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Abstract 

Background Microsatellite instability-high (MSI-H) is a unique genomic status in many cancers. However, its role 
in the genomic features and immunotherapy in cholangiocarcinoma (CCA) is unclear. This study aimed to systemati-
cally investigate the genomic characterization and immunotherapy efficacy of MSI-H patients with CCA.

Methods We enrolled 887 patients with CCA in this study. Tumor samples were collected for next-generation 
sequencing. Differences in genomic alterations between the MSI-H and microsatellite stability (MSS) groups were ana-
lyzed. We also investigated the survival of PD-1 inhibitor-based immunotherapy between two groups of 139 patients 
with advanced CCA.

Results Differential genetic alterations between the MSI-H and MSS groups included mutations in ARID1A, ACVR2A, 
TGFBR2, KMT2D, RNF43, and PBRM1 which were enriched in MSI-H groups. Patients with an MSI-H status have a signifi-
cantly higher tumor mutation burden (TMB) (median 41.7 vs. 3.1 muts/Mb, P < 0.001) and more positive programmed 
death ligand 1 (PD-L1) expression (37.5% vs. 11.9%, P < 0.001) than those with an MSS status. Among patients receiv-
ing PD-1 inhibitor-based therapy, those with MSI-H had a longer median overall survival (OS, hazard ratio (HR) = 0.17, 
P = 0.001) and progression-free survival (PFS, HR = 0.14, P < 0.001) than patients with MSS. Integrating MSI-H and PD-L1 
expression status (combined positive score ≥ 5) could distinguish the efficacy of immunotherapy.

Conclusions MSI-H status was associated with a higher TMB value and more positive PD-L1 expression in CCA 
tumors. Moreover, in patients with advanced CCA who received PD-1 inhibitor-based immunotherapy, MSI-H 
and positive PD-L1 expression were associated with improved both OS and PFS.
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Background
The mismatch repair (MMR) pathway is essential for 
maintaining DNA replication fidelity, mutation avoid-
ance, and genomic stability [1]. When the MMR path-
way is not functioning correctly, cells are unable to 
correct errors during DNA replication, leading to 
an inconsistent number of microsatellite nucleotide 
repeats and instability in microsatellite regions [2]. This 
deficiency, known as deficient DNA mismatch repair 
(dMMR), is characterized by microsatellite instability-
high (MSI-H) in tumors and has a unique genomic sta-
tus and tumor microenvironments [3, 4]. Patients with 
MSI-H cancers, including gastrointestinal (GI) cancer, 
have experienced excellent effects from programmed 
cell death protein-1 (PD-1)-based immune checkpoint 
inhibitor (ICI) immunotherapy [5–7]. Based on this 
evidence, the Food and Drug Administration (FDA) 
approved programmed cell death protein-1 (PD-1) 
inhibitors monotherapy (and cytotoxic T lympho-
cyte-associated antigen 4 inhibitors) for patients with 
MSI-H/dMMR colorectal cancer and multiple other 
cancers, regardless of the location [3, 8–11].

Cholangiocarcinoma (CCA) is an aggressive and fatal 
cancer that originates in the bile duct epithelium [12, 
13]. Unfortunately, the majority (> 65%) of patients with 
biliary tract cancer (BTC) have unresectable disease 
and patients with advanced CCA have a poor survival 
rate by classical systemic chemotherapy [12, 13]. How-
ever, recent advancements in next-generation sequenc-
ing (NGS) technologies have revealed genomic features 
that may help CCA patients receive precision medi-
cine or immunotherapy [2, 12–16]. In particular, PD-1 
inhibitor-based immunotherapy has shown encourag-
ing efficacy in a subset of CCA. The Phase 3 TOPZA-1 
and KEYNOTE-966 trials have demonstrated the sur-
vival benefits of adding PD-1/ligand 1 (PD-L1) inhibi-
tors for patients with advanced CCA [17, 18]. The 
prevalence of MSI-H/dMMR in CCA is relatively low 
(1%-3%) [19–22], but these patients have shown prom-
ising efficacy for immunotherapy. Among advanced 
CCA patients with MSI-H/dMMR treated with the 
PD-1 inhibitor pembrolizumab in the Keynote-158 
study could achieve a 40.9% objective response rate 
(ORR) [23], indicating that patients with MSI-H are 
highly sensitive to PD-1 inhibitors. Some case reports 
have also shown that MSI-H in patients with CCA pre-
dicts response to ICI therapy [24–26].

The impact of MSI-H status on the genomic profile and 
immunotherapy response in CCA is very important but 
has not been well characterized. In this study, we system-
atically analyzed the genomic characteristics and immu-
notherapy efficacy of MSI-H by comparing microsatellite 
stability (MSS) status in patients with CCA. Integrating 
histopathological features to identify potentially ben-
eficiary patients for immunotherapy with a MSS status is 
also very important.

Methods
Patient characteristics
This study involved 887 patients who were diagnosed 
with histologically confirmed CCA and treated at the 
Peking Union Medical College Hospital (PUMCH) 
from 2017 to 2020 and The Affiliated Hospital of Qing-
dao University (QDUH) from 2017 to 2019. All MSI-H 
CCA patients were enriched by hand searches of medical 
records as much as possible to allow better comparabil-
ity between the two groups. The study collected samples 
including tumor tissues and paired tumor-free tissues, 
and clinical data such as gender, age, tumor location, 
tumor size, tumor differentiation, lymph node metastasis, 
and tumor stage from electronic medical records. Before 
sample disposal, two independent pathologists reviewed 
all tumor tissues to confirm the pathological diagnoses. 
Only samples with an estimated tumor purity of > 20% on 
histopathological assessment were subjected to genomic 
profiling. The study obtained written informed consent 
from all participants and was approved by the Institu-
tional Ethics Review Committee at PUMCH and QDUH 
(NCT03892577; RWSHBC). This study followed the 
guidelines of the Declaration of Helsinki and Good Clini-
cal Practice.

Genomic profiling
Genomic DNA was prepared from formalin-fixed, 
paraffin-embedded tumor samples and matched white 
blood cells (84.9%) or paracancerous/normal tissues 
(15.1%) using a DNA extraction kit (QIAamp DNA 
FFPE Tissue Kit), according to the manufacturer’s pro-
tocols. NGS-based cancer sequencing YuanSu (CSYS) 
panel (n = 824) or WES (n = 63) was performed as pre-
viously described in the OrigiMed [27–30]. Tumor 
samples were sequenced by CSYS panel with a mean 
coverage of 900 × and matched normal blood samples 
were sequenced to a mean unique coverage of 300 × . 

Trial registration This study was registered on ClinicalTrials.gov on 07/01/2017 (NCT03892577).
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burden, Overall survival, Immune checkpoint inhibitor
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For WES, the mean coverage was 500 × for the tumor 
sample and 100 × for the matched normal blood sam-
ples on the Illumina NovaSeq6000 Platform (Illumina).

Genomic alterations, including single-nucleotide 
variations (SNVs), short and long insertions/deletions 
(indels), copy-number variations (CNVs), gene rear-
rangements, and gene fusions, were identified as fol-
lows: BWA (v0.6.2) was used for aligning raw reads to 
the human genome reference sequence (hg19); Picard 
(version 1.47) was used for removing PCR duplicates; 
MuTect (v1.7) was used for identifying SNVs; PIN-
DEL (V0.2.5) was used for identifying indels polymor-
phisms; and SnpEff (v3.0) was used for annotating the 
functional impact of SNVs and indels. Control-FREEC 
(v9.7) was used to identify CNV regions. Gene fusions/
rearrangements were detected using an in-house pipe-
line and assessed using Integrative Genomics Viewer 
(v2.4).

The study determined the functional significance of 
variants in genes by examining databases and published 
literature, including ClinVar, Catalogue of Somatic Muta-
tions in Cancer, and PubMed. The study reported known 
or likely drivers and recurrent variants. Pathogenic muta-
tions were defined as variants that clearly affect the func-
tion of a gene [30, 31]. Synonymous variants and variants 
with uncertain significance (VUS) (named VUS) were 
excluded because of lacking clinical significance [32]. 
Only pathogenic, likely pathogenic, and some meaning-
ful mutations that are clear, potentially functionally, clini-
cally significant, or functionally unknown were reported 
as clear somatic variants (named Not-VUS) in tumors.

The tumor mutation burden (TMB) was calculated 
by counting the total number of coding mutations per 
megabase as report [27, 33]. TMB values higher than 
10 muts/Mb were considered TMB-high (TMB-H), and 
those less than 10 muts/Mb were considered TMB-low 
(TMB-L) [34]. The indel ratio is defined as the number of 
(frameshift) indel mutations per megabase in the target 
region [3, 35]. MSI status was determined based on the 
MANTIS score [36]. MSI-H is defined as more than 15% 
of selected microsatellite loci showing unstable in tumors 
compared to matched peripheral blood [29].

Fifteen cancer pathways (Additional File 1: Table  S1), 
including phosphoinositide 3-kinase (PI3K), homologous 
recombination repair deficiency (HRD), wingless/inte-
grated (WNT), fibroblast growth factor (FGF), cell cycle 
(CellCycle), switch/sucrose nonfermentable (SWI/SNF), 
base excision repair (BER), homologous recombination 
repair (HRR), MMR, nucleotide excision repair (NER), 
non-homologous end joining (NHEJ), Fanconi anemia 
(FA), checkpoint factor (CPF), translesion synthesis 
(TLS), and DNA damage response (DDR), were analyzed 
[26, 37].

PD‑1 inhibitor‑based immunotherapy cohort 
of cholangiocarcinoma and efficacy evaluation
In patients who received PD-1 inhibitor-based therapy, 
follow-up was conducted to evaluate the efficacy and 
safety of the drugs until overall survival (OS) was deter-
mined. Further analysis was performed on patients who 
meet the following conditions: (1) patients should have 
an Eastern Cooperative Oncology Group (ECOG) per-
formance status (PS) of 0–2 and normal baseline organ 
functions; (2) patients had at least one measurable lesion 
used to assess the therapeutic response according to the 
Response Evaluation Criteria in Solid Tumors (RECIST) 
version 1.1 [38]; (3) patients with radiologically or histo-
logically confirmed advanced CCA who received PD-1 
inhibitors based combination therapy with other agents 
of cancer treatment [39–41].

A total of 139 patients with advanced CCA who 
received PD-1 inhibitor-based combination therapy were 
enrolled in this study. PD-1 inhibitor-based therapy may 
have been heterogeneous for different PD-1 inhibitors 
(including pembrolizumab or nivolumab, toripalimab, 
camrelizumab, sintilimab, or tislelizumab every three 
weeks intravenously) and combination therapies in a 
real-world setting [39–41]. Patients were followed every 
six to eight weeks. The treatment effects were evaluated 
according to the RECIST version 1.1 guidelines [38] by 
professional radiologists at our center who were blinded 
to the therapeutic outcomes and clinicopathological 
features. Durable clinical benefit (DCB) was defined as 
complete response (CR), partial response (PR), or sta-
ble disease (SD) for ≥ 24 weeks; other was defined as no 
durable benefit (NDB) [42]. Progression-free survival 
(PFS) was defined as the time from initiating anti-PD-1 
treatment to the first documented disease progression 
or death due to any causes, while OS was defined as the 
time between the start of anti-PD-1 treatment and death 
due to any causes.

Identification and classification of potentially actionable 
alterations of cholangiocarcinoma
The OncoKB database was used to determine poten-
tially actionable targets (PATs) of genetic alterations 
in druggable target [43]. All actionable alterations 
were classified as levels 1, 2, 3A/B, and 4 as follows. 
Level 1 means FDA-recognized biomarker predictive 
of response to an FDA-approved drug in this indica-
tion; while Level 2 means standard care biomarker 
recommended by the National Comprehensive Can-
cer Network (NCCN) or other professional guide-
lines predictive of response to an FDA-approved drug 
in this indication. Level 3A means compelling clinical 
evidence supports the biomarker as being predictive 



Page 4 of 14Yang et al. BMC Medicine           (2024) 22:42 

of response to a drug in this indication; while Level 
3B means standard care or investigational biomarker 
predictive of response to an FDA-approved or inves-
tigational drug in another indication. For Level 4, this 
means there is compelling biological evidence to sup-
port that the biomarker can predict drug response 
[43]. Usually, the alterations of levels 1, 2, and 3A were 
deemed actionable targets [28, 30].

Immunohistochemistry (IHC) analysis of PD‑L1 and MMR 
expression
PD-L1 status was estimated by IHC staining of FFPE 
tissue sections using anti-PD-L1 antibodies clone 22C3 
(DAKO, cat#m3666) or 28–8 (Abcam, Cat#ab205921) 
[29, 44]. The specimen was considered PD-L1 positive 
expression when the combined positive score (CPS) 
was either ≥ 1 [45–47]. IHC analysis was conducted 
to detect MMR-related proteins, including MLH1 
(clone ES05, cat#IR079, DAKO), PMS2 (clone EP51, 
cat#IR087, DAKO), MSH2 (clone FE11, cat#IR08561-2, 
DAKO), and MSH6 (clone EP49, cat#IR086, DAKO). 
Tumors were classified as dMMR when the expression 
of at least one MMR protein was lost and as MMR-
proficient when all four MMR proteins had positive 
nuclear staining in tumor cells [48].

Statistical analysis
The study assessed normal distribution was assessed 
using the Kolmogorov–Smirnov test. Fisher’s exact test 
was utilized to compare categorical variables between 
multiple groups. For continuous variable comparisons 
between two groups, a two-tailed unpaired t-test was 
used when the data were normally distributed; other-
wise, Wilcoxon’s test was used. The study identified var-
iables associated with MSI-H using logistic regression 
analysis. For survival analysis, univariable and back-
ward stepwise multivariable Cox proportional hazards 
regression models (if univariate P value of < 0.1) were 
used to calculate hazard ratios (HRs). Kaplan–Meier 
plots (log-rank tests) were used to describe the prog-
nostic factors related to PFS and OS. The results are 
reported as HRs and 95% confidence intervals (CIs). 
The R package “survival” for survival analysis, “forest-
plot” for forest maps, and “ComplexHeatmap” for 
profiling heat maps were used. The function “soma-
ticInteractions” from R package “maftools” was used 
to detect mutually exclusive or co-occurring mutations 
in MSI-H and MSS groups [49]. All reported P values 
were two-tailed, and P < 0.05 was considered statisti-
cally significant. All statistical analyses were performed 
using R version 4.1.1.

Results
Clinical characteristics of patients with CCA 
A total of 887 patients with CCA were included in this 
study; 584 (65.8%) had intrahepatic cholangiocarcinoma 
(ICC) and 303 (34.2%) had extrahepatic cholangiocar-
cinoma (ECC). The median patient age was 60  years 
old (range: 19–89  years old). Among these patients, 
60.2% were male, and 5.4% (48/887) were identified as 
MSI-H. The median TMB value was 3.7 (interquartile 
range [IQR]: 1.9–6.2) muts/Mb. The clinicopathological 
characteristics of the patients and individual details are 
shown in Additional File 2: Table S2 and Additional File 
1: Table S3.

Compared with MSS patients, MSI-H patients had a 
significantly higher frequency of positive PD-L1 expres-
sion (CPS ≥ 1, 37.5% vs. 11.9%, P < 0.001) and frequency 
of TMB-H (100% vs. 8.7%, P < 0.001 by Fisher’s exact test) 
(Additional File 2: Table S2, Additional File 2: Figure S1). 
No statistically significant associations were observed 
between MSI status and clinical characteristics such as 
gender, age, tumor location, tumor size, tumor differen-
tiation, and tumor stage (P > 0.05 by Fisher’s exact test).

Genomic features of patients with CCA with different MSI 
statuses
In total, 7076 somatic SNVs and 2116 small indels, 272 
fusions, and 1225 CNVs were identified. After removing 
VUS gene alternation, 4154 somatic SNVs, 1403 small 
indels, 169 fusions, and 993 CNV were retained for fur-
ther analysis. As for 48 MSI-H tumors, 1176 somatic 
SNVs, 640 small indels, only 2 fusions, and 10 CNV were 
identified excluding VUS gene alternation (Additional 
File 1: Table S4).

The differential gene alterations significant between 
the MSI-H and MSS groups were ARID1A (73% vs. 18%), 
ACVR2A (69% vs. 1%), TGFBR2 (58% vs. 3%), KMT2D 
(54% vs. 4%), RNF43 (54% vs. 3%), PBRM1 (52% vs. 7%), 
MLH1 (46% vs. 2%), KMT2C (35% vs. 7%), PIK3CA (35% 
vs. 6%), and NF1 (33% vs. 5%) (Fig. 1A, Additional File 1: 
Table S5). We also found that the mutated genes ARID1A, 
ACVR2A, TGFBR2, RNF43, KMT2D, and PBRM1 were 
enriched with the MSI-H status of patients (Additional 
File 2: Figure S2). Among 15 pathways in cancer, the dif-
ferential mutation pathways between the MSI-H and 
MSS groups included the DDR (98% vs. 60%), SWI/SNF 
(96% vs. 33%), HRD (81% vs. 22%), CellCycle (79% vs. 
62%), and PI3K (75% vs. 24%) (Additional File 1: Table S6, 
Fig.  1A). In addition, tumors with an MSI-H status had 
a higher TMB (median 41.7 vs. 3.1 Mut/Mb, P < 0.001; 
Fig. 1B) and a higher insertion indel ratio (median 0.1698 
vs. 0.0588, P < 0.001 by Wilcoxon’s test) compared with 
those with MSS (Additional File 2: Figure S3).
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Association between the efficiency of PD‑1 inhibitor‑based 
treatment and MSI status
In this cohort, 139 CCA patients underwent PD-1 inhib-
itor-based immunotherapy (NCT03892577). Among 
them, 16 (11.5%) had tumors with MSI-H (N = 12) or 
dMMR (N = 4). Three of the four dMMR patients had 
MLH1 and PMS2 loss, and the one had MSH2 and 

MSH6 loss. The median age of the 139 patients was 
61 years (range, 30–84 years), and 58.3% were male. 107 
(77.0%) were ICC and 32 (23.0%) were ECCs. The maxi-
mum tumor diameter ≥ 5  cm was 55 (39.6%) patients. 
The ECOG PS scores of 0, 1, and 2 were 31.7%, 51.8%, 
and 16.5%, respectively. The proportions of TNM stage 
I, II, III, and IV were 2.9%, 11.5%, 32.4%, and 53.2%, 

Fig. 1 Genomic mutation landscape in cholangiocarcinoma distinguished by MSI status. A Genetic profile of significantly altered genes 
and associated clinicopathological characteristics of all 887 cholangiocarcinoma patients. Only the top 20 altered genes and top 10 pathways 
of the MSI-H group are shown. B The TMB value in the MSI-H group was significantly higher than that in the MSS group. MSI-H, microsatellite 
instability-high; MSS, microsatellite stability; TMB, tumor mutation burden
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respectively. The percentages of patients with PD-L1 
CPS ≥ 1 and PD-L1 CPS ≥ 5 were 44.6% and 29.5%, 
respectively (Additional File 2: Table  S7). Chemother-
apy (N = 24, 17.3%), lenvatinib (N = 82, 59.0%), apatinib 
(N = 9, 6.5%), and other drugs (N = 24, 17.3%) were used 
in combination with PD-1 inhibitors. The proportions 
of patients treated with pembrolizumab, nivolumab, 
toripalimab, camrelizumab, and other PD-1 inhibitors 
were 31.7%, 13.7%, 28.1%, 15.1%, and 11.4%, respectively. 
Compared with the MSS group in the immunotherapy 
cohort, the MSI-H group had better ECOG PS scores, 
more PD-L1 CPS ≥ 5, more combinations of PD-1 inhibi-
tors combined with chemotherapy, more stage IV, and 
more TMB-H (P < 0.05 by Fisher’s exact test).

The median follow-up of the 139 patients was 14.1 
(IQR: 7.7–27.4, range 1.07–70.3) months. As of the last 
follow-up, 100 (71.9%) patients had died, 39 (28.1%) 
patients were censored, 37 of them were still alive, and 
two patients were lost to follow-up. The median OS was 
14.8 (95% CI: 12.6–16.9) months. We observed longer 
median OS (not evaluable [NE] vs. 13.5  m, HR = 0.17 
(95% CI: 0.06–0.46, P = 0.001) and longer median PFS 
(NE vs. 4.0 m, HR = 0.14 (95% CI: 0.05–0.34, P < 0.001) in 
MSI-H patients compared with MSS patients by log-rank 
tests (Fig. 2A and B). There were 65 (46.8%) patients who 
reached DCB after PD-1 inhibitor combination therapy, 
including 87.5% MSI-H patients and 41.5% MSS patients 
(OR = 2.11, P < 0.001 by Fisher’s exact test; Fig. 2C). The 
ORR (68.8% vs. 17.9%, OR = 3.84, p < 0.001) and dis-
ease control rate (DCR) (100.0% vs. 65.9%, OR = 1.52, 
P = 0.003 by Fisher’s exact test) were also higher in the 
MSI-H group than the MSS group (Additional File 2: Fig-
ure S4).

Univariate and multivariate survival analyses of the CCA 
cohort receiving PD‑1 inhibitor‑based therapy
Due to the small number of MSI-H patients, poten-
tial benefits from histopathological and clinical factors 

should be identified to confirm the efficacy of immuno-
therapy for patients with advanced CCA.

Eleven potential prognostic variables for OS were 
selected based on univariate Cox analysis, including age, 
largest tumor size, ECOG PS, treatment line, combina-
tion agents, PD-L1 (CPS ≥ 1), PD-L1 (CPS ≥ 5), MSI sta-
tus, TMB (≥ 10 muts/Mb), SWI/SNF pathway, and MMR 
pathway (Table  1). In the multivariate analysis by back-
ward stepwise multivariable Cox proportional hazards 
regression models, ECOG PS (1–2 vs. 0: HR, 3.096; 95% 
CI, 1.832–5.263, P < 0.001) and treatment line (≥ 2 vs. 
0–1: HR,2.247; 95% CI, 1.289–3.922, P = 0.004), largest 
tumor size (≥ 5 cm vs. < 5 cm: HR,1.635; 95% CI, 1.048–
2.552, P = 0.030) were independently associated with 
a significantly shorter OS. Conversely, PD-L1 expres-
sion (CPS ≥ 5 vs. < 5: HR, 0.424; 95% CI, 0.259–0.694, 
P = 0.012), combination therapy (chemotherapy vs. target 
therapy: HR,0.403; 95% CI, 0.191–0.850, P = 0.017) and 
MSI status (MSI-H vs. MSS: HR, 0.265; 95% CI, 0.093–
0.754, P = 0.013) were associated with a significantly 
longer OS (Table 1).

The median PFS was 5.3 (95% CI, 3.7–6.9) months. 
Multivariate Cox analysis showed that only PD-L1 
expression (CPS ≥ 5 vs. < 5: HR,0.467; 95% CI, 0.278–
0.784, P = 0.004) and MSI status (MSI-H vs. MSS: HR, 
0.198; 95% CI, 0.069–0.563, P = 0.002) were independent 
predictors of longer PFS (Table 1).

Guidance of MSI‑H combined with PD‑L1 expression 
in the immunotherapy of CCA patients
Among the 139 CCA patients receiving PD-1 inhibi-
tor-based immunotherapy, 29.5% (41/139) harbored 
high PD-L1 expression (CPS ≥ 5). Patients in the PD-L1 
CPS ≥ 5 expression group had longer OS, PFS, and higher 
DCB rates than those in the PD-L1 CPS < 5 expression 
group (Additional File 2: Figure S5, ABC). Integrating 
PD-L1 expression (CPS ≥ 5) and MSI status, we found 
that the OS of the MSI-H, MSS-PD-L1CPS ≥ 5, and 

Fig. 2 Kaplan‒Meier estimates of overall survival (A), progression-free survival (B), clinical benefit histogram (C) of 139 advanced 
cholangiocarcinoma patients receiving PD-1 inhibitor-based therapy stratified by MSI status. MSI-H, microsatellite instability-high; MSS, 
microsatellite stability
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MSS-PD-L1 CPS < 5 groups were NE, 20.6 months, and 
10.6 months (P < 0.001 by log-rank tests, Fig. 3A), respec-
tively; the PFS of these groups were NE, 8.3  months, 
and 3.8  months (P < 0.001 by log-rank tests, Fig.  3B), 
respectively. Their DCB rates were 87.5%, 64.5%, and 
32.1% (P < 0.001 by Fisher’s exact test, Fig.  3C), respec-
tively. It showed the MSI-H status combined with 
PD-L1 expression could well distinguish the efficacy of 
immunotherapy.

Factors contributing to MSI‑H status
We analyzed the association between mutations of 15 
pathways and important clinicopathological param-
eters (like age, gender, tumor location), and MSI-H sta-
tus, to analyze what factors contribute to MSI-H status. 
Results showed that the SWI/SNF (OR = 38.07), BER 
(OR = 19.14), MMR (OR = 10.23), HRR (OR = 9.68), 
PI3K (OR = 6.37), and WNT (OR = 4.65) pathways have 
contributed to MSI-H status by multivariate logistic 

Table 1 Univariate and multivariate analyses of prognostic factors for progression-free survival (PFS) and overall survival (OS) in 
patients with advanced cholangiocarcinoma

Abbreviations: CI Confidence interval, CPS Combined positive score, ECC Extrahepatic cholangiocarcinoma, ECOG-PS Eastern Cooperative Oncology Group-
performance status, HR Hazard ratio, ICC Intrahepatic cholangiocarcinoma, MMR Mismatch Repair, MSI-H Microsatellite instability-high, MSS Microsatellite stability, Mut 
Mutation, OS Overall survival, PFS Progression-free survival, PD-L1 Programmed death ligand 1, SWI/SNF Switch/sucrose nonfermentable, TMB Tumor Mutation Burden, 
WNT Wingless/Integrated, WT Wild type

Variates Univariate 
analysis for PFS

Multivariate analysis Univariate 
analysis for OS

Multivariate analysis

P value P value HR (95% CI) P value P value HR (95% CI)

Age (< 60 vs. ≥ 60) 0.554 0.026
Gender (female vs. male) 0.740 0.739

Tumor location (ICC vs. ECC) 0.139 0.462

Largest tumor size (≥ 5 cm vs. < 5 cm) 0.157 0.009 0.030 1.635 (1.048–2.552)

ECOG-PS (1–2 vs. 0)  < 0.001 0.063 1.618 (0.974–2.688)  < 0.001  < 0.001 3.096 (1.832–5.263)

Treatment line (≥ 2 vs. 0–1) 0.344 0.007 0.004 2.247 (1.289–3.922)]

Combination agents (Chemotherapy vs. 
target therapy)

0.026 0.006 0.017 0.403 (0.191–0.850)

PD-L1 (CPS ≥ 1 vs. < 1) 0.002 0.031
PD-L1 (CPS ≥ 5 vs. < 5)  < 0.001 0.004 0.467 (0.278–0.784) 0.001 0.001 0.424 (0.259–0.694)

MSI (MSI-H vs. MSS)  < 0.001 0.002 0.198 (0.069–0.563) 0.001 0.013 0.265 (0.093–0.754)

TNM stage (IV vs. I–III) 0.048 0.103

T stage (T3–T4 vs. T1–T2) 0.946 0.815

N stage (N1–N2 vs. N0) 0.435 0.199

M stage (M1 vs. M0) 0.048 0.103

TMB (≥ 10 vs. < 10 muts/Mb) 0.002 0.012
SWI/SNF pathway (Mut vs. WT) 0.004 0.026
MMR pathway (Mut vs. WT) 0.008 0.016
WNT pathway (Mut vs. WT) 0.012 0.228

Fig. 3 Kaplan–Meier curves for overall survival, progression-free survival and clinical benefit histogram of three classifications stratified according 
to MSI-H combined with PD-L1 CPS ≥ 5 (A–C). MSI-H, microsatellite instability-high; MSS, microsatellite stability; Mut, mutation; NDB, no durable 
benefit; OS, overall survival; PFS, progression-free survival; PD-L1, programmed death ligand 1; TMB, tumor mutation burden; WT, wild type
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regression (P < 0.05). Meanwhile, tumor location of ICC 
(OR = 0.24, P = 0.049) had borderline contributed to 
MSI-H status (Fig.  4). When seeing the SWI/SNF, BER, 
MMR, and HRR pathway mutation, we may reflect a pos-
itive correlation with MSI-H status.

Potentially actionable targets (PATs) and co‑altered 
mutations in CCA with different MSI statuses
We used the OncoKB database to annotate the PATs and 
found that all the MSI-H groups had level I evidence of 
pembrolizumab use; TMB-H was also considered to have 
level I evidence of pembrolizumab use. So, only 8.7% of 
patients in the MSS group (with TMB-H) fulfilled level I 
evidence for the use of pembrolizumab (Fig. 5A and B). 
Except for the targets of MSI-H and TMB-H, only 2.08% 
of patients had a PAT gene mutation (≤ level 3A) in the 
MSI-H group, compared with 10.25% in the MSS group 
(Fig. 5C and D). In the MSS group, IDH1, KRAS, BRAF 
mutation, and FGFR2 fusion were the main target genes 
(Fig. 5E and F).

We further explored the underlying differences of 
co-altered mutations in MSI-H and MSS groups. Co-
occurrence mutation statuses in the MSI-H group were 
observed between ARID1A:NOTCH3, ARID1A:KRAS, 
KMT2D:LRP1B, MSH3:OBSCN, and ATM:POLE. 

However, NF1:LRP1B was identified exclusively. On 
the other hand, in the MSS group, TP53:CDKN2A, 
TP53:TERT, TP53:FBXW7, KRAS:SF3B1, and 
KRAS:CDKN2A were identified co-occurrence; how-
ever, TP53 mutants with STK11, ATM, IDH1, or BAP1 
mutations; and KRAS mutation with ERBB2, BRAF, NF1, 
IDH1, BAP1, or TERT mutations were identified exclu-
sively (Additional File 2: Figure S6).

Discussion
Our study comprehensively investigated the genomic 
alterations and PATs for precision medicine according 
to MSI status in 887 patients with CCA. Tumors with 
MSI-H status were associated with a higher TMB value 
and more positive PD-L1 expression but fewer PATs. 
Furthermore, by investigating immunotherapy in 139 
advanced CCA patients, we found that MSI-H patients 
had longer PFS and OS than MSS patients receiving PD-1 
inhibitor-based therapy. By integrating MSI-H with posi-
tive PD-L1 expression, we identified certain patients with 
advanced CCA who may benefit from PD-1 inhibitor-
based immunotherapy.

MSI-H cancers have distinct genomic features, and this 
study chose non-VUS gene alterations for further analy-
sis to emphasize clinical translational precision medicine. 

Fig. 4 Factors contributing to MSI-H status. Using multivariate logistic regression, the association between pathways and clinical factors, and MSI-H 
status were analyzed. MSI-H: microsatellite instability-high

Fig. 5 Potentially actionable alterations in MSI-H and MSS cancer based on the OncoKB database. A, B Level I of the proportions of MSI-H (100% vs. 
0%) and TMB-H (100% vs. 8.7%) in MSI-H and MSS cancer. C, E Flow diagram in the upper part shows the list of translational targets for each OncoKB 
recommendation level in MSI-H, and the lower part presents the MSS cholangiocarcinoma. The widths of the belts indicate different frequencies 
for each target at every level. D, F The upper and lower pie plot shows the distribution of OncoKB levels for translational targets in patients 
with MSI-H or MSS cholangiocarcinoma. MSI-H, microsatellite instability-high; MSS, microsatellite stability; TMB-H, tumor mutation burden-high

(See figure on next page.)
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Fig. 5 (See legend on previous page.)



Page 10 of 14Yang et al. BMC Medicine           (2024) 22:42 

The mutation frequencies of ARID1A, ACVR2A, TGFBR2, 
KMT2D, and RNF43 were significantly higher in the 
MSI-H group of our cohort. We found that the TMB 
value of the MSI-H group was higher than those of the 
MSS group. Abnormal pathways, including the DDR, 
SWI/SNF, and HRD, were highly frequent (> 80%) in the 
MSI-H group. Similarly, Eluri et al. reported that the fre-
quency of MSI-H in 7565 ICC cases was 1.8%, and the 
median TMB of MSI-H patients was 21.7 muts/Mb. 
Meanwhile, the study also showed that genomic altera-
tions in TP53 (59.9%), PRBM1 (37.2%), ARID1A (13.9%), 
and APC (13.9%) were enriched in patients with MSI-H 
[50]. In another study, RNF43 and KMT2D mutations 
frequently occurred in CCA patients with MSI-H and 
TMB-H status [51]. Similarly, an analysis of the genomic 
landscape of MSI-H in 11,395 tumors across 30 cancer 
types showed that mutations in ACVR2A (73%), KMT2D 
(68%), KMT2B (66%), and MMR-related genes were 
enriched in the MSI-H group [52].

Tumors with MSI-H have dysfunctions that correct 
errors introduced in microsatellites, which could lead 
to more frameshift mutations, higher TMB value, and 
increased neoantigens formation and tumor-specific 
antigens which are thought to be unknown and novel to 
the individual immune system [53]. Then, tumors with 
MSI-H are highly infiltrated with cytotoxic T-cell lym-
phocytes like CD8 + T-cells with a Tc1 phenotype and 
CD4 + T-cells with a Th1 phenotype, to raise tumor-
specific immune responses, which leads to sensitivity 
to ICI of MSI-H tumors [54]. Some studies have found 
that MSI-H in patients with CCA has promising effi-
cacy in immunotherapy, however, the patients’ numbers 
were small [21, 23–26, 50, 55, 56]. In our cohort with 
139 patients, we found that CCA patients with MSI-H 
had longer median OS (HR = 0.17, P = 0.001) and PFS 
(HR = 0.14, P < 0.001) than CCA patients with MSS, 
indicating that patients with MSI-H may have more 
opportunities to benefit from immunotherapy. In the 
KEYNOTE-158 study, 22 advanced CCA patients with 
MSI-H/dMMR received pembrolizumab treatment and 
ORR could reach up to 40.9%, with median PFS and 
median OS of 4.2 (2.1–24.9) and 19.4 (6.5-NR), respec-
tively; ≥ 3  years OS rate exceeded 30% [23]. However, 
for the 104 advanced BTC patients with MSS status that 
received pembrolizumab treatment, the ORR was only 
5.8%, with median PFS and median OS of only 2.0 (1.9–
2.1) and 7.4 (5.5–9.6) months, respectively; the survival 
rate of ≥ 3  years was only about 10% [57]. These results 
suggested that patients with MSI-H have more oppor-
tunities to benefit from immunotherapy. In our study, 
MSI-H status was a protective factor for both OS and 
PFS of immunotherapy in multivariate analysis. How-
ever, another study found that MSI-H (N = 15) was not 

an independent protective factor (P = 0.162) in refractory 
CCA with PD-L1 positivity (CPS≥ 1 or tumor proportion 
score (TPS) ≥ 1%) and treated with pembrolizumab, indi-
cating that PD-L1 expression is also another important 
confounding factor [58].

Our study found that positive PD-L1 expression was 
relatively high in patients with MSI-H status. In many 
types of GI cancers, including BTC, colorectal cancer, 
and gastric cancer, PD-L1 expression was significantly 
associated with MSI-H  status (P < 0.001) [22, 59, 60]. In 
our study, we observed that the combination of MSI sta-
tus and PD-L1 expression could distinguish the progno-
sis of immunotherapy for both OS and PFS. We found 
patients with PD-L1 CPS ≥ 5 had a better both OS and 
PFS than patients with CPS < 5 in multivariate analy-
sis, which is consistent with our previous study [61–64]. 
However, the significance of PD-L1 expression as a bio-
marker for BTC immunotherapy remains controversial. 
Yoon et al. reported that a PD-L1 CPS ≥ 1 does not dis-
tinguish well from the immunotherapy response in BTC 
[45]. Another study showed that the median PFS and OS 
of BTC patients did not differ according to the CPS cut-
off values (1, 5, and 10) (P > 0.05 for all) [47]. Zhou et al. 
found a correlation between PD-L1 expression in patients 
with CPS ≥ 5 and CPS < 5 and the efficacy of anlotinib 
along with the PD-1 inhibitor; but they observed a sim-
ilar median PFS (6.80 vs. 6.24  months, P > 0.05) [62]. In 
another prospective trial, the high PD-L1 expression 
(CPS ≥ 5) group did not show any differences in median 
PFS compared with the low PD-L1 expression group 
(high vs. low: 5.0 vs. 6.4 months, p = 0.81) [65]. Therefore, 
although patients with PD-L1 CPS ≥ 5 may benefit from 
PD-1 inhibitor immunotherapy for both OS and PFS in 
our cohort, the significance of PD-L1 expression and cut-
off values still need to be confirmed in prospective and 
large retrospective cohorts.

We found that the TMB value of the MSI-H group 
was significantly higher than that of the MSS group, 
which is a consensus and consistent with the results of 
other studies involving many cancers [66]. In addition, 
we also found more indel alterations in the MSI-H 
CCA group, similar to those observed in colorectal 
cancer [67]. Meanwhile, our results also showed that 
mutated pathways, such as SWI/SNF, BER, MMR, and 
HRR, mostly contributed to the MSI-H status. Many 
studies have found a high frequency of MSI-H muta-
tions in the SWI/SNF pathway, including intestinal 
and pancreatic cancers [68–70]. Wang et  al. defined 
co-mutations (combinations of HRR-BER and HRR-
MMR) in the DDR pathway and found that co-mutated 
DDR was significantly associated with MSI-H and 
TMB-H  status [37]. Mutations in the MMR pathway 
surely contribute to the MSI-H status [53]. Similarly, 
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Zhou et  al. found that the percentage of MSI-H 
patients in the HRR-mut group was higher than that in 
the HRR-WT group in patients with colon cancer [71]. 
However, in the multivariate Cox analysis of immuno-
therapy efficacy in our cohort, the prognostic values of 
TMB, SWI/SNF pathway, or MMR pathway mutations 
were not significant (P > 0.05).

The percentage of altered genes that can be used 
as therapeutic targets (level ≤ 3A) according to the 
OncoKB database in the MSI-H group is low, while the 
percentage of altered genes in MSS group for poten-
tial therapeutic targets could be up to 10%, mainly 
including IDH1 (ivosidenib), KRAS (adagrasib), FGFR2 
fusion (infigratinib), and BRAF mutation (dabrafenib 
plus trametinib). It showed the spectrum of precision 
medicine is different between the two groups. Nearly 
8.7% of the patients belonged to the TMB-H group in 
the MSS group, while all (100%) of the MSI-H patients 
belonged to the TMB-H group, which can also be 
recommended to use the PD-1 inhibitor pembroli-
zumab (level I). Similarly, Eluri et al. also observed that 
MSI-H cases had lower frequencies of previously iden-
tified, actionable ICC drivers, such as FGFR2 fusions 
(0% vs. 9%, p = NS), IDH1 (3.7% vs. 14.5%, p < 0.0001), 
and IDH2 (0% vs. 4.1%, p = 0.007) [50]. Different gene 
alterations and co-altered patterns may partly explain 
the low prevalence of PAT for other precision medi-
cines except for ICI in the MSI-H CCA group [51]. 
MSI-H patients with CCA seem only amenable to ICI-
based therapy.

Our study provided a large cohort and a great 
resource to comprehensively investigate genomic 
alterations and immunotherapy in patients with CCA. 
However, this study has some limitations. First, from a 
retrospective perspective, the “enrichment” process of 
patients with MSI-H tumors may have overestimated 
the proportion of the natural prevalence of MSI-H. 
However, this study focused on assessing genomic fea-
tures and comparing immunotherapy efficacy between 
the two groups, so we wanted to enroll as many MSI-H 
patients as possible. Second, we just compared DNA-
level characteristics according to MSI status, we hope 
to analyze the multi-omics feature (including RNA 
sequencing and immune marker by IHC) between 
MSI-H and MSS groups further. Third, in our immu-
notherapy cohort, the heterogeneity of PD-1 inhib-
itor-based therapy may stem from variations across 
different PD-1 inhibitors and combination therapies. 
But we found MSI status and PD-L1 CPS ≥  5 could 
stratify the cohort prognosis in log-rank tests and mul-
tivariable Cox analysis. We encourage validating our 
findings in other large cohorts.

Conclusions
The proportion of MSI-H in CCA was low. The muta-
tion spectrum was different between MSI-H and MSS 
status. The MSI-H status of patients with CCA was 
associated with TMB-H and positive PD-L1 expression. 
Moreover, MSI-H and positive PD-L1 expression were 
associated with improved both OS and PFS in patients 
with advanced CCA who received PD-1 inhibitor-based 
immunotherapy.
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