004  < 0.001

TyG index BMI (kg/m2) 7752 4.00 19.67 4.49 (0.92) 4.52 (0.63) 0.02 (0.54) 0.022  < 0.001
Fat mass (%) 7655 3.72 18.06 4.50 (0.88) 4.51 (0.63) 0.02 (0.43) 0.062  < 0.001
Fat‑free mass (%) 7647 3.72 16.82 4.50 (0.88) 4.52 (0.63) 0.02 (0.42) 0.083  < 0.001
Summed PA (MET min/
week)

6581 0.85 4.04 4.50 (0.00) 4.51 (0.54) 0.01 (0.12) 0.209  < 0.001

Grip strength (kg) 7755 3.50 3.06 4.50 (0.96) 4.52 (0.67) 0.02 (0.43) 0.108  < 0.001
Cardiorespiratory fitness 
(METs)

1540 3.51 13.91 4.49 (0.96) 4.54 (0.63) 0.05 (1.07) 0.012  < 0.001

CRP (mg/dL) 7757 3.71 14.42 4.49 (0.96) 4.52 (0.63) 0.02 (0.54) 0.009  < 0.001
IGF‑1 (mmol/L) 7778 3.77 3.64 4.49 (0.96) 4.52 (0.63) 0.03 (0.64) 0.003  < 0.001

Total cholesterol BMI (kg/m2) 8625 3.43 4.27 5.31 (0.88) 5.45 (0.25) 0.14 (2.52)  < 0.001  < 0.001
Fat mass (%) 8520 3.30 4.78 5.31 (0.88) 5.45 (0.25) 0.14 (2.59)  < 0.001  < 0.001
Fat‑free mass (%) 8512 3.26 5.02 5.31 (0.88) 5.45 (0.25) 0.14 (2.58)  < 0.001  < 0.001
Summed PA (MET min/
week)

7326 3.42 2.51 5.31 (0.88) 5.44 (0.25) 0.14 (2.59)  < 0.001 0.001

Cardiorespiratory fitness 
(METs)

1639 0.43 4.40 5.39 (0.88) 5.41 (0.38) 0.02 (0.36) 0.292  < 0.001

CRP (mg/dL) 8627 3.39 3.40 5.32 (0.88) 5.45 (0.25) 0.13 (2.41)  < 0.001  < 0.001
IGF‑1 (mmol/L) 8651 3.30 2.50 5.31 (0.88) 5.45 (0.25) 0.13 (2.45)  < 0.001 0.001

LDL cholesterol BMI (kg/m2) 8612 3.59 7.59 3.25 (0.83) 3.33 (0.21) 0.09 (2.63) 0.001  < 0.001
Fat mass (%) 8507 3.50 8.29 3.24 (0.83) 3.34 (0.21) 0.09 (2.81)  < 0.001  < 0.001
Fat‑free mass (%) 8499 3.44 8.40 3.24 (0.83) 3.34 (0.21) 0.09 (2.79)  < 0.001  < 0.001
Summed PA (MET min/
week)

7315 3.49 2.33 3.24 (0.88) 3.32 (0.21) 0.08 (2.40) 0.007 NA

Cardiorespiratory fitness 
(METs)

1639 0.00 5.90 3.27 (0.92) 3.27 (0.42) 0.00 (0.00) 0.953  < 0.001

CRP (mg/dL) 8614 3.66 4.20 3.25 (0.88) 3.33 (0.21) 0.08 (2.48) 0.003  < 0.001
IGF‑1 (mmol/L) 8638 3.62 1.94 3.24 (0.88) 3.33 (0.21) 0.08 (2.57) 0.003  < 0.001
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Table 4 (continued)

Variable (mmol/L) Potential mediator N val EDF Dev exp Minimum 
(mmol/L (MC 
phase))

Maximum 
(mmol/L (MC 
phase))

Variation 
(mmol/L 
(%))

Model
p-value

Interaction
p-value

HDL cholesterol BMI (kg/m2) 7753 2.77 16.48 1.53 (0.92) 1.59 (0.46) 0.05 (3.35)  < 0.001  < 0.001

Fat mass (%) 7656 2.66 14.57 1.53 (0.96) 1.59 (0.46) 0.05 (3.31)  < 0.001  < 0.001

Fat‑free mass (%) 7648 2.63 12.97 1.53 (0.96) 1.59 (0.46) 0.05 (3.35)  < 0.001  < 0.001

Summed PA (MET min/
week)

6581 2.59 3.18 1.54 (0.88) 1.59 (0.42) 0.06 (3.72)  < 0.001  < 0.001

Grip strength (kg) 7756 2.94 2.11 1.53 (0.88) 1.59 (0.46) 0.06 (3.88)  < 0.001 0.001

Cardiorespiratory fitness 
(METs)

1541 2.95 8.89 1.57 (0.79) 1.63 (0.38) 0.06 (3.91) 0.026  < 0.001

CRP (mg/dL) 7758 3.07 9.02 1.53 (0.88) 1.59 (0.46) 0.05 (3.37)  < 0.001  < 0.001

IGF‑1 (mmol/L) 7779 3.55 2.41 1.54 (0.83) 1.59 (0.46) 0.05 (3.29)  < 0.001  < 0.001
Total to HDL cholesterol BMI (kg/m2) 7750 5.35 21.75 3.52 (0.50) 3.67 (0.13) 0.15 (4.19)  < 0.001  < 0.001

Fat mass (%) 7653 5.83 20.20 3.52 (0.50) 3.69 (0.13) 0.17 (4.80)  < 0.001  < 0.001
Fat‑free mass (%) 7645 6.08 18.61 3.51 (0.50) 3.69 (0.13) 0.18 (4.98)  < 0.001  < 0.001
Summed PA (MET min/
week)

6578 4.34 3.25 3.50 (0.50) 3.62 (0.13) 0.12 (3.47) 0.002  < 0.001

Grip strength (kg) 7753 5.69 1.77 3.50 (0.50) 3.65 (0.13) 0.15 (4.21)  < 0.001  < 0.001
Cardiorespiratory fitness 
(METs)

1540 3.36 12.60 3.45 (0.38) 3.58 (0.67) 0.13 (3.58) 0.170  < 0.001

CRP (mg/dL) 7755 5.72 12.03 3.51 (0.50) 3.66 (0.13) 0.14 (3.99) 0.001  < 0.001
IGF‑1 (mmol/L) 7776 6.29 2.22 3.51 (0.50) 3.66 (0.67) 0.15 (4.12) 0.002  < 0.001

Model p-values represent significance for the smoothed term of the menstrual cycle phase in the GAM. Interaction p-value represents the F-test comparing model fit 
with and without inclusion of mediator. Boldface text denotes a significant p-value (< 0.05). Analyses were adjusted for age, ethnicity, deprivation and fasting duration. 
Menstrual cycle phase values are shown on a scale of 0–1; this corresponds to the approximate phases: follicular phase, 0–0.54; luteal phase, 0.54–1 [38]

BMI body mass index, CRP C reactive protein, dev exp deviance explained in percentage, EDF estimated degrees of freedom, HDL high-density lipoprotein, IGF-1 
insulin-like growth factor-1, LDL low-density lipoprotein, TyG index triglyceride to glucose index

2 1 2 1
Cardiorespiratory fitness Fat−free mass Fat mass Grip strength Physical activity

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
4.6

4.8

5.0

5.2

G
lu

co
se

 (m
m

ol
/L

)

1 4 3, 4

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0.75

1.00

1.25

1.50

1.75

Tr
ig

ly
ce

rid
e 

(m
m

ol
/L

)

2 4 3, 4

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
4.2

4.4

4.6

4.8

Ty
G

 in
de

x 
(m

m
ol

/L
)

subgroupVar 1 2 3 4

Fig. 2 Variations in glucose, triglyceride and TyG index across the menstrual cycle for each model. Fat mass %, muscle mass %, age‑specific grip 
strength (kg) z‑score and age‑specific cardiorespiratory fitness (METs) level z‑score are categorised as quartiles. Physical activity (METs) is categorised 
into low, medium and high according to previously defined criteria. Curves represent GAM estimates using a smoothing spline function. Shaded 
areas represent 95% confidence intervals. The menstrual cycle phase is shown on a scale of 0–1 corresponding to the approximate phases: 
follicular phase, 0–0.54; luteal phase, 0.54–1 [38]. Analyses were adjusted for age, ethnicity and deprivation. Significant model fit for each sub‑group 
is denoted by the respective number at the top right corner. TyG index, triglyceride to glucose index
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[62]. In agreement with previous studies, we observed 
significant associations between CRP and IGF-1 with 
glucose; TyG index; total, HDL and LDL cholesterol; 
and total to HDL cholesterol. When CRP or IGF-1 
were included in the models, the observed associations 
between menstrual cycle phase and total, LDL, HDL 
and total to HDL cholesterol did not change. Therefore, 
we did not report evidence that CRP or IGF-1 mediates 
the association between the menstrual cycle phase and 
metabolite concentration.

High adiposity, low cardiorespiratory fitness and low 
physical activity levels are risk factors for impaired meta-
bolic control [67, 68]. Accordingly, we observed BMI, fat 
mass, fat-free mass, grip strength, cardiorespiratory fit-
ness and physical activity were significantly associated 
with all metabolites. However, we found no evidence that 
the associations between metabolites were mediated by 
anthropometric, fitness or physical activity levels.

Greater variation in metabolites across the menstrual 
cycle was generally observed in women with above-
median fat mass and below-median physical activity 
and cardiorespiratory fitness. This was consistent with 
a recent study that reported greater variation in glucose 

and insulin resistance across the menstrual cycle in 
individuals with a high BMI (> 25  kg/m2), low physical 
activity levels (< 500 MET min/week) and low cardiores-
piratory fitness (< 50th age-specific V̇  O2max percentile) 
[69]. Consistent with these findings, others report that 
adiposity, physical activity and cardiorespiratory fitness 
are associated with increased intra-individual variability 
in glycaemic and lipidemic control in women [67, 68]. 
Notably, our findings extend this evidence base by dem-
onstrating that these risk factors for metabolic disease 
moderate variation in metabolite concentration across 
the menstrual cycle. However, the precise mechanisms 
that underlie the observed differences in the magnitude 
of variation in metabolites across the menstrual cycle 
between categories of adiposity, physical activity and fit-
ness remain to be determined.

The severity of menstrual cycle symptoms is positively 
associated with behavioural changes and inflammatory 
markers, including CRP [25, 56, 57]. Therefore, we con-
ducted a sensitivity analysis excluding women with men-
strual cycle symptoms from the cohort. In this analysis, 
similar observations were detected between menstrual 
cycle phase and metabolite concentration in all models.
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Fig. 3 Variations in total cholesterol, HDL, LDL and total choleserol:HDL across the menstrual cycle for each model. Fat mass %, muscle mass 
%, age‑specific grip strength (kg) z‑score and age‑specific cardiorespiratory fitness (METs) z‑score are categorised as quartiles. Physical activity 
(METs) is categorised into low, medium and high according to previously defined criteria. Lines represent GAM estimates using a smoothing 
spline function. Shaded areas represent 95% confidence intervals. The menstrual cycle phase is shown on a scale of 0–1; this corresponds 
to the approximate phases: follicular phase, 0–0.54; luteal phase, 0.54–1 [38]. Analyses were adjusted for age, ethnicity and deprivation. Significant 
non‑linear relationships for each category level are denoted by the respective number at the top right corner. LDL, low‑density lipoprotein; HDL, 
high‑density lipoprotein
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Intra-individual glucose and lipid variations are inde-
pendent risk factors for metabolic disease in healthy 
women [70] and those with T2D [4, 5]. We found sig-
nificant non-linear associations between the men-
strual cycle phase and lipid profiles, with a variation of 
2.2–5.3% across the menstrual cycle. Additionally, the 
sub-group analysis determined that variations in glucose 
TyG index and lipid profiles across the menstrual cycle 
were increased in individuals with high-fat mass and low 
physical activity (up to 25% increase). These magnitudes 
of variation in metabolites across the menstrual cycle 
are greater than reported within-cycle phase variation 
(1–9%) [26] and analytical technical coefficients of vari-
ation (1–2%) [41]. Given the role of intra-individual vari-
ation in the onset and progression of metabolic disease, 
these findings identify physical activity and fat mass as 
potentially modifiable risk factors for the prevention and 
risk reduction of metabolic disease in pre-menopausal 
women.

Our study has several limitations. The cohort of UK 
Biobank participants included in this study were middle-
aged (40–50  years). We ensured any perimenopausal 
women were omitted from the cohort by including irreg-
ular menstrual characteristics in the exclusion criteria. 
Additionally, women with estradiol values < 31  pmol/L 
or > 2864  pmol/L were excluded, as the perimenopau-
sal period of the reproductive cycle is characterised by 
abnormally high or low ovarian estradiol production [71]. 
Nonetheless, findings from this study must be extrapo-
lated to younger populations with caution. Fasting blood 
samples were not collected in UK Biobank. Therefore, 
any participant with a fasting duration of less than 4  h 
was excluded from the analysis. This cut-off threshold 
was selected based on evidence demonstrating semi-
fasted (≥ 4  h) measures of blood glucose and lipids are 
not significantly different from and are closely correlated 
to fasted measures (≥ 8 h) [72–75]. In this study, differ-
ences in metabolite concentrations between consecutive 
hours of fasting were not detected above 4 h (Additional 
file  1: Table  S12, Additional file  2: Fig. S1). To further 
ensure fasting duration did not affect results, we con-
ducted a sensitivity analysis adjusting for fasting duration 
and obtained similar results in all models (Additional 
file  1: Table  S9, S10 and S11). Therefore, we are confi-
dent that the semi-fasted nature of blood samples did not 
affect our results. Nonetheless, the self-reported assess-
ment of participants’ fasting duration does represent a 
limitation, but is unlikely to introduce systematic error. 
Some variables used for sub-group analysis demonstrated 
a non-linear relationship with the menstrual cycle phase 
(fat mass %, fat-free mass %, grip strength, cardiorespi-
ratory fitness). Therefore, results from the sub-group 
analyses must be interpreted with caution. Data analysed 

in this study were collected once per participant and 
are therefore relevant to a single timepoint within their 
menstrual cycle. Future studies are warranted with serial 
measurements from the same individual spanning multi-
ple timepoints across the menstrual cycle. Progesterone 
exerts antagonistic effects to the actions of estradiol on 
metabolic control [60]. However, in UK Biobank, pro-
gesterone was not assessed. Future prospective cohort 
studies assessing ovarian hormones should endeavour to 
analyse all ovarian hormones, including progesterone, to 
facilitate the examination of the metabolic actions of syn-
chronous fluctuations in hormonal profiles.

The large prospective nature of the UK Biobank cohort 
is a substantial strength of this study. We analysed data 
from 8694 regularly menstruating women, the larg-
est study to date examining the variation in metabolites 
across the menstrual cycle. Moreover, detailed informa-
tion collection on menstrual cycle characteristics allowed 
the exclusion of women with any symptoms of irregular 
menstrual cycles and peri-menopausal phase.

Conclusions
In conclusion, our study confirms previous findings by 
demonstrating that lipid profiles exhibit non-linear varia-
tions by menstrual cycle phase. We did not find evidence 
that the associations between the menstrual cycle phase 
and glucose; triglyceride; TyG index; total, HDL and LDL 
cholesterol; and total to HDL cholesterol were mediated 
by anthropometric, physical activity, fitness or inflam-
matory markers. We identified fat mass, physical activity 
level and cardiorespiratory fitness as factors modifying 
the association between menstrual cycle and glucose; 
triglyceride; TyG index; total, HDL and LDL cholesterol; 
and total to HDL cholesterol. These findings should be 
considered in therapeutic strategies to mitigate distur-
bances in metabolic control across the menstrual cycle. 
Further work is required to examine whether these rela-
tionships represent a causal mechanism underpinning 
variation in metabolic control across the menstrual cycle.
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