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Abstract 

Background Continuous assessment and remote monitoring of cognitive function in individuals with mild cognitive 
impairment (MCI) enables tracking therapeutic effects and modifying treatment to achieve better clinical outcomes. 
While standardized neuropsychological tests are inconvenient for this purpose, wearable sensor technology collect-
ing physiological and behavioral data looks promising to provide proxy measures of cognitive function. The objective 
of this study was to evaluate the predictive ability of digital physiological features, based on sensor data from wrist-
worn wearables, in determining neuropsychological test scores in individuals with MCI.

Methods We used the dataset collected from a 10-week single-arm clinical trial in older adults (50–70 years old) 
diagnosed with amnestic MCI (N = 30) who received a digitally delivered multidomain therapeutic intervention. Cog-
nitive performance was assessed before and after the intervention using the Neuropsychological Test Battery (NTB) 
from which composite scores were calculated (executive function, processing speed, immediate memory, delayed 
memory and global cognition). The Empatica E4, a wrist-wearable medical-grade device, was used to collect physi-
ological data including blood volume pulse, electrodermal activity, and skin temperature. We processed sensors’ data 
and extracted a range of physiological features. We used interpolated NTB scores for 10-day intervals to test predict-
ability of scores over short periods and to leverage the maximum of wearable data available. In addition, we used indi-
vidually centered data which represents deviations from personal baselines. Supervised machine learning was used 
to train models predicting NTB scores from digital physiological features and demographics. Performance was evalu-
ated using “leave-one-subject-out” and “leave-one-interval-out” cross-validation.

Results The final sample included 96 aggregated data intervals from 17 individuals. In total, 106 digital physiologi-
cal features were extracted. We found that physiological features, especially measures of heart rate variability, cor-
related most strongly to the executive function compared to other cognitive composites. The model predicted 
the actual executive function scores with correlation r = 0.69 and intra-individual changes in executive function scores 
with r = 0.61.
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Conclusions Our findings demonstrated that wearable-based physiological measures, primarily HRV, have potential 
to be used for the continuous assessments of cognitive function in individuals with MCI.

Keywords Digital physiological features, Digital biomarkers, Wearable sensor data, Mild cognitive impairment, 
Remote patient monitoring, Machine learning

Background
Mild cognitive impairment (MCI) is a noticeable 
decline in an individual’s cognitive function beyond that 
expected by aging alone and remains an important issue 
to address since the estimated global prevalence of MCI 
in older adults (aged 50 and older) is 15.6% [1]. MCI is 
often a sign of prodromic dementia, where further cogni-
tive decline may still be prevented or even reversed [2]. 
However, since MCI can be caused by multiple etiologies 
[3], it is not always clear which treatment will be effective. 
Thus, to address this problem, interventions can benefit 
from continuous measurement of response to treatment 
for key outcomes that will allow alterations and adjust-
ments in treatment to achieve better clinical outcomes 
and higher cost-effectiveness by dropping ineffective 
components [4, 5]. However, existing neuropsychologi-
cal tests developed to assess cognition and diagnose 
dementia and MCI, while well-validated, have several 
limitations that restrict their usefulness for continuous 
assessment and monitoring. These standardized tests 
are time-consuming, lack ecological validity (performed 
outside of the context of everyday patients’ activities), 
require trained staff to administer them, and likely have 
insufficient test–retest reliability if frequently admin-
istered (e.g. due to learning effects and lack of alternate 
test versions). Although digital assessments can mitigate 
some of these issues, individuals must allocate time to 
complete them [6]. An ideal alternative assessment would 
work passively and automatically without any effort from 
the individual being tested. Mobile and wearable tech-
nologies have emerged as this possible alternative in 
providing a solution for remote, passive, and continuous 
assessment of cognitive function based on behavioral and 
physiological data [7, 8].

The predominant biological signal acquired from wear-
able sensors is blood volume pulse used for measuring 
heart rate (HR) and pulse/heart rate variability (HRV). 
HRV metrics are based on the time variation between 
successive heartbeats and indicate the sympathova-
gal balance representing the equilibrium between the 
two branches of the autonomic nervous system (ANS), 
the sympathetic (fight-or-flight) and parasympathetic 
(rest-and-digest) [9]. Recent systematic meta-analytic 
reviews show an association between cognitive function-
ing and HRV in both the general population and those 
with neurodegenerative disorders [10–12] supporting 

the heart-brain axis [13, 14], which is part of a two-way 
circuit between the central and autonomic nervous sys-
tems. Previous studies have indicated that specific HRV 
metrics, namely the high-frequency band of the HRV 
power spectrum (HRV-HF), the root mean of the square 
successive differences (RMSSD), and respiratory sinus 
arrhythmia (RSA), exhibit a small yet statistically signifi-
cant positive correlation (r = 0.25) with global cognitive 
functioning in individuals with neurodegenerative condi-
tions. Resting-state HRV showed a slightly stronger effect 
(r = 0.29) [12]. While these correlations are still too small 
to be useful in predicting exact cognitive scores, novel 
physiological features may show stronger correlations 
which would demonstrate more utility.

Attempts to determine how HRV affects specific 
areas of cognition have challenged researchers because 
the links are multifarious and dependent on many pos-
sibly mediating factors. For example, complex cogni-
tion involves more neural activity than simple cognitive 
tasks and thus requires more metabolic resources such 
as oxygenated blood [15, 16]. HRV could be an indirect 
index of the ability of the heart to quickly adapt to the 
current metabolic needs of the brain. However, HRV was 
positively correlated with executive function (r = 0.19) 
in both healthy and neurodegenerative condition popu-
lations as shown in two independent meta-analyses 
[11, 12]. Furthermore, HRV may also link to episodic 
memory as evidenced by a recent study reporting that 
a dynamic change in HRV as response to a sympathetic 
challenge is associated with a decline in episodic mem-
ory few years later [17].

The existing body of evidence primarily stems from 
electrocardiography conducted with specialized medical 
equipment in clinical settings, and largely because of this, 
it consists of cross-sectional studies employing between-
subject designs [18]. Alternatively, photoplethysmogra-
phy (PPG) sensors inbuilt in wearable devices can also 
accurately measure time intervals between heartbeats 
required for HRV calculation and, at the same time, allow 
continuous data collection over longer periods of time 
enabling longitudinal designs. Nevertheless, to the best of 
our knowledge, no research has evaluated the association 
between PPG-based HRV and cognitive performance 
longitudinally.

Other potential digital physiological proxies of cogni-
tive function that can be collected with wearables are 
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electrodermal activity (EDA) and skin temperature. EDA 
measures skin conductance/resistance which varies with 
sweat secretion and may indicate physiological arousal 
or stress [19]. Prior research exploring differences in 
EDA under different controlled conditions in healthy 
populations found that both tonic and phasic skin con-
ductance measures are sensitive to cognitive stress-
ors [20, 21]. The phasic component of EDA, reflecting 
rapid skin conductance fluctuations, was strongly cor-
related to certain brainwaves related to performance in 
an error awareness cognitive tasks, and with the decline 
in performance among individuals who experienced 
sleep deprivation [22]. However, these effects on EDA 
were task-induced and were transient in nature. EDA 
collected passively has been under-examined for meas-
uring cognitive abilities. Another physiological param-
eter is skin (or body) temperature. Recent research has 
revealed that lower temperatures measured during 12 h 
of habitual daily activities were significantly associated 
with improved performance on various cognitive tasks 
[23]. This included measures of inhibitory control and 
semantic verbal fluency. Furthermore, higher long-term 
peak-to-peak temperature amplitudes correlated with 
better cognitive performance in both healthy controls 
and individuals with MCI [23]. These findings support 
the hypothesis that age-associated thermoregulatory 
deficits and metabolic disruptions could be involved in 
Alzheimer’s disease (AD) pathogenesis [24].

Not only do novel digital physiological features dem-
onstrate promise for tracking cognition, but newly 
developed data-driven analysis techniques and machine 
learning also can amplify this potential. For example, 
one study showed that models based on passive data 
from interactions with smartphones predicted scores of 
neuropsychological tests with correlations ranging from 
0.62 to 0.83 [7]. Moreover, another study demonstrated 
that features based on passive smartphone usage and 
smartwatch sensor data improved accuracy of discrimi-
nating MCI from healthy individuals compared to mod-
els based on demographics alone [25]. Additionally, high 
accuracy was achieved in prognosing MCI progression 
to dementia by using machine learning and neuro-motor 
parameters collected during performance of dedicated 
augmented reality tasks with a smartphone/tablet [26]. 
Thus, machine learning (ML) methods applied to wear-
able data may be useful for predicting cognitive function.

In summary, the research on passive digital physi-
ological features for measuring cognitive performance 
is important because it can enable early detection, pro-
vide more objective measures that are not influenced 
by test–retest effects, allow better remote continuous 
monitoring of the effects of interventions, and be more 
cost-effective than clinic-based assessments. The current 

body of evidence largely came from cross-sectional data 
collected using medical equipment, such as electrocar-
diography, in clinical settings. Therefore, there is a lack 
of longitudinal data collected with wearable sensors, like 
PPG, which would enable examining the associations 
at the intra-individual level in people with MCI. In this 
pilot experiment, we address these gaps by investigat-
ing the feasibility of using physiological measures based 
on wearable sensor data for predicting cognitive func-
tion in individuals with MCI. Using longitudinal data-
set with repeated cognitive measures and physiological 
signals collected over 10  weeks, we examined the asso-
ciations between digital physiological features and cog-
nitive performance. We further evaluated the predictive 
ability of these digital physiological features to track 
inter- and intra-individual changes in cognitive func-
tion using machine learning methods. So far, no research 
has examined longitudinal associations between cogni-
tive performance and physiological measures collected 
with a wearable device, and this is the first study that 
analyzed how changes in physiological measures over 
time are associated with concurrent changes in cognitive 
functions.

Methods
Data and participants
The data used in this work were obtained from the reg-
istered single-arm clinical trial (ClinicalTrials.gov, 
Identifier: NCT05059353) with multidomain clinical 
intervention conducted in Singapore from Novem-
ber 2021 to August 2022 by the National Neuroscience 
Institute. The digitally delivered intervention targeted to 
improve cognitive functions was provided to older adults 
(50–70 years old) diagnosed with amnestic MCI (N = 30) 
and age-matched cognitively normal individuals (N = 10) 
and lasted for a period of 10 weeks. For the purposes of 
this study, we used data only from participants with MCI 
as the expected variation in the cognitive performance 
is larger in this target group compared to cognitively 
normal participants. During the intervention, partici-
pants were provided with Empatica-E4, a medical-grade 
sensor-equipped wrist device that collects physiological 
signals, and instructed to wear it during therapy sessions, 
sleep, and as much as possible otherwise, however, as per 
the trial protocol, participants were not required to wear 
it around the clock. Inclusion/exclusion criteria is listed 
in the Table  1; other details of the intervention can be 
found in the clinical trial registry [27] and in the previous 
research [28].

Target outcomes
All participants were given cognitive assessments at two 
timepoints—at baseline a week before the intervention 
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began, and within a week after the 10-week intervention. 
The Neuropsychological Test Battery (NTB) was used to 
assess cognitive function [29]. Each test score from an 
individual was converted into a z-score using available 
normative data from test manuals stratified by age range 
and education level. Composite scores were calculated by 
averaging the z-scores across tests and the global score 
was calculated as a mean of all tests’ z-scores:

(1) Executive Function: WAIS-IV Digit Span Task; 
Similarities; Trail-Making Test B; Category, Letter, 
and Category Switching Verbal Fluency tests.

(2) Processing Speed: Trail-Making Test A; Symbol 
Digit Modalities Task

(3) Immediate Memory: Logical Memory I, RAVLT tri-
als I-V, and Visual Reproduction I.

(4) Delayed Memory: Logical Memory II, RAVLT trial 
VII, and Visual Reproduction II.

(5) Global Cognition was calculated from all the listed 
tests.

Wearable signal processing and feature extraction
The E4 wristband collects four types of signals: (1) tri-
axial acceleration [gravitational units, g] with a sampling 
rate of 32 Hz, (2) skin temperature [°C]—4 Hz, (3) EDA 
or skin conductance [micro-Siemens]—4  Hz, and (4) 
blood volume pulse (BVP) with photoplethysmography 
sensor (PPG) [nanowatt]—64  Hz. Beyond the raw data 
available from the device, it also provides inter-beat-
intervals (IBI) [seconds] and heart rate (HR) [beats per 
minute] data computed by the manufacturer’s algorithms 
from the same raw signals.

Wearable data were processed in daily batches. Each 
day-length signal was regularized and resampled into 
fixed 5-min segments from 00:00:00 to 23:59:59, as this is 
shortest recommended duration for HRV measurement 
[30] and minor gaps less than 30 s were linearly interpo-
lated. Then samples with sufficient data (50% for HR and 
temperature, and 70% for EDA and PPG, while number 
of heartbeats in IBI could not differ from average HR in 

the same segment by more than 10%) were selected for 
further processing that was specific for each type of sig-
nal. Signal processing and feature extraction from wear-
able sensor data were performed in Python (version 3.9) 
using NeuroKit2 package (version 0.2.0) [31]; the entire 
pipeline is shown in Fig. 1. For example, the EDA signal 
went through a Butterworth bandpass filter and then was 
decomposed into tonic and phasic components, while 
blood volume pulse signal from the PPG sensor was pro-
cessed with the Elgendi peak detection algorithm [32] to 
find heartbeats. Features were then computed from pre-
processed samples using standard methodology includ-
ing statistical time-domain (e.g., mean, median, standard 
deviation) and frequency-domain methods (power spec-
trum density estimation with fast Fourier transform). 
The following groups of features were computed: pha-
sic skin conductance, tonic skin conductance (skin con-
ductance responses), EDA frequency-domain indexes of 
sympathetic activation, time-domain, frequency-domain 
(from both beat-to-beat intervals and derived periodic 
HR signal) and non-linear HRV measures derived from 
the Poincaré plot, including measures of heart rate asym-
metry and fragmentation [33] and based on both IBI data 
and PPG-based heartbeats, temperature time-domain 
measures. After computing all the features for each 
5-min segment (the complete list of features summarized 
in Additional file 1: Table S1), we removed samples with 
unavailable IBI measures because it is considered most 
sensitive to inappropriate device use or non-use. Next, 
redundant measures highly correlated to each other 
(squared Pearson correlation coefficient ≥ 0.95) were 
removed and the remaining non-redundant measures 
were kept for further analysis. Since physiological meas-
urements are recommended to be taken during a resting 
state [30], only samples from the calmest 5-h night-time 
window (from 1 to 6AM, as determined by the low-
est rolling population mean HR) were kept for analysis. 
Finally, daily summary measures (medians) were com-
puted from 5-min physiological features for days with 
at least four valid 5-min samples. In total, 106 features 

Table 1 Inclusion/exclusion criteria for participants with MCI

Inclusion criteria Exclusion criteria

Either male or female aged between 50 and 70 years (inclusive)
Diagnosis of amnestic MCI using the Petersen’s criteria and/or the NIA-AA 
criteria
Clinical Dementia Rating score of 0.5 and Mini-Mental State Examination 
> 24
Education > 6 years
Literate in English
Basic proficiency in using web-based applications/mobile platforms
Willing to give informed consent

Significant hearing or visual impairment
Significant systemic, neurological or psychiatric illness such as end stage 
renal failure, Parkinson’s disease or major depression
Participation in any pharmacological or non-pharmacological (interven-
tional) clinical trial in the preceding 12 weeks
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were used in further analysis, including 45 PPG-based 
features, 37 IBI-based, 12 EDA-based, 7 HR-based, and 5 
temperature-based.

Design of statistical analysis and predictive modeling
A longitudinal design was used to examine the dynamic 
changes over time and correlations between the two fac-
tors at the intra-individual level which provides stronger 
evidence for such relations than cross-sectional designs. 
NTB composite scores were only obtained at baseline 
and post-intervention. To show the feasibility of comput-
ing scores on a regular short-term basis and to maximally 
leverage available wearable data collected during the 
entire observation period, NTB composite scores were 
imputed to obtain datapoints within each interval match-
ing respective samples of wearable data. We assumed 
that changes in cognitive performance across a short-
term 10-week period were likely to occur monotonically 
and smoothly rather than with bidirectional oscillations, 
and changes tended to plateau off following a non-linear 
sigmoid function [34, 35]. Based on these assumptions, 
NTB composite scores for each 10-day interval (result-
ing in 7 repeated measurements per participant in total) 
were imputed using interpolation with a Gompertz curve 
(details on the function parameters are provided in the 

Additional file 1: Appendix S1). Respectively, daily digital 
physiological features were aggregated into means over 
the same 10-day intervals. To ensure the suggested impu-
tation method did not introduce bias and significantly 
distort the data, we compared correlation coefficients 
observed in datasets with and without imputation (using 
paired t-test and Pearson correlation). We also compared 
it to two other methods (linear interpolation and random 
imputation) to check how interpolation methods affected 
observed correlations (see Additional file 1: Appendix S2 
and Figures S1-S3 for more details).

Since between-individual differences in both cogni-
tive measures and physiological parameters are likely 
to exceed within-individual differences occurring in 
the short term, the model based on such clustered data 
should be more accurate in determining an overall indi-
vidual’s level of cognitive functioning relative to other 
people rather than sensing and predicting more subtle 
intra-individual changes. Hence, to address this limita-
tion and mitigate differences between participants, the 
physiological measures were centered around individual 
median values representing deviations from conditional 
personal baseline, and NTB composite scores were cen-
tered around individual half-range values (i.e. median 
between original baseline and post-intervention scores). 

Fig. 1 Data processing, feature extraction and predictive modeling pipeline
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As a result, centering data allows us to examine whether 
intra-individual changes in physiological measures are 
associated with intra-individual changes in cognitive 
measures. Thus, two datasets for analysis were used: the 
first one with imputed NTB scores and actual physi-
ological measures for testing the predictive ability of digi-
tal physiological features to determine the actual NTB 
scores, and the second one with individually centered 
physiological measures and NTB scores for evaluating 
the predictive ability to capture and track intra-individual 
changes in cognitive functioning.

Pearson and Spearman correlations were used to exam-
ine associations between physiological measures and cog-
nitive functioning in both datasets. In addition, we used 
linear mixed-effect regression (LMER) models to test 
associations (fixed effects) between cognitive measures 
and digital physiological features as the data is grouped 
by participants. P-values were adjusted using Benjamini–
Hochberg false discovery rate (FDR) correction across all 
outcome-feature pairs in all statistical analyses. Next, a 
series of supervised machine learning models predicting 
NTB scores were trained to evaluate the predictive abil-
ity of digital physiological features. Candidate features 
were selected using a statistical filter based on Pearson 
and Spearman correlations with varying levels of p-value 
significance ranging from < 0.05 to < 0.00001 (both cor-
relation p-values should pass a threshold for selection). 
We also removed features highly correlated to each other 
(with absolute Pearson r > 0.9) to mitigate multicollin-
earity. Since age and sex [36] can impact both cognitive 
functioning and physiology, the added predictive value 
of digital physiological measures should be estimated 
relative to predictions based on demographics alone, 
and therefore, we trained and evaluated three separate 
models: a baseline model based only on age and sex, a 
combined model based on demographics and digital 
physiological features, and a model based on physiologi-
cal features alone. Several machine learning algorithms 
were used for model training including elastic net lin-
ear regression, random forest regression, and extreme 
gradient boosting. In sum, for predicting each outcome 
we trained 12 different models (four p-value criteria for 
feature selection and three training algorithms). For per-
formance evaluation of the predictive models, we used 
leave-one-subject-out and leave-one-interval-out cross-
validation strategies, similar to the previous research 
[37]. In subject-based cross-validation all observations 
belonging to one subject were held for a test set and 
remaining data were used for training, while in interval-
based cross-validation all observations from a particular 
interval were held for a test set and remaining data were 
used for training. These split-samplings were iteratively 
repeated until we obtained predictions for all subjects 

and intervals. In practice, the first scenario reflects mak-
ing predictions for new never-seen subjects, while the 
second scenario reflects making predictions for exist-
ing subjects who have already been monitored for some 
time. Performance metrics were computed after all pre-
dictions obtained and included Pearson and Spearman 
correlation coefficients and mean absolute error (MAE) 
between actual and predicted values. Models with the 
highest Pearson r were considered the best. All statistical 
analysis and predictive modeling are done using Python 
(version 3.9) and numpy, pandas, scipy.stats, scikit-learn, 
XGBoost, and statsmodels packages.

Results
Characteristics of the data and participants
Twenty-seven MCI individuals out of the 30 recruited 
completed the clinical trial including the required neu-
ropsychological assessments (one participant dropped 
out, one had low compliance to the therapy program, and 
another did not complete post-intervention assessment). 
We collected and processed 99,261 5-min samples of 
wearable data in total covering 1134 days of observation. 
Most missing data were due to participant non-compli-
ance (e.g. non-wearing the device at night) or inappropri-
ate device use (non-removing a USB charging dock which 
blocks sensors). Besides, data collection might be inter-
rupted due to natural causes during normal daily use of 
the device, such as vibration and loss of contact between 
sensors and skin surface. After data cleaning and filter-
ing, the total number of valid wearable data samples was 
18,546 (or 92,730 min of data) covering 585 days across 
17 subjects (34.4  days per subject on average), which 
were then aggregated by 10-day intervals. The final data-
set included 96 aggregated intervals pairing NTB scores 
and digital physiological features. Further details of par-
ticipants included into the analysis are shown in the 
Table 2.

Correlation coefficients between imputed Neu-
ropsychological Test Battery (NTB) scores and digital 

Table 2 Characteristics of participants and data

Characteristic Metric

Participants, N 17

Age, mean (standard deviation [SD]) 60.3 (4.5)

Sex = female, N (%) 9 (52.9%)

Years of education, mean (SD) 13.5 (3.1)

N of valid wearable data samples per participant, mean 
(SD)

1093 (842.2)

N of valid wearable data samples per day, mean (SD) 31.7 (15.1)

N of days with available digital physiological features 
per participant, mean (SD)

34.4 (18.9)
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physiological features were very similar to those observed 
in the dataset without imputation (for Pearson coeffi-
cients: r = 0.94, paired t-test p-value = 0.75; for Spear-
man coefficients: r = 0.94, paired t-test p-value = 0.29), 
demonstrating that datasets shared the same pattern of 
relationships, and the imputation did not introduce sub-
stantial bias. Moreover, comparison of different imputa-
tion methods demonstrated that the interpolation with 
Gompertz curve was almost identical to the linear inter-
polation in terms of similarity to each other and to the 
dataset without imputation, while it was significantly dif-
ferent from the random imputation where correlation 
coefficients were much closer to zero and different from 
the dataset without imputation (see Additional file 1: Fig-
ures S1-S3 for more details). Thus, the Gompertz curve 
provided an acceptable imputation which did not signifi-
cantly affect the results (as random imputation did).

Predicting NTB scores
Digital physiological features had the greatest number of 
significant correlations with processing speed, executive 
function, and global cognition composites after the false 
discovery rate (FDR) correction—53, 44, and 39 out of 
106 potential relations respectively (Fig.  2). On average, 
the strength of significant correlations was moderate, the 
mean absolute Pearson r is 0.46 (standard deviation [SD] 
0.12) and Spearman rho was 0.45 (SD 0.11) for executive 
function, 0.37 (0.08) and 0.40 (0.07) for processing speed, 
0.33 (0.06), 0.29 (0.04) for immediate memory, 0.36 (0.05) 
and 0.34 (0.05) for delayed memory, and 0.42 (0.08) and 
0.37 (0.07) for global cognition. Processing speed had a 
distinct pattern of correlations different from other cog-
nitive measures, i.e. it correlated to unique physiologi-
cal measures which did not correlate to other cognitive 
measures.

In terms of specific digital physiological features, HRV 
measures (both photoplethysmography [PPG]- and inter-
beat-intervals [IBI]-based) correlated with all cognitive 
composites, especially cardiac sympathetic index (CSI), 
logarithm of HRV-HF, normalized HRV-HF, the ratio of 
short-term to long-term variations in HRV (SD1SD2) 
(full results are in the Additional file  1: Tables S2-S4). 
Three temperature features correlated with delayed mem-
ory, and two EDA features—with executive function.

The performance of predictive models combining digi-
tal physiological features and demographics is shown 
in Tables  3 and 4 and in Fig.  3A. The best predictable 
outcome from digital physiological features and demo-
graphics in never-seen subjects was the executive func-
tion composite (r = 0.69, rho = 0.70, mean absolute 
error [MAE] = 0.46). The addition of digital physiologi-
cal features brought large improvements in the predic-
tion of executive function in terms of gained Spearman 

correlation between the actual and predicted scores, 
while global cognition and immediate memory were pre-
dicted with the same accuracy from age and sex alone. 
Greater gains in Spearman correlation than in Pearson 
between the actual and predicted scores indicated that 
the physiological features were useful in sensing and cor-
rectly detecting minor monotonic differences between 
individuals, which was not possible with age and sex 
alone. Elastic net linear regression outperformed other 
ML algorithms for all outcomes within the subject-based 
cross-validation, while tree-based algorithms were better 
with the interval-based cross-validation. Predictions with 
training and cross-validation by intervals were much 
more accurate than by subjects for all outcomes and 
range from 0.85 to 0.92 in terms of Pearson correlation 
and the added predictive value of physiological measures 
was also larger for all outcomes ranging from 0.22 to 0.38 
in terms of improved correlation. Features used in each 
of the best models are listed in Additional file 1: Table S5.

Predicting intra‑individual changes in NTB scores
The correlations between intra-individual changes in dig-
ital physiological features and intra-individual changes 
in NTB scores (i.e. correlations in the centered dataset 
where each data value represents deviation from an indi-
vidual median) were weaker than the correlations in the 
non-centered dataset where all values were on the unad-
justed common scale. However, there were still several 
significant correlations with executive function (18 physi-
ological features) and processing speed (one feature) sus-
tained after the FDR correction (Fig. 2D, E). On average, 
the strengths of significant correlations were moder-
ate, the mean absolute Pearson r was 0.55 (SD 0.09) and 
Spearman rho was 0.37 (SD 0.03) for executive function, 
and 0.47 and 0.33 for processing speed respectively. Only 
the changes in HR and HRV (both PPG- and IBI-based) 
measures were significantly associated with changes in 
cognitive composite scores, while EDA and tempera-
ture features became non-significant after the FDR cor-
rection. In addition, only three physiological features 
were consistently significant in the analysis of both data-
sets indicating the same relationship on between- and 
intra-individual levels, including negative correlation of 
IBI-based modified CSI and positive correlation of the 
power spectrum in the very high-frequency band of IBI 
(HRV-VHF) to executive function scores, and positive 
correlation of IBI-based SD1SD2 HRV index to process-
ing speed scores. Mixed-effect regression also showed 
several significant effects between cognitive performance 
(executive function, processing speed and global cogni-
tion) and 34 physiological measures after the FDR cor-
rection confirming associations on the intra-individual 
level (Fig. 2C).
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Fig. 2 Correlation heatmaps between NTB composites and digital physiological features. Subplots A–C are based on dataset with actual NTB 
scores, D,E—on the centered dataset. A Color intensity is proportionate to the Pearson correlation coefficient, correlations between all outcome–
feature pairs are shown. B Only significant correlations (both Spearman and Pearson adjusted p-values < 0.05 after the FDR correction) are displayed. 
C Color intensity is proportionate to the  R2 of explained variance by fixed effect component from mixed-effect regression, only significant effects 
are shown (fixed effect p-values < 0.05 after FDR correction). D Color intensity is proportionate to the Pearson correlation coefficient, correlations 
between all outcome–feature pairs are shown. E Only significant correlations (both Spearman and Pearson adjusted p-values < 0.05 after FDR 
correction) are included
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Performance of models predicting intra-individual 
changes in cognitive scores from changes in digital 
physiological features and demographics is shown in 
Table 5 and 6 and in Fig. 3B. Among the different NTB 
composites, intra-individual changes in executive func-
tion were best predicted—the best model was based 
on 13 digital physiological features (plus age and sex) 
and the random forest algorithm and performed with 
Pearson r = 0.61 (rho = 0.44, MAE = 0.07) in the indi-
vidual-based cross-validation and r = 0.77 (rho = 0.48, 
MAE = 0.06) in the interval-based cross-validation. 
Intra-individual changes in other NTB scores were less 
predictable from physiological measures. Age and sex 
were not informative for predicting intra-individual 
changes in all outcomes (all predictions were constant 
scores), so the achieved performance was entirely due 
to digital physiological features and their interplay with 
demographics.

Discussion
This study examined the feasibility of using digital physi-
ological features from wearables as a proxy for measur-
ing cognitive function. We analyzed the associations 
between physiological digital physiological features and 
NTB cognitive composite scores and evaluated the pre-
dictive ability of models, combining these physiological 
features with demographics, to determine scores across 
four cognitive domains (global, memory, executive func-
tion, and processing speed) and to track more subtle 
short-term intra-individual changes. Using longitudinal 
wearable data collected over the 10-week clinical trial, 
we showed that physiological measures, primarily HRV 
measures, had significant and strong associations with 
the executive function composite, but not for other com-
posites. Among the models trained to predict executive 
function, the best model predicted scores in never-seen 
individuals with Pearson r = 0.69 (MAE = 0.46) and pre-
dicted intra-individual changes in these scores with 

Table 3 Performance of the best models predicting NTB scores

Cross‑validation method Cognitive measure Machine 
Learning 
algorithm

Number of 
used features

Feature 
selection 
p‑value

r r gain rho rho gain MAE

Subject-based Global Cognition ElasticNet 11 0.001 0.54 0.02 0.50  − 0.06 0.59

Executive Function ElasticNet 13 0.001 0.69 0.15 0.70 0.46 0.46

Processing Speed ElasticNet 14 0.001 0.47 0.08 0.48 0.27 0.67

Memory Immediate ElasticNet 4 0.001 0.44  − 0.03 0.44 0.01 1.24

Memory Delayed ElasticNet 6 0.001 0.48 0.22 0.61 0.33 0.97

Interval-based Global Cognition Random Forest 7 0.0001 0.92 0.25 0.91 0.25 0.16

Executive Function Random Forest 9 0.00001 0.89 0.22 0.87 0.33 0.15

Processing Speed XGBoost 11 0.0001 0.85 0.33 0.82 0.31 0.21

Memory Immediate Random Forest 3 0.0001 0.92 0.29 0.87 0.28 0.33

Memory Delayed XGBoost 3 0.0001 0.86 0.38 0.86 0.37 0.35

Table 4 Average models’ performance (Pearson r) in predicting NTB scores across varying feature selection criteria

Cross‑validation method Cognitive measure Machine Learning algorithms

ElasticNet Random Forest XGBoost

Subject-based Global Cognition 0.51 0.23 0.26

Executive Function 0.67 0.20 0.31

Processing Speed 0.43 0.08 0.09

Memory Immediate 0.42 0.12 0.17

Memory Delayed 0.42 0.16 0.21

Interval-based Global Cognition 0.73 0.91 0.87

Executive Function 0.79 0.89 0.83

Processing Speed 0.66 0.83 0.80

Memory Immediate 0.64 0.91 0.89

Memory Delayed 0.67 0.84 0.82
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Fig. 3 Boxplots of models’ performance (Pearson r) across outcomes, machine learning algorithms, and types of cross-validation; each box 
represents all performance values obtained with different feature sets depending on varied feature selection criteria. A Predicting actual NTB scores. 
B Predicting intra-individual changes in NTB scores from intra-individual changes in physiological features (centered dataset)

Table 5 Performance of the best models predicting intra-individual changes in NTB scores

Cross‑validation method Cognitive measure Machine 
Learning 
algorithm

Number of 
used features

Feature 
selection 
p‑value

r r gain rho rho gain MAE

Subject-based Global Cognition Random Forest 19 0.05 0.11 0.11 0.12 0.12 0.11

Executive Function Random Forest 15 0.001 0.61 0.61 0.44 0.44 0.07

Processing Speed ElasticNet 3 0.001 0.20 0.20 0.23 0.23 0.14

Memory Immediate ElasticNet 7 0.05 0.29 0.35 0.31 0.41 0.21

Memory Delayed Random Forest 6 0.05  − 0.11  − 0.11  − 0.05  − 0.05 0.19

Interval-based Global Cognition XGBoost 4 0.01 0.20 0.20 0.06 0.06 0.09

Executive Function Random Forest 15 0.001 0.77 0.77 0.48 0.48 0.06

Processing Speed XGBoost 3 0.001 0.45 0.45 0.30 0.30 0.14

Memory Immediate XGBoost 3 0.01 0.21 0.54 0.22 0.20 0.25

Memory Delayed XGBoost 6 0.05 0.06 0.06  − 0.01  − 0.01 0.17
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r = 0.61 (MAE = 0.07). The accuracy of predicting execu-
tive function in the same individuals but for new time 
interval samples was notably higher, with Pearson r = 0.89 
(MAE = 0.15) for actual scores and r = 0.77 (MAE = 0.06) 
for score changes. The models with digital physiologi-
cal features consistently and substantially outperformed 
baseline models based on age and sex alone in predict-
ing executive function, highlighting the added predictive 
value of digital physiological features. Other cognitive 
measures had weaker correlations with physiological 
measures and were predicted with lower accuracy, espe-
cially when predicting intra-individual changes.

To our knowledge, this is the first study with a longi-
tudinal design that found that intra-individual changes 
in executive function score were associated with intra-
individual changes in HRV measures, which characterize 
sympathovagal balance in the ANS. Unlike prior research 
that primarily examined the strength of associations 
[10–12], this study additionally evaluated the predictive 
ability of physiological parameters in determining cogni-
tive test performance using machine learning methods 
and cross-validation. Furthermore, this study contributed 
to the existing body of evidence regarding associations 
between HRV measures and cognitive function in indi-
viduals with MCI [12].

While the data suggest that changes in cognitive func-
tion and changes in physiological parameters are related, 
the exact mechanisms underpinning these correlations 
remain to be elucidated. One possible explanation for 
the observed relationship between HRV measures and 
cognition is the disruption of the brain cholinergic sys-
tem and acetylcholine deficiencies in Alzheimer’s disease, 
which then may result in downstream cognitive symp-
toms related to the disturbance of the ANS [38, 39]. Pos-
sibly, this may be due to changes in vagus nerve functions 

leading to changes in cognition [40, 41]. For example, 
the recent experimental study showed that stimulating 
vagus nerve and modulating heart rate oscillations via 
slow paced breathing intervention affect plasma amyloid 
beta and tau levels [42]. Furthermore, mediation analysis 
showed that autonomic dysfunction reflected in attenu-
ated HRV measures during non-REM sleep contributed 
to complement activation and deposition of AD bio-
markers leading to cognitive impairment [43]. In addi-
tion, reduced parasympathetic activity (lower HRV-HF) 
during deep sleep was associated with weaker functional 
connectivity within core and broader central-autonomic 
network brain regions in older adults at risk of dementia 
[44]. Finally, it is not clear why the correlations between 
digital physiological features and cognitive measures 
were stronger with executive function compared to other 
composites. Executive function tasks are often thought to 
draw on many other cognitive processes, such as percep-
tion, memory, and strategic planning [45], and, therefore, 
they may make variable energy demands and require 
optimal heart function for distribution of energizing oxy-
genated blood consistent with the neurovisceral integra-
tion model.

This study has several strengths. First, we used two 
datasets for analysis and predictive modeling: original un-
centered and centered. The original dataset was used to 
analyze associations on the inter-individual level, whereas 
the centered dataset mitigated inter-individual differences 
and allowed to reveal whether intra-individual changes in 
physiological paraments (i.e. deviations from some condi-
tional personal baseline) were associated with concurrent 
intra-individual changes in cognitive function. Second, we 
used two common cross-validation strategies to evaluate 
models’ accuracy. Although leave-one-interval-out-cross-
validation is more prone to overfitting because cognitive 

Table 6 Average models’ performance (Pearson r) in predicting intra-individual changes in NTB scores across varying feature selection 
criteria

Cross‑validation method Cognitive measure Machine Learning algorithms

Elastic Net Random Forest XGBoost

Subject-based Global Cognition  − 0.02 0.06 0.09

Executive Function 0.20 0.54 0.39

Processing Speed 0.15 0.11 0.10

Memory Immediate 0.26 0.16 0.17

Memory Delayed  − 0.19  − 0.11  − 0.22

Interval-based Global Cognition 0.16 0.17 0.19

Executive Function 0.62 0.74 0.63

Processing Speed 0.32 0.32 0.36

Memory Immediate 0.10 0.13 0.01

Memory Delayed 0.06 0.05  − 0.08
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scores from the same individuals tend to be similar across 
intervals, this method allowed us to better evaluate the 
added predictive value of physiological measures against 
demographic information. Leave-one-subject-out-cross-
validation consistently showed lower accuracy, however 
it provided a more conservative and generalizable perfor-
mance evaluation, as predictions were done in individuals 
that the models were not trained on. Thus, performance 
measures obtained with the two approaches provided a 
comprehensive evaluation of the predictive value of digital 
physiological features in monitoring cognitive function-
ing. Finally, we leveraged physiological signals collected 
during nocturnal sleep, which demonstrated their utility 
in studying brain–heart interaction in people with MCI. 
This allowed us to analyze autonomic function in isolation 
from psychological and behavioral confounders related to 
wakeful activity.

The main limitation of the study is its small sample size 
(N = 96 observations from 17 participants) and, there-
fore, the models should be verified with another inde-
pendent sample. Also, a larger sample size would allow 
using deep learning methods to reveal complex non-lin-
ear patterns in the data. Another limitation is a relatively 
short period of the study observation (3 months) which 
restricts capturing a greater and long-term variation in 
cognition. In addition, the study sample is homogeneous 
and included mainly participants of Singaporean Chinese 
ethnicity. Thus, it is possible the results would not gen-
eralize to other populations. Another limitation stems 
from the study design since it was based on a multid-
omain intervention, which might confound some asso-
ciations by causing concurrent changes in these factors 
independently. Consistent with previous literature, yoga 
exercises and meditation provided as part of the inter-
vention could induce changes in HRV [46, 47] and affect 
cognition [48, 49], while cognitive games and reminis-
cence therapy may have contributed to changes in cogni-
tion. However, executive function, processing speed and 
delayed memory changed independently and sometimes 
in opposing directions (increased or decreased) in the  
subsample of the trial participants included in the analysis  
(see Additional file  1: Figure S4 and Table  S6 for more 
details). In addition, there was no significant increase in exec-
utive function from baseline to post-intervention. Therefore, 
the intervention likely did not falsify the correlation between 
the physiological parameters and cognitive measures.

Next, since most analyzable data were collected while 
participants slept, we were unable to use acceleration 
data capturing physical gross-motor activity which 
could be informative for detecting cognitive impair-
ment [50, 51]. Similarly, due to the lack of day-time data 

we were unable to examine circadian and rest-activ-
ity rhythms which are also associated with changes in 
cognitive function [52–54]. Another limitation is using 
imputed target outcomes data (NTB scores) for model 
training and testing instead of real weekly measure-
ments. To mitigate this limitation, we compared dif-
ferent interpolation methods and demonstrated that 
correlation coefficients between NTB scores and digi-
tal physiological features were very similar to those 
obtained without imputation that indicated identical 
relationships pattern between datasets. In addition, the 
range of cognitive scores of the participants was limited, 
and it is unclear whether the trained models would be 
able to predict over clinically significant range of scores. 
Finally, despite a range of reliable and moderately strong 
associations, the achieved accuracy of predictive models 
is still below the desirable level, and hence the wearable-
based physiological measures are not yet able to replace 
standardized cognitive tests.

To overcome these limitations, we recommend that 
future research leverage a larger and preferably multi-
ethnic (multicenter) sample to achieve greater statistical 
power and generalizability, a longer follow-up duration (6 
or 12 months) to capture greater variation in cognition, 
and digital cognitive assessments in addition to NTB for 
more frequent outcomes measurement. Finally, future 
research should leverage data from a group not receiv-
ing the intervention, either through a pure longitudinal 
observational study or by utilizing a control group in the 
case of a clinical trial.

Conclusions
In conclusion, our findings suggest that physiological 
measures correlate to cognitive function in individuals 
with MCI. Therefore, these physiological features have 
potential to be used for passive assessment of cogni-
tive function using wearable sensors in real time and in 
ambulatory settings. In turn, continuous monitoring of 
cognitive function in individuals with MCI would allow 
a better understanding of the response to treatment and 
the delivery of more effective personalized therapies. 
The most informative and valuable physiological features 
were HRV features measuring sympathovagal balance 
in ANS, that is in line with the neurovisceral integra-
tion model of central-autonomic neural network. The 
results from this study are promising and warrant further 
research which should validate these physiological meas-
ures and evaluate their value when combined with other 
digital phenotyping data such as speech, language use, 
software interaction, finger dexterity, as well as demo-
graphic and medical history.
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