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Abstract 

Background Adverse pregnancy outcomes (APO) may unmask or exacerbate a woman’s underlying risk for coro-
nary heart disease (CHD). We estimated associations of maternal and paternal genetically predicted liability for CHD 
with lifelong risk of APOs. We hypothesized that associations would be found for women, but not their male partners 
(negative controls).

Methods We studied up to 83,969 women (and up to 55,568 male partners) from the Norwegian Mother, Father 
and Child Cohort Study or the Trøndelag Health Study with genotyping data and lifetime history of any APO 
in their pregnancies (1967–2019) in the Medical Birth Registry of Norway (miscarriage, stillbirth, hypertensive dis-
orders of pregnancy, gestational diabetes, small for gestational age, large for gestational age, and spontaneous 
preterm birth). Maternal and paternal genetic risk scores (GRS) for CHD were generated using 148 gene variants 
(p-value < 5 ×  10−8, not in linkage disequilibrium). Associations between GRS for CHD and each APO were determined 
using logistic regression, adjusting for genomic principal components, in each cohort separately, and combined using 
fixed effects meta-analysis.

Results One standard deviation higher GRS for CHD in women was related to increased risk of any hypertensive 
disorders of pregnancy (odds ratio [OR] 1.08, 95% confidence interval [CI] 1.05–1.10), pre-eclampsia (OR 1.08, 95% CI 
1.05–1.11), and small for gestational age (OR 1.04, 95% CI 1.01–1.06). Imprecise associations with lower odds of large 
for gestational age (OR 0.98, 95% CI 0.96–1.00) and higher odds of stillbirth (OR 1.04, 95% CI 0.98–1.11) were sug-
gested. These findings remained consistent after adjusting for number of total pregnancies and the male partners’ 
GRS and restricting analyses to stable couples. Associations for other APOs were close to the null. There was weak evi-
dence of an association of paternal genetically predicted liability for CHD with spontaneous preterm birth in female 
partners (OR 1.02, 95% CI 0.99–1.05), but not with other APOs.
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Conclusions Hypertensive disorders of pregnancy, small for gestational age, and stillbirth may unmask women 
with a genetically predicted propensity for CHD. The association of paternal genetically predicted CHD risk with spon-
taneous preterm birth in female partners needs further exploration.

Keywords Coronary heart disease, Adverse pregnancy outcomes, Parental genetic liability to CHD, MoBa, HUNT

Background
Adverse pregnancy outcomes (APO), such as miscar-
riage, stillbirth, hypertensive disorders of pregnancy 
(HDP), gestational diabetes (GD), small for gestational 
age (SGA), large for gestational age (LGA), and spon-
taneous preterm birth (sPTB), may unmask a woman’s 
underlying liability for cardiovascular disease, identify-
ing women who “fail” the cardiometabolic stress test of 
pregnancy [1]. Preconception cardiovascular risk factors 
are associated with APOs [2–7] and the extent of physi-
ological changes of pregnancy including vasodilation, 
decreases in glucose, and changes in lipoprotein sub-
classes and biomarkers of low-grade inflammation [8]. 
Moreover, adjustment for preconception cardiovascular 
risk factors attenuates the relationship between APOs 
and maternal post-partum risk of cardiovascular disease 
[9–11]. An association between genetically predicted 
liability for cardiovascular disease and APOs in women 
would offer further support to the “unmasking” hypoth-
esis as germline variants are inherited at birth. These 
analyses would also provide additional evidence on alter-
native hypothesis to explain the association, such as the 
possible direct role of APOs (such as HDP) on accentuat-
ing the risk of developing cardiovascular diseases in the 
future [12, 13].

We therefore investigated associations between mater-
nal and paternal genetic liability for coronary heart dis-
ease (CHD) with APOs (miscarriage, stillbirth, HDP, 
GD, SGA, LGA, and sPTB). We hypothesized that we 
would find an association in women but not in men, 
as men’s genetic predisposition to CHD would not be 
revealed when their female partner undergoes the car-
diometabolic stress test of pregnancy. Hence, we con-
sidered men as imperfect negative controls. Imperfect, 
because shared family environment associated with both 
genetic liability for CHD and APO risk (e.g., body mass 
index, smoking) [14] may result in associations between 
genetic liability for CHD in men and APO risk in their 
female partners. Paternal genetic variants linked to CHD 
might also impact the epigenetics of their reproductive 
cells or the quality of their sperm, and these factors may 
in turn influence APO risk [15, 16]. Finally, fetal genet-
ics inherited from both parents may also affect risk of 
APOs [17, 18]. We used genetically predicted CHD risk 
as the exposure because CHD is the most common car-
diovascular disease, the leading cause of death globally, 

and the cardiovascular event with the highest proportion 
of genetic variance explained in genome-wide association 
studies (GWAS) [19].

Methods
Population description
We studied participants in the Norwegian Mother, Father, 
and Child Cohort Study (MoBa) [20] and the Trøndelag 
Health Study (HUNT) [21]. MoBa is a pregnancy cohort 
study led by the Norwegian Institute of Public Health in 
which pregnant women and their partners were recruited 
at approximately 17 gestational weeks between 1999 and 
2008 all over Norway. The participation rate was 41%, 
and the cohort includes approximately 95,200 women 
and 75,200 of their male partners [20]. The HUNT study 
is a population-based cohort of the Trøndelag County 
in Norway (representative of the general adult Norwe-
gian population regarding morbidity, mortality, income, 
and age), led by the Norwegian University of Science and 
Technology and based on four data collection surveys 
between 1984 and 2019 [21, 22]. Both MoBa and HUNT 
participants are of predominantly European ancestry. 
Information from the Medical Birth Registry of Norway 
(MBRN) for participants in both cohorts was obtained by 
linkage using unique identification numbers.

This work is based on a subsample of participants in 
the two cohorts who had at least one registered single-
ton pregnancy in the MBRN, available genotype data, 
and information on APOs (Fig. 1). Regarding HUNT, as 
the MBRN has information on all births in Norway from 
1967 onwards [23], we restricted our analyses to cohort 
participants who were 15  years or younger at the time 
when the MBRN was set up (born 1952 or later), to cap-
ture all of their births. Genotype data in both cohorts 
came from biological samples obtained from partici-
pants after genotype calling, imputation, and quality 
control [22, 24]. This work is presented according to the 
Strengthening the Reporting of Observational Studies in 
Epidemiology guidelines.

Genetic liability for coronary heart disease
We obtained publicly available summary data on the 
genetic variants linked to CHD from the latest GWAS 
including ~ 550,000 individuals from the UK Biobank 
and CARDIoGRAMplusC4D cohorts [19]. No MoBa or 
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HUNT participants took part in this GWAS. It identi-
fied 148 genetic variants (single-nuclear polymorphisms) 
associated with CHD at genome-wide significance 
(p-value < 5 ×  10−8) and independent of each other (i.e., 
not in linkage disequilibrium [pairwise r2 < 0.1 and a 
physical distance of at least 5000bps]) [25]. One hundred 
forty-one and 146 of these genetic variants were available 
in the MoBa and HUNT databases, respectively. We used 
these variants to calculate weighted genetic risk scores 
(GRSs) for CHD, representing the genetic liability for 
CHD [26]. The exact genetic variants used in each cohort 
is available in Additional file 1: Table S1.

Adverse pregnancy outcomes
APOs were defined using information from the MBRN 
for both cohorts. We identified individuals in MoBa and 
HUNT with any history of any APO across all their reg-
istered pregnancies from 1967 to 2019. Miscarriage was 
defined as any fetal loss prior to 23 completed gestational 
weeks, while stillbirth was defined as any fetal death 
after 23 completed gestational weeks, as registered in the 
MBRN [23]. The MBRN contains self-reported informa-
tion on the number of prior miscarriages and stillbirths 
at the time of each registered pregnancy (it is not possi-
ble to distinguish the exact gestational age of prior preg-
nancies not registered in the MBRN), in addition to the 
status and gestational age of the registered pregnancies. 
We combined the self-reported information on previ-
ous pregnancies and the registered pregnancies to define 
complete history of miscarriage and stillbirth. HDP was 
defined as having any registration of gestational hyper-
tension, preeclampsia, eclampsia, or hemolysis, elevated 
liver enzymes and low platelets syndrome in the absence 

of hypertension prior to the pregnancy [27]. Registrations 
of GD in the MBRN are made according to the criteria of 
the Norwegian Society of Gynecology and Obstetrics in 
the absence of a history of diabetes [28]. Notably, there 
is no information on blood pressure measurements, pro-
teinuria levels, or glucose levels in the MBRN. The reg-
istrations of HDP and GD are therefore made based on 
the national clinical guidelines at the time [27, 28]. Ges-
tational age was estimated using ultrasound around 18 
completed gestational week or last menstrual period for 
the small proportion without an ultrasound assessment. 
SGA was defined as birth weight < 10th percentile for 
gestational age and biological sex [29], while LGA was 
defined as birth weight ≥ 90th percentile for gestational 
age and biological sex of the offspring. Participants who 
delivered an SGA baby were excluded from the analy-
ses on LGA and vice versa. Any non-medically induced 
delivery prior to the 37th week of pregnancy was con-
sidered a sPTB (induced deliveries and C-sections were 
excluded from the reference group) [30].

Descriptive variables
To describe the characteristics of our population, we 
obtained information on birth year (value in the first 
pregnancy in MBRN, continuous), highest obtained 
parity according to MBRN (continuous), whether the 
study participants were involved in pregnancies with 
more than one partner (yes/no), years of education 
(value registered in the first MoBa/HUNT question-
naire available, continuous), body mass index (value 
registered in the first MoBa/HUNT questionnaire 
available, in kg/m2), having ever smoked (yes/no), 

Fig. 1 Flow chart
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and highest obtained parity (stillbirths plus live births 
according to the MBRN, continuous) [31, 32].

Statistical analyses
We describe the distributions of normally distributed 
continuous variables using means and standard devia-
tions (SDs), non-normally distributed continuous varia-
bles using medians and 1st–3rd quartiles, and categorical 
variables using numbers and percentages. We assessed 
differences between participants with and without gen-
otype information using t-tests (normally distributed 
continuous variables), Mann–Whitney U-tests (non-nor-
mally distributed continuous variables), and chi-squared 
tests (categorical variables).

Using logistic regression, we studied the association of 
one SD higher maternal GRS for CHD with lifelong risk 
of APOs, and the association of one SD higher paternal 
GRS for CHD with lifelong risk of APOs in their female 
partners (as imperfect negative controls). We consid-
ered each woman’s reproductive history as a singular 
observational unit (we evaluated whether a woman or 
female partner experienced any APOs over her life-
time). We analyzed MoBa and HUNT data individually, 
and subsequently meta-analyzed their estimates using 
a fixed effects model, assuming participants from both 
cohorts come from the same underlying population and 
any difference in associations is random. We tested this 
assumption using the Cochrane Q-test for between-
study heterogeneity, using a p-value threshold of < 0.1 as 
an indication of heterogeneity given the statistical inef-
ficiency of between-study heterogeneity tests and the 
smaller sample size of HUNT compared to MoBa. If sig-
nificant heterogeneity was detected for any of the out-
comes, we meta-analyzed the estimates of the two studies 
using a random effects model as a complementary analy-
sis. We reduced confounding of the relationship between 
GRSs for CHD and the outcomes due to population 
stratification by adjusting our analyses for the first 20 
ancestry-informative principal components [33]. Analy-
ses were further adjusted for genotype batch.

As parental negative control analyses (i.e., comparing 
maternal associations to paternal associations) can be 
biased by assortative mating and other shared environ-
mental determinants if they are not mutually adjusted 
for each other [34], we repeated our main analyses in the 
subgroup of mothers and their partners where both had 
genetic data. We present results in this subgroup without 
and with mutual adjustment. The former analysis, when 
compared with the main results, explores evidence of 
selection bias in the subsample in couples with genetic 
data.

We conducted additional sensitivity analyses. Firstly, 
the more pregnancies a person has, the higher the 

likelihood of detecting an effect of parental genetic pre-
disposition to CHD on the risk of APO. To minimize this 
bias, we further adjusted for the total number of preg-
nancies the participant had. Secondly, a participant who 
had pregnancies with various partners might have a dif-
fering risk of APO with each partner. Therefore, we per-
formed another sensitivity analysis that was confined to 
stable couples only (i.e., participants without pregnancies 
with different partners according to the MBRN).

Software
We conducted our analyses in R Software v. 4.0.3. Our 
analysis code is available in https:// github. com/ alvar 
ohern aez/ GRS_ CHD_ pregn ancy_ compl icati ons_ MoBa_ 
HUNT/.

Results
Study population
Meta-analyses of the main results were conducted across 
different subsets of women and men. Regarding women: 
75,210 for miscarriage, 83,900 for stillbirth, 83,114 for 
HDP, 83,900 for GD, 66,110 for SGA, 69,789 for LGA, 
and 83,522 for sPTB. Regarding men: 51,156 for mis-
carriage, 55,790 for stillbirth, 55,273 for HDP, 55,790 
for GD, 43,967 for SGA, 46,104 for LGA, and 55,536 for 
sPTB. Characteristics of MoBa and HUNT participants 
involved in the meta-analyses are described in Table 1.

MoBa participants with genotype information were not 
meaningfully different in their birth year, total number 
of pregnancies, proportion of stable couples, age at first 
pregnancy, years of education, body mass index, smok-
ing, or number of deliveries in relation to those without 
genotype data. However, they were slightly less likely to 
have experienced stillbirth, GD, SGA, and sPTB (Addi-
tional file 1: Table S2). HUNT participants with genotype 
data were born on average 12 years earlier but were not 
meaningfully different on their total number of pregnan-
cies, proportion of stable couples, age at first birth, years 
of education, body mass index, and smoking. However, 
they were more like to experience several APOs (still-
birth, HDP, SGA, LGA, and sPTB) and less likely to have 
a history of GD (Additional file 1: Table S2).

Genetically predicted CHD and adverse pregnancy 
outcomes
Figure  2 shows the main analyses and all additional 
and sensitivity analyses for the association of maternal 
GRS with risk of APOs (Panel A) and the association of 
paternal GRS with risk of APOs in their female partners 
(Panel B).

In women, one SD higher GRS for CHD was associated 
with 8% greater odds of HDP (OR 1.08, 95% CI 1.05 to 
1.10), 8% greater odds of preeclampsia (OR 1.08, 95% CI 

https://github.com/alvarohernaez/GRS_CHD_pregnancy_complications_MoBa_HUNT/
https://github.com/alvarohernaez/GRS_CHD_pregnancy_complications_MoBa_HUNT/
https://github.com/alvarohernaez/GRS_CHD_pregnancy_complications_MoBa_HUNT/
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1.05 to 1.11), and 4% greater odds of having an SGA baby 
(OR 1.04, 95% CI 1.01 to 1.06). There was evidence of an 
inverse association between the GRS for CHD and LGA 
(+ 1 SD in GRS: OR 0.98, 95% CI 0.96 to 1.00). A positive 
but imprecise relationship was found for stillbirth (OR 
1.04, 95% CI 0.98 to 1.11) and no association was found 
with sPTB. These findings remained consistent in the 
subset with genetic data on both parents when adjusting 
for partners’ GRS, as well as in sensitivity analyses adjust-
ing for the number of total pregnancies and restrict-
ing the analyses to stable couples. Stronger associations 
between the GRS for CHD and the risk of miscarriage 
and GD were observed in couples with genotype infor-
mation in both parents.

No association between the paternal GRS for CHD and 
any APO in female partners was observed, except for evi-
dence of a relationship with greater odds of sPTB (OR 
1.02, 95% CI 0.99 to 1.05). Estimates remained robust in 
all sensitivity analyses.

Between-study heterogeneity was detected for two 
outcomes: the association of the maternal GRS for CHD 
with GD (MoBa: OR 1.04, 95% CI 0.99 to 1.09; HUNT: 

OR 0.86, 95% CI 0.72 to 1.03; p-value for between-study 
heterogeneity = 0.045; random effects meta-analysis: 
OR 0.96, 95% CI 0.30 to 3.09), and the association of the 
paternal GRS with sPTB in female partners (MoBa: OR 
1.04, 95% CI 1.01 to 1.07; HUNT: OR 0.97, 95% CI 0.92 
to 1.03; p-value for between-study heterogeneity = 0.053; 
random effects meta-analysis: OR 1.01, 95% CI 0.68 to 
1.50). For the rest of the outcomes, findings were consist-
ent between the two cohorts (Additional file 1: Fig. S1). 
Sample sizes for additional analyses are available in Addi-
tional file 1: Table S3.

Discussion
Maternal genetic CHD risk was associated with increased 
risk of HDP, preeclampsia, and SGA. Weak evidence with 
confidence intervals spanning the null was found for 
associations with greater risk of stillbirth and reduced 
risk of LGA. Null associations with miscarriage, GD, and 
sPTB were observed. We also found weak evidence of an 
association of paternal genetic CHD risk with sPTB in 
female partners, with associations with other outcomes 
all being close to the null.

Table 1 Population description

a Analyses restricted to 1998 or later pregnancies
b Adverse pregnancy outcomes in their female partners

MoBa HUNT

Women
(n = 68,882)

Male partners
(n = 47,474)

Women
(n = 15,087)

Male partners
(n = 8,094)

Birth year, range 1954–1993 1938–1990 1952–1988 1952–1988

Highest obtained parity (1st–3rd quartile; range) 2 (2–3) [range: 1–14] 2 (2–3) [range: 1–14] 2 (2–3) [range: 1–10] 2 (2–3) [range: 1–10]

Participants in pregnancies with more than one differ-
ent partner, n (%)

9147 (13.3%) 5819 (12.3%) 745 (4.74%) 178 (2.08%)

Age in first pregnancy, median (1st–3rd quartile) 27 (24–30) 29 (26–33) 24 (20–27) 26 (23–29)

Education years, mean ± SD 17.0 ± 3.36 16.3 ± 3.56 14.3 ± 4.13 13.5 ± 4.08

Body mass index (kg/m2), median (1st–3rd quartile) 23.1 (21.1–25.9) 25.4 (23.6–27.7) 25.2 (22.7–28.6) 26.6 (24.5–29.1)

Ever smokers, n (%) 35,631 (52.3%) 24,294 (51.2%) 8,865 (57.0%) 4,233 (50.1%)

Total number of deliveries:

 0, n (%) 0 (0%) 0 (0%) 1,598 (10.5%) 595 (7.00%)

 1, n (%) 4,611 (6.71%) 2,894 (6.12%) 6,849 (45.1%) 4,041 (47.5%)

 2, n (%) 32,186 (46.8%) 23,368 (49.4%) 5,088 (33.5%) 3,056 (36.0%)

 3, n (%) 24,121 (35.1%) 16,357 (34.6%) 1,285 (8.46%) 654 (7.69%)

 4 or more, n (%) 7,784 (11.3%) 4,671 (9.88%) 378 (2.49%) 154 (1.81%)

Miscarriage, n (%) 20,866 (30.4%) 14,451 (30.6%)b 1,950 (30.0%)a 1,145 (29.6%)a,b

Stillbirth, n (%) 872 (1.27%) 581 (1.23%)b 198 (1.30%) 84 (0.99%)b

Hypertensive disorders of pregnancy, n (%) 7,288 (10.6%) 5,186 (11.0%)b 1,500 (9.87%) 870 (10.2%)b

Preeclampsia + eclampsia, n (%) 5,143 (7.49%) 3,589 (7.59%)b 1,080 (7.11%) 641 (7.54%)b

Gestational diabetes, n (%) 1,495 (2.18%) 1,041 (2.20%)b 127 (0.84%) 62 (0.73%)b

Small for gestational age, n (%) 10,552 (15.8%) 7,354 (16.0%)b 1,544 (10.2%) 862 (10.1%)b

Large for gestational age, n (%) 14,620 (21.7%) 9,880 (21.3%)b 1,733 (11.4%) 1,070 (12.6%)b

Spontaneous preterm birth, n (%) 6,282 (9.18%) 4,187 (8.89%)b 2,643 (17.5%) 1,509 (17.8%)b
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Our findings support the hypothesis that a woman’s 
genetic predisposition to cardiovascular disease may 
be revealed during pregnancy or exacerbated by APOs, 

specifically through HDP and SGA [1]. The lack of asso-
ciation between male partners’ GRS for CHD and these 
conditions in their female partners  supports these 

Fig. 2 Associations between one SD higher maternal GRS for CHD and risk of APO and between one SD higher paternal GRS and risk of APO 
in female partners. Main analyses (pooled analyses from MoBa and HUNT participants) were conducted in 75,210 women for miscarriage, 83,900 
for stillbirth, 83,114 for HDP, 83,900 for GD, 66,110 for SGA, 69,789 for LGA, and 83,522 for sPTB. Regarding men, APOs were detected in their female 
partners, and analyses were conducted in 51,156 individuals for miscarriage, 55,790 for stillbirth, 55,273 for HDP, 55,790 for GD, 43,967 for SGA, 
46,104 for LGA, and 55,536 for sPTB. Sample sizes of additional analyses are described in Supplementary Table 3, being smallest for the analyses 
in the subgroup with genetic data on both parents
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hypotheses. This agrees with previous evidence showing 
that women who developed these APOs had a greater 
burden of cardiovascular risk factors before pregnancy [5, 
6]. Moreover, high levels of genetically determined cardi-
ovascular risk factors, such as blood pressure, body mass 
index, and type 2 diabetes, have been linked to a higher 
likelihood of preeclampsia or eclampsia [35]. Finally, a 
recent maternal GWAS of preeclampsia and gestational 
hypertension found similar associations between the 
preeclampsia and gestational hypertension polygenic 
risk scores and hypertension and related outcomes as 
those seen in GWASs of men and non-pregnant women, 
leading authors to conclude that the loci associated with 
preeclampsia and gestational hypertension were not 
pregnancy specific, rather that pregnancy unmasks exist-
ing risk [13].

In relation to the association between the maternal 
genetically predicted CHD risk and other APOs, preg-
nancy loss is a heterogeneous condition, and maternal 
predisposition to cardiovascular disease may only be 
relevant to specific subsets of losses. Stillbirth, which 
was suggestively linked to greater genetic liability for 
CHD in our study, is thought to be induced by placen-
tal insufficiency and fetal growth restrictions due to 
some cardiovascular risk factors during pregnancy, such 
as hypertension [36–38]. Our findings also revealed an 
unexpected inverse association between the GRS for 
CHD and LGA. However, given the small magnitude of 
the relationship in comparison to the other APOs, and 
the established role of glucose metabolic disturbances 
(such as type 1 diabetes, GD or prediabetic states due to 
excess weight) in increasing the risk of having LGA babies 
[39–41], it would be advisable to validate the associa-
tion between the GRS for CHD and LGA in future stud-
ies involving other populations. As for GD, it has been 
shown to be closely related to type 2 diabetes, including 
with a recent GWAS showing strong genetic correlation 
between the two [42]. Given the associations of type 2 
and GD with cardiovascular disease [43, 44], it is sur-
prising that we did not see an association of the mater-
nal GRS for CHD with GD in our study. Limited cases in 
our population (~ 2%), the between-study heterogeneity 
in MoBa and HUNT for this outcome, changes in diag-
nostic criteria for GD in Norway (which were large and 
occurred within the time frame of both studies) [28], and 
underrepresentation in the early years of the MBRN (the 
precise definition of GD, which differentiates between 
the diabetic status of the pregnant mother before and 
during pregnancy, was introduced in the MBRN regis-
tration forms in December 1998) [45] may contribute to 
systematic errors in its diagnosis and hinder our ability 
to find robust associations. Finally, the lack of association 
between maternal genetically predicted CHD and sPTB 

may be due to the fact that not all risk factors for this 
condition are cardiovascular-related [46].

We conceptualized paternal genetic CHD risk as an 
imperfect negative control, as an association between the 
paternal GRS for CHD and APO risk in female partners 
could not arise from a direct stress test of pregnancy but 
associations might arise from shared family environment, 
paternally transmitted genetic variants of the fetus [47] 
or a maternal immunological response to pregnancy [48]. 
The mutual adjustment of paternal for maternal GRS 
should limit the effect of shared family environment, 
making this an unlikely explanation for the association 
between the paternal GRS for CHD and risk of sPTB in 
female partners. There is evidence of both maternal and 
paternal genetic effects on gestational duration [49]. 
However, this is not consistent with other of our findings 
(no strong evidence of a relationship between maternal 
GRS and sPTB). Given the number of associations that 
we have explored, and the different association observed 
in MoBa and HUNT (affected by between-study het-
erogeneity), it is possible that the association of paternal 
GRS for CHD with sPTB in female partners is a chance 
finding, which we would suggest treating with caution 
unless replicated in other independent studies. Of note, 
the relationships between the maternal GRS for CHD 
and HDP, preeclampsia, SGA, and stillbirth were not 
attenuated after adjusting for the male partners’ GRS for 
CHD, suggesting that these relationships are specific to 
women and supporting these APOs likely reflecting pre-
existing cardiovascular risk.

Our study has some limitations. Firstly, male part-
ners were considered as imperfect negative controls 
in our study, mainly due to the shared family environ-
ment that could lead to associations between paternal 
GRS for CHD and APOs in female partners. However, 
the mutual adjustment of maternal and paternal expo-
sures in negative control analyses aims to control for 
these shared factors, including those occurring by 
assortative mating [34]. This imperfection may also be 
due to the fact that paternal genetic variants related to 
CHD could affect their reproductive cells’ epigenetics 
and quality and may impact certain placental char-
acteristics that depend on the fetal genotype, which 
might subsequently alter the risk of APOs in female 
partners by alternative mechanisms [15–18]. Secondly, 
we identified differences between MoBa and HUNT 
participants with and without genotype data, which 
could result in selection bias and reduce our external 
validity. Differences in MoBa might stem from blood 
sampling during pregnancy or at delivery and it could 
be less likely if APOs had been detected. This could 
lead to an understated link between GRS for CHD 
and APOs due to a possible underrepresentation of 
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APO cases. In HUNT, genotyped participants were 
older. Longer follow-up time could be associated with 
a greater probability of an APO diagnosis, possibly 
inflating the association between the GRS and APOs. 
However, selection bias had minimal impact on preg-
nancy outcomes when comparing MoBa with the gen-
eral Norwegian population [50]. Thirdly, there is risk 
of potential misclassification for certain APOs in our 
study. Prior research using MBRN data indicated that 
the positive predictive value and specificity of preec-
lampsia diagnosis were satisfactory while the sensitiv-
ity was low [51], a scenario that leads to high accuracy 
for true positives but a certain risk of misclassification 
due to false negatives. Regarding GD, its comparatively 
low prevalence, the observed prevalence discrepan-
cies between the MoBa and HUNT studies, alterations 
in its diagnostic criteria in Norway during the study 
period, and the particularly low prevalence noted until 
1998, may all have hampered the validity of its diagno-
sis [28, 45]. In both cases, the lack of maternal blood 
pressure, proteinuria, or glucose level measurements 
prevents the validation of these diagnoses in our data. 
Fourthly, we could not calculate sex-specific GRSs for 
CHD exposures due to the lack of sex-specific results 
in the largest GWAS on CHD. We assumed no sex dif-
ferences in the GRS for CHD, but if untrue, our find-
ings might be biased. The bias direction is uncertain 
without clear gender-based genetic risk information. 
Fifthly, our findings were not validated in cohorts 
that are more ethnically heterogeneous and should 
be interpreted with caution when considering their 
application to ethnically diverse populations. Lastly, 
our study population’s characteristics (predominantly 
adult European women and men) limit the generaliz-
ability of our findings to other populations. Despite 
these limitations, our study has several strengths. To 
our knowledge, it is the first to investigate the role 
of genetic liability for CHD in APOs, conducted in a 
large, well-characterized, and genetically homoge-
neous population. This complements previous stud-
ies that have shown associations of cardiovascular 
risk factors (e.g., high blood pressure, dyslipidemia, 
impaired glucose tolerance) with APOs [2–7], by using 
a GRS that captures environmental (i.e., genetic risk of 
higher body mass, smoking, education) as well as likely 
biological risk for CHD. Unlike those previous studies, 
interpretation of the magnitude of one SD difference 
in a genetic risk score for CHD is unclear. For exam-
ple, the relative 8% increased odds for HDP and preec-
lampsia (OR 1.08, for both) appears small but must 
be understood in the context that the genetic variants 
that we used in the GRS explain ~ 15% of the variation 
in CHD risk. We interpret our results as a qualitative 

indication of the association between a propensity to 
CHD influencing the risk of APOs, rather than trying 
to quantify that relationship.

Conclusions
Our results indicate that APOs may unmask or exacer-
bate a woman’s pre-existing cardiovascular risk and sug-
gest that a family history of cardiovascular disease or 
early onset of cardiovascular outcomes could help iden-
tify individuals who might benefit from advice and closer 
monitoring before and during pregnancy.
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