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Abstract 

Background Preterm birth (PTB) is a leading cause of child morbidity and mortality. Evidence suggests an increased 
risk with both maternal underweight and obesity, with some studies suggesting underweight might be a greater 
factor in spontaneous PTB (SPTB) and that the relationship might vary by parity. Previous studies have largely explored 
established body mass index (BMI) categories. Our aim was to compare associations of maternal pre-pregnancy BMI 
with any PTB, SPTB and medically indicated PTB (MPTB) among nulliparous and parous women across populations 
with differing characteristics, and to identify the optimal BMI with lowest risk for these outcomes.

Methods We used three UK datasets, two USA datasets and one each from South Australia, Norway and Denmark, 
together including just under 29 million pregnancies resulting in a live birth or stillbirth after 24 completed weeks 
gestation. Fractional polynomial multivariable logistic regression was used to examine the relationship of maternal 
BMI with any PTB, SPTB and MPTB, among nulliparous and parous women separately. The results were combined 
using a random effects meta-analysis. The estimated BMI at which risk was lowest was calculated via differentiation 
and a 95% confidence interval (CI) obtained using bootstrapping.

Results We found non-linear associations between BMI and all three outcomes, across all datasets. The adjusted risk 
of any PTB and MPTB was elevated at both low and high BMIs, whereas the risk of SPTB was increased at lower levels 
of BMI but remained low or increased only slightly with higher BMI. In the meta-analysed data, the lowest risk of any 
PTB was at a BMI of 22.5 kg/m2 (95% CI 21.5, 23.5) among nulliparous women and 25.9 kg/m2 (95% CI 24.1, 31.7) 
among multiparous women, with values of 20.4 kg/m2 (20.0, 21.1) and 22.2 kg/m2 (21.1, 24.3), respectively, for MPTB; 
for SPTB, the risk remained roughly largely constant above a BMI of around 25–30 kg/m2 regardless of parity.

Conclusions Consistency of findings across different populations, despite differences between them in terms 
of the time period covered, the BMI distribution, missing data and control for key confounders, suggests that severe 
under- and overweight may play a role in PTB risk.
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Background
Preterm birth (PTB; birth before 37 completed weeks 
gestation) affects around 10% of pregnancies worldwide. 
It is the leading cause of perinatal mortality and morbid-
ity, and of childhood death up to 5 years [1, 2]. Recent 
increases in PTB [2, 3] may be, in part, related to the 
obesity epidemic, with other possible factors includ-
ing increased maternal age at pregnancy and changes in 
obstetric practice resulting in increased rates of preterm 
caesarean delivery [4, 5]

PTB can be medically indicated (MPTB) or sponta-
neous (SPTB). MPTB is driven by obstetric interven-
tions (induction of labour or planned caesarean section) 
related to pregnancy complications such as pre-eclampsia 
or gestational diabetes and thus may be higher in women 
with overweight or obesity [6]. Known risk factors for 
SPTB include infection and inflammation, genetic fac-
tors, and some lifestyle factors such as stress, smoking 
and alcohol intake, although the cause is often unknown 
[4, 5]. While the detrimental effects of MPTB are a trade 
off with detrimental effects of continued pregnancy in 
the presence of such conditions, SPTB is a major concern 
obstetrically because of its unpredictable nature.

Evidence from systematic reviews suggests an increased 
risk of PTB with both maternal overweight/obesity and 
underweight [7–12], with some studies indicating that 
underweight might be a greater factor than obesity in 

SPTB [7–9, 13–16]. In addition, there is evidence that 
the association of BMI with PTB may vary by parity, with 
some suggestion of a stronger association of obesity with 
SPTB among nulliparous women [17, 18] and of differ-
ent associations of underweight with SPTB and MPTB 
among nulliparous and parous women [19], although the 
numbers of women with underweight in these studies 
have been small. Previous studies have largely explored 
established BMI categories and not attempted to iden-
tify the BMI with lowest risk or compared associations 
across countries with different levels of obesity. Our aim 
was to compare associations of maternal BMI with PTB, 
SPTB and MPTB, among pregnancies in nulliparous and 
parous women separately, across populations with differ-
ing characteristics, and to identify the optimal BMI with 
lowest risk for these outcomes.

Methods
Datasets
The datasets are described in Fig.  1, summarising dif-
ferences in key characteristics such as: years covered; 
BMI distribution; availability of confounders; and data 
completeness, with further details regarding missing 
data given in Additional file 1: Supplementary Figure S1. 
Datasets ranged in size from just under 5000 to over 27 
million pregnancies and included three UK, two US and 
one dataset each from Australia, Norway and Denmark. 

Fig. 1 Key characteristics of the datasets
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The datasets from Norway and Denmark and one from 
the USA (US vital statistics data) included all registered 
births across the countries during the study period. The 
years covered varied, with all except one (Collaborative 
Perinatal Project, USA, 1959–1965) including recent 
data.

Collaborative Perinatal Project (CPP)
CPP recruited just over 46,000 women with 59,391 preg-
nancies from twelve US centres providing prenatal care 
between 1959 and 1965 [20, 21]. Gestational age was 
based on last menstrual period (LMP) and was recorded 
in number of weeks, rounded to the nearest week. BMI 
was calculated from height (measured) and weight (self-
reported) recorded at study enrolment, which was at the 
first antenatal visit for the majority of pregnancies.

Danish linked data
We included all live births and stillbirths in Denmark 
between 2004 and 2016, using  linked information from 
the Danish Medical Birth Registry [22] (MBR) and popu-
lation registers held by Statistics Denmark. In the MBR, 
gestational age is based on routine ultrasound measures 
at 18–20  weeks gestation or LMP for the small propor-
tion of pregnancies with no ultrasound measurements. 
Maternal pre-pregnant BMI was calculated from self-
reported height and weight recorded at the first antenatal 
appointment.

Norwegian birth registry
We used data between 2008 and 2021 from the Birth 
Registry of Norway (MBRN), which includes mandatory 
registrations of pregnancies in Norway ending after 12 
completed gestational weeks [23]. Gestational age at birth 
was based on routine ultrasound measures at 18  weeks 
gestation, or LMP for those without ultrasound-based 
estimates (< 5% of pregnancies). BMI was calculated 
from maternal self-reported pre-pregnancy height and 
weight recorded in antenatal care records at 8–12 weeks 
gestation.

Clinical Practice Research Datalink (CPRD)
CPRD is a population-based database of primary care 
data from across the UK [24] linked to other datasets. We 
included all pregnancies from the CPRD (GOLD) Preg-
nancy Register [25] for the period 1997–2019 resulting in 
a live or still birth and with a linked record in the Hospi-
tal Episode Statistics (HES) maternity data; the latter cov-
ers NHS hospitals in England only. Gestational age was 
based on routine ultrasound measures taken between 
10 and 14  weeks’ gestation or LMP for the minority 
with no ultrasound measurements. BMI was obtained 
from weight and height measurements recorded in the 

primary care data. We required these to be from a maxi-
mum of 12 months pre-pregnancy up to a maximum of 
15 weeks gestation and, where recorded more than once 
during this period, took measurements from closest to 
the time of conception.

South Australian Better Evidence Better Outcomes Linked 
Data (BEBOLD) platform
Pregnancy data was obtained from the BEBOLD plat-
form, which includes the South Australian Perinatal Sta-
tistics Collection 2007–2016, a mandatory collection of 
all births at least 400 g or 20 weeks gestation [26]. Ges-
tational age was determined from LMP if dates were 
deemed reliable and early ultrasound (up to 20  weeks) 
otherwise. BMI was calculated from weight and height 
measured and recorded at the first antenatal visit, 
attended prior to 14  weeks gestation in approximately 
85% of pregnancies.

US National Center for Health Statistics Vital Statistics 
(NCHS) data
We used publicly available birth and foetal death data-
sets from 2014 to 2021. These include information from 
mandatory registrations of all births and foetal deaths; 
for most states this includes foetal deaths of at least 
350  g and/or 20  weeks gestation [27]. Gestational age 
was based on routine ultrasound measurements or last 
menstrual period for the small proportion (< 1%) with 
no ultrasound data. Maternal pre-pregnancy weight and 
height were self-reported by the women at the time of 
birth (see Additional file 1 for further explanation of this).

Secure Anonymised Information Linkage (SAIL) Databank
The SAIL databank contains de-identified health and 
administrative data on the population of Wales, UK [28, 
29]. We included pregnancies resulting in a live or still 
birth from 2014 to 2020 with a birth record in either 
the Maternity Indicators Dataset (MID) [30] (data from 
the first antenatal assessment at 8–12  weeks pregnancy 
plus labour and birth) or the National Community Child 
Health (NCCH) database (birth registration and other 
data). Gestational age was based on routine ultrasound 
measurements taken at 10–14  weeks gestation or LMP 
for the minority of pregnancies where no ultrasound 
measures were available. BMI was obtained from weight 
and height measurements recorded in the MID (from the 
first antenatal visit) or from the primary care data; if from 
the latter, we required these to be from a maximum of 
12 months pre-pregnancy up to a maximum of 15 weeks 
gestation and, where recorded more than once during 
this period, took measurements from closest to the time 
of conception.
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Bradford maternity data
Maternity record data for all births at Bradford Royal 
Infirmary (BRI) between January 2020 and March 2021 
were obtained from BRI Informatics Department. Ges-
tational age was based on routine ultrasound measure-
ments taken at 10–14  weeks gestation or LMP for the 
minority of pregnancies where no ultrasound measures 
were available. BMI was derived from height and weight 
measured at the first antenatal appointment attended 
from 8 to 12 weeks gestation.

Further details of each dataset are provided in the sup-
plementary materials (Additional file  1: Supplementary 
text A.1).

Outcomes
The primary outcome measures were any PTB, SPTB 
(delivery < 37 completed weeks, with spontaneous onset 
of labour) and MPTB (labour induced or delivery initi-
ated by caesarean section prior to onset of labour). Foetal 
deaths occurring up to 23 weeks, 6 days of gestation were 
excluded since these were absent or incomplete in most 
datasets. Secondary outcomes were very PTB, SPTB and 
MPTB (< 32 weeks).

Exposure
The exposure was maternal pre- or early pregnancy BMI, 
calculated from self-reported or measured pre-preg-
nancy or early pregnancy weight and height (details in 
Supplementary materials).

Covariates
The following confounders were identified a priori [31] 
based on the definition that they are known or plausible 
causes of variation early/pre-pregnancy BMI and PTB: 
maternal age at birth, ethnicity, smoking, socio-eco-
nomic position (SEP), and, among pregnancies in parous 
women, parity and birth or birth interval. The availabil-
ity of these confounders varied, as summarised in Fig. 1 
and with further details in supplementary materials 
(Additional file 1). Because of its strong association with 
PTB, pregnancy size (singleton/multiple) was included 
as a covariate to increase precision. We decided a priori 
to maximise confounder adjustment within each data-
set by not harmonising variables across datasets (where 
recorded differently or unavailable) but using the most 
detailed measures within each.

Statistical methods
All analyses were carried out with pregnancy as the 
unit of analysis and were carried out separately in nul-
liparous and parous women. For the primary analysis, 
multivariable logistic regression using fractional poly-
nomials [32] with up to three powers of BMI was used 

to examine the association between BMI and any PTB, 
SPTB and MPTB. Within each dataset we adjusted for all 
available confounders. With the exception of the NCHS 
Vital Statistics data, where there was no (person-level) 
ID variable, robust standard errors were used to take 
account of the fact that some women had more than 
one recorded pregnancy per dataset. For each outcome, 
we chose an optimal model (in terms of the fractional 
polynomial; all models included all available confound-
ers) that fit well in all datasets (and was potentially the 
best fitting model in several). Once the optimal model 
for each outcome had been selected, we carried out a 
multivariate, random effects meta-analysis with inverse 
variance weighting on the aggregate data. It was not pos-
sible to combine individual-level data, as most datasets 
had to be analysed on secure servers in different loca-
tions. Confounder-adjusted risks of any PTB, MPTB 
and SPTB were calculated from the optimal model and 
plotted against BMI. Where possible, the same reference 
group was used and consisted of singleton pregnancies, 
maternal age 25–29 years, non-smoker, pregnancy/birth 
interval not < 12  months, White/Caucasian and, among 
parous women, parity equal to one. For SEP, which was 
measured in various ways, the reference category was the 
median group. In the Danish and Norwegian datasets, 
where country of origin was measured, but not ethnic-
ity, originating from Denmark/Norway was the reference 
group. Where feasible, the estimated BMI at which the 
risk of each outcome was lowest was calculated via dif-
ferentiation and a 95% confidence interval (CI) obtained 
using bootstrapping (details in Additional file 1: Supple-
mentary text A.2).

We conducted two secondary analyses. Firstly, we used 
standard WHO BMI categories (underweight < 18.5  kg/
m2, healthy weight 18.5–24.9, overweight 25–29.9, obe-
sity class I 30–34.9, obesity class II 35–39.9, obesity class 
III 40 +), to enable our results to be compared to other 
publications. Secondly, we examined very PTB (< 32 
completed weeks gestation), as this is related to more 
adverse outcomes than births from 33 to < 37 weeks [33].

Various sensitivity analyses were conducted. Firstly, to 
account for the fact that a woman with a MPTB could 
not have a SPTB and vice versa, models for SPTB were 
weighted by the inverse of one minus the probability 
of being a MPTB; conversely, models for MPTB were 
weighted by the inverse of one minus the probability of 
being a SPTB. The models for the weights included the 
same variables as the analysis model. Secondly, we car-
ried out analyses excluding (i) stillbirths, (ii) post term 
deliveries (≥ 42 completed weeks gestation) and (iii) 
multiple births. Finally, because the CPP was carried 
out in the 1960s, with all other datasets contributing 
recent data, reflecting more contemporary practice and 



Page 5 of 13Cornish et al. BMC Medicine           (2024) 22:10  

monitoring, we repeated the meta-analyses excluding 
this dataset.

We hypothesised that, within datasets, some covari-
ates—particularly BMI, ethnicity, smoking—might be 
missing not at random (specifically, less likely to be 
missing if individuals were not from an ethnic minority 
group, were a non-smoker or, depending on the source of 
BMI, more or less likely to be missing if individuals had 
either a very low or high BMI). Thus, we decided a priori 
to use a complete case analysis in all datasets because in 
this situation (covariates missing not at random), multi-
ple imputation would produce bias, whereas a complete 
case logistic regression gives unbiased estimates unless 
the chance of being a complete case depends jointly on 
the exposure and outcome [34, 35] (i.e. in our case unless 
the relationship between BMI and the likelihood of it 
being missing were influenced by whether or not an indi-
vidual subsequently had a preterm birth outcome), which 
we thought unlikely.

All analyses were carried out in Stata; meta-analysis 
used Stata’s mvmeta command [36].

Results
Between 68% (CPRD) and 100% (South Australian 
BEBOLD) of pregnancies had gestational age at delivery 
recorded. In most datasets, BMI had the most missing 
data and between 9% (CPRD) and 92% (US Vital Statis-
tics) were complete cases (Fig. 1; Additional file 1: Sup-
plementary Figure S1). In CPRD, because BMI came 
from primary care data, thus relying on weight to have 
been measured near the time of conception as part of 
routine care, this information was only available for a 
small proportion of pregnancies. Additional file  1: Sup-
plementary Tables S1 to S8 give characteristics of the 
whole sample and complete cases for each dataset; across 
all datasets, characteristics were similar.

The overall risks of PTB and SPTB among complete 
cases were lowest in the Norwegian birth registry and 
Danish linked data, respectively (5.4% PTB Norway, 2.6% 
SPTB Denmark), and highest in the Collaborative Perina-
tal Project (CPP) (15.2% and 13.4%, respectively) (Fig. 1). 
The risk of MPTB ranged from 1.6% (CPP) to 5.1% (US 
Vital Statistics). In CPP, SPTB accounted for around 90% 
of PTB; in the other datasets, it ranged from 43 to 58%. 
The mean BMI ranged from 22.8 kg/m2 (CPP) to 29.3 kg/
m2 (Bradford) (Fig.  1; Additional file  1: Supplementary 
Tables S1-S8).

Main results
Figures 2, 3 and 4 show the association of BMI with risk 
of any PTB, SPTB and MPTB among nulliparous and 
parous women in each dataset obtained from the optimal 
fractional polynomial model. Full details of the fractional 

polynomial models and how we reached the final model 
are provided in Supplementary Text A.2 and Supplemen-
tary Tables S11 and S12, with results given in Additional 
file 1: Supplementary Tables S13 and S14. On each graph, 
the mean BMI (among nulliparas and paras, as applica-
ble) in that dataset is plotted as a reference line. Across 
all datasets except CPP, the risk of any PTB increased 
with lower and higher BMI, with the latter largely driven 
by an increase in MPTB with increasing BMI from 
the lowest risk levels. In contrast, the risk of SPTB was 
higher at lower BMIs but remained low or increased only 
slightly with higher BMI. The overall pattern was similar 
among nulliparous and multiparous women, although the 
increased risk at low BMI was, in general, more marked 
among parous women and, in contrast, the increase with 
higher BMI was slightly more marked among nulliparas. 
The meta-analysed curves are also shown on these fig-
ures. There was relatively high heterogeneity in the esti-
mates, likely due to variability in the prevalence of PTB, 
the exact nature of the curves in terms of the location of 
the minimum point (if any) and the extent to which the 
risk increased at low and/or high BMIs, and the fact that 
the estimates were very precise in some datasets. Despite 
this heterogeneity, there was generally relative consist-
ency in the overall pattern of risk with BMI.

Table 1 shows the BMI, with 95% CI, at which the pre-
dicted risk for any PTB and MPTB was lowest. It was 
not possible to calculate this for SPTB in most datasets 
or in the meta-analysed results because the risk did not 
vary across most of the BMI distribution. The lowest pre-
dicted risk of any PTB, where calculable, was at a BMI 
between 21.2 and 27.8 kg/m2 among nulliparous women, 
between 22.3 and 28.7 kg/m2 among parous women, and 
in the meta-analysed data, it was at 22.5 and 25.9 kg/m2 
(for nulliparous and parous women, respectively). The 
lowest risk of MPTB, where calculable, occurred at BMIs 
between 18.8 and 27.6  kg/m2 in nulliparous women, 
between 20.2 and 23.5 kg/m2 in parous women, and was 
at a BMI of 20.4 and 22.2  kg/m2 (respectively) in the 
meta-analysed data.

Secondary analyses
The risks of PTB, SPTB and MPTB and adjusted odds 
ratios using BMI groups are given in Additional file  1: 
Supplementary Tables S9-S10 and S15-S16, respec-
tively. The patterns reflect those shown in Figs. 2, 3 and 
4, with an increased risk, relative to normal weight, of 
all three outcomes with underweight and an increas-
ing risk of any PTB and MPTB, but not SPTB, with 
increasing BMI. The adjusted odds ratios for very PTB, 
SPTB and MPTB are given in Additional file 1: Supple-
mentary Tables S17 and S18. For parous women, these 
show similar non-linear patterns to those seen for < 37 
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Fig. 2 Association of pre-pregnancy BMI with risk of any preterm birth among (a) nulliparous and (b) parous women
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Fig. 3 Association of pre-pregnancy BMI with risk of spontaneous preterm birth among (a) nulliparous and (b) parous women
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Fig. 4 Association of pre-pregnancy BMI with risk of medically indicated preterm birth among (a) nulliparous and (b) parous women
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completed weeks. In contrast, for nulliparous women, the 
increased risk with underweight, particularly for SPTB, 
appeared to be weaker (in most datasets) when consid-
ering < 32  weeks than < 37  weeks whereas the increased 
risk of any PTB and MPTB with higher BMI was slightly 
stronger (and was also present for SPTB in several data-
sets) for < 32 weeks compared to < 37 weeks.

Sensitivity analyses
The results from the sensitivity analyses were similar 
to the overall results (Additional file  1: Supplementary 
Tables S19-S26). Excluding CPP from the meta-analysis 
made the slope of the curve for any PTB slightly steeper 
at higher BMIs and reduced the estimated risk at very 
low BMIs among parous women but had no noticeable 
impact for nulliparas or for SPTB and MTPB (Additional 
file 1: Supplementary Figures S2 and S3).

Discussion
We have examined the relationship between maternal 
pre-pregnant BMI and any PTB, SPTB and MPTB in sev-
eral large datasets from different countries, with differ-
ent sources of potential bias, and have shown non-linear 
associations with all three outcomes, across all datasets. 
The higher risk of any PTB at higher BMI was driven by 
MPTB, whereas the risk of SPTB was increased at lower 
levels of BMI but remained low or increased only slightly 
with higher BMI. Overall, the increased risk at low BMI 
was slightly more marked among parous women, whereas 
the increased risk (of any PTB and MPTB) with higher 
BMI was more marked among nulliparas. The key excep-
tion to the pattern for any PTB was in the CPP, where a 
large majority of the preterm births were spontaneous—
so the relationship of BMI with any PTB followed that for 
SPTB, with an increased risk only among women with 
underweight. CPP was based on births between 1959 
and 1965, which is around the time that gestational dia-
betes was first being described and acknowledged [37]. 
Similarly, the routine measuring of blood pressure and 
proteinuria antenatally was not common until the 1960s 
[38]. Hence, MPTB would be expected to be low in this 
dataset.

In the meta-analysed data, the lowest predicted risks 
of any PTB were at BMIs of 22.5 and 25.9 kg/m2 for nul-
liparous and parous women, respectively; for MTPB, they 
were at BMIs of 20.4 and 22.2 kg/m2. For SPTB, the risk 
remained relatively constant or increased only slightly for 
BMIs above 25–30 kg/m2 in both nulliparous and parous 
women. Taken together, these suggest that a healthy BMI 
to prevent either MPTB or SPTB would be between 20 
and 30 kg/m2. The patterns of association were consistent 
across the datasets, despite the fact that they reflect dif-
ferent stages of the obesity epidemic, as indicated by the 
prevalence of overweight and obesity, and had different 
potential sources of bias due to varying proportions of 
missing data, measurement error in gestational age and 
BMI, and possible residual confounding.

Our findings are broadly consistent with previous 
studies that have explored associations of underweight, 
overweight or obesity using conventional BMI catego-
ries, showing an increased risk of PTB among women 
with underweight as well as with obesity [6–16], with 
the increased risk with obesity being largely a result of 
medically indicated PTB [6, 7]. To our knowledge, two 
studies have examined the relationship using BMI as a 
continuous variable. One used locally weighted scat-
terplot smoothing to examine the association with PTB 
and found that the minimum risk occurred at a BMI 
of ~ 23.5  kg/m2 [39]. The other applied restricted cubic 
splines to the US vital statistics data, including births 
between 2016 and 2018, and found the risk of PTB 

Table 1 Body mass index (BMI) (95% CI) at which the predicted 
risk of outcomes was lowest among pregnancies in nulliparous 
and parous women

a Risk decreased across the whole BMI range
b Limit(s) outside the observed BMI range due to high variability in the fractional 
polynomial terms
c Insufficient data

Dataset Mean 
BMI (kg/
m2)

Any PTB MPTB

Nulliparous

 CPP 21.6 NAa 18.8 (b)

 Danish linked data 24.0 22.3 (21.7, 23.6) 20.7 (20.5, 21.1)

 Norwegian birth 
registry

24.1 21.4 (20.7, 23.1) 20.0 (19.6, 20.9)

 CPRD 24.9 21.6 (20.9, 23.1) 20.6 (20.3, 21.4)

 South Australian 
BEBOLD

25.9 22.3 (21.1, 26.7) 20.3 (20.0, 20.9)

 NCHS data (USA) 26.4 21.2 (21.2, 21.3) 20.2 (20.2, 20.3)

 SAIL databank 26.7 23.2 (21.6, 28.5) 21.6 (20.1, 42.5)

 Bradford 28.8 27.8 (20.1, b) 27.6 (b)

Meta-analysed data 22.2 (21.5, 23.5) 20.4 (20.0, 21.1)
Parous women

 CPP 23.3 NAa NAc

 Danish linked data 24.6 23.8 (22.9, 25.2) 21.9 (21.4, 22.8)

 Norwegian birth 
registry

24.7 22.3 (21.4, 24.2) 20.2 (20.0, 20.5)

 CPRD 26.5 26.5 (23.3, 41.8) 22.4 (20.7, 30.1)

 South Australian 
BEBOLD

27.1 26.0 (22.8, 38.3) 23.1 (21.3, 28.3)

 NCHS data (USA) 27.5 24.1 (23.9, 24.2) 21.5 (21.2, 21.8)

 SAIL databank 27.7 28.7 (23.9, b) 23.5 (21.1, b)

 Bradford 29.7 NAa NAa

Meta-analysed data 25.9 (24.1, 31.7) 22.2 (21.1, 24.3)
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increased with both low and high BMIs, and was lowest 
at a BMI of ~ 24  kg/m2 [40]. Neither explored associa-
tions separately for SPTB and MPTB or by parity.

We found some suggestion for a differing relation-
ship between BMI and very PTB (< 32 weeks) compared 
to < 37  weeks, particularly among nulliparous women, 
although these results were not consistent across all data-
sets. Possible reasons for this could be that risk factors 
for very PTB may be different or differentially important 
(for example, severe pre-eclampsia, placental pathology, 
maternal morbidity or severe conditions in the foetus).

Pre-pregnancy overweight and obesity are both associ-
ated with an increased risk of gestational hypertension 
and gestational diabetes [12, 40], which are associated 
with increased risk of induction of labour and/or planned 
caesarean section. This likely explains (some of ) the 
increased risk of MPTB with higher BMI. Women with 
underweight can have difficulty conceiving and, when 
they do, are at greater risk of foetal growth restriction 
and PTB. This may be because of underlying mater-
nal chronic diseases complicating the pregnancy [41] 
or maternal undernutrition resulting in impaired foe-
tal growth [42]; these mechanisms likely explain the 
observed association of lower, but not higher, BMI with 
SPTB. Overall patterns were similar in pregnancies 
to women who were nulliparous and those who were 
parous, with pre-/early-pregnancy BMI between 20 and 
30 kg/m2 minimising PTB risk.

The strengths of this work include the inclusion of large 
datasets (with differing sources and extent of potential 
bias) from different countries with varying prevalence of 
obesity. We have used BMI as a continuum to examine 
non-linear associations and have been able to explore 
associations with any, MPTB and SPTB. The datasets 
were generally derived from routine health data, thus 
minimising the risk of selection bias. That said, selec-
tion bias could have arisen due to missing data in some 
datasets. We undertook complete case analyses because, 
as stated above, we considered this the least biased 
approach due to confounders, and potentially BMI 
(in some datasets), possibly being missing not at ran-
dom, but acknowledge that there was large variation in 
the extent of missing data, particularly for BMI. How-
ever, the similarity of non-linear associations across the 
datasets, despite these large variations in the extent of 
missing data suggests that any resulting bias is unlikely 
to have had a major impact on the general pattern of 
our findings. As such, the results should be generalis-
able to the populations from which they are drawn. In 
CPP and the Australian data, gestational age was esti-
mated (or predominantly estimated for the latter) using 
LMP, which has been found to be less accurate, in gen-
eral, than using early ultrasound measures [43]; further, 

in CPP gestational age was rounded to the nearest week 
(not completed weeks), which would misclassify some 
preterm births. On the other hand, ultrasound dating 
has been shown to be less accurate in women with obe-
sity, tending to underestimate rates of preterm birth [44], 
which would mean the risk relative to normal weight 
might be underestimated for these women. In some data-
sets, weight and height were self-reported, which may be 
subject to misreporting (measurement error). Although 
agreement between reported and measured weight 
tends to be high [45], women with overweight/obesity 
are more likely to underreport their weight and women 
with underweight to overreport their weight [46]. This 
would tend to result in the risk being overestimated at 
both low and high BMIs. In addition, in the CPRD data 
and in just under a quarter of the pregnancies in the SAIL 
data, weight could have been measured up to 12 months 
prior to conception or up to 15  weeks gestation, which 
would also contribute to measurement error in BMI due 
to changes in BMI between the time of measurement 
and the time of conception. To maximise confounder 
adjustment in each dataset, we did not harmonise these 
to the lowest common denominator. However, residual 
confounding is possible as some measures were missing 
or had limited detail in some datasets. For example, in 
some datasets smoking was categorised as non-smoker/
smoker, whereas more detailed measures would provide 
fuller adjustment. Again, similar results across datasets, 
despite differences in the likely extent of measurement 
error and potential for residual confounding, suggest that 
these issues have not importantly influenced results. The 
CPP data is much older than the other datasets. However, 
if there is a true causal effect of BMI on PTB, this would 
also be the case in older cohorts. Bearing in mind that 
most of the preterm births in CPP were spontaneous, the 
fact that the results for CPP showed the same pattern as 
in the more contemporary datasets supports the conclu-
sion of a causal relationship. Lastly, we could not iden-
tify similar data in low- and middle-income countries 
(LMIC), where the use of electronic health records for 
clinical care is still limited and takes priority over their 
use for research [47]. Thus, our results may not generalise 
to LMIC populations.

Conclusions
In summary, we have shown a consistent non-linear 
association between pre-pregnancy BMI and risk of 
PTB across different populations. Women starting 
pregnancy with a higher BMI appear to have a higher 
risk of PTB, but only through medically indicated 
deliveries. In contrast, women with lower BMI have 
an increased risk of both SPTB and MPTB. The overall 
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patterns were similar among pregnancies in nulliparous 
women and those in parous women.

Women with overweight and obesity are monitored 
more frequently in most high-income countries due 
to the increased risk of MPTB due to pregnancy com-
plications such as gestational diabetes and hyperten-
sion. Our findings suggest that consideration of the 
increased risk of SPTB in women with low BMI is also 
important and that advice to women planning a preg-
nancy, and clinicians supporting them, should consider 
both underweight and obesity as risks for PTB. Fur-
thermore, given the wide-ranging and persistent impact 
of preterm birth across childhood [48], broader public 
health initiatives to optimise peri-conception mater-
nal health through advice that highlights underweight 
as well as overweight could have profound population 
benefits.
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