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Abstract 

Background Follow‑up visits for very preterm infants (VPI) after hospital discharge is crucial for their neurodevelop‑
mental trajectories, but ensuring their attendance before 12 months corrected age (CA) remains a challenge. Current 
prediction models focus on future outcomes at discharge, but post‑discharge data may enhance predictions of neu‑
rodevelopmental trajectories due to brain plasticity. Few studies in this field have utilized machine learning models 
to achieve this potential benefit with transparency, explainability, and transportability.

Methods We developed four prediction models for cognitive or motor function at 24 months CA separately at each 
follow‑up visits, two for the 6‑month and two for the 12‑month CA visits, using hospitalized and follow‑up data 
of VPI from the Taiwan Premature Infant Follow‑up Network from 2010 to 2017. Regression models were employed 
at 6 months CA, defined as a decline in The Bayley Scales of Infant Development 3rd edition (BSIDIII) composite 
score > 1 SD between 6‑ and 24‑month CA. The delay models were developed at 12 months CA, defined as a BSI‑
DIII composite score < 85 at 24 months CA. We used an evolutionary‑derived machine learning method (EL‑NDI) 
to develop models and compared them to those built by lasso regression, random forest, and support vector 
machine.

Results One thousand two hundred forty‑four VPI were in the developmental set and the two validation cohorts 
had 763 and 1347 VPI, respectively. EL‑NDI used only 4–10 variables, while the others required 29 or more variables 
to achieve similar performance. For models at 6 months CA, the area under the receiver operating curve (AUC) 
of EL‑NDI were 0.76–0.81(95% CI, 0.73–0.83) for cognitive regress with 4 variables and 0.79–0.83 (95% CI, 0.76–0.86) 
for motor regress with 4 variables. For models at 12 months CA, the AUC of EL‑NDI were 0.75–0.78 (95% CI, 0.72–0.82) 
for cognitive delay with 10 variables and 0.73–0.82 (95% CI, 0.72–0.85) for motor delay with 4 variables.
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Background
The recent progress in perinatal and postnatal care has 
contributed to enhancing mortality and morbidity out-
comes among preterm infants for decades. However, 
approximately 20% of very preterm infants (VPI) sur-
vivors still suffer from a certain degree of cognitive or 
motor delay at 2  years of corrected age (CA) based on 
the Bayley score [1]. The longitudinal follow-up program 
(LFUP) is regarded as the primary recommendation after 
neonatal intensive care unit (NICU) discharge for high-
risk infants, particularly those born preterm during the 
first 2 years of life [2, 3]. Early detection and intervention 
of neurodevelopmental impairment (NDI) in high-risk 
infants can promote not only better outcomes but also 
social and economic benefits [4]. Risk factors for NDI in 
preterm births, such as gestational age (GA), birth body 
weight (BBW), bronchopulmonary dysplasia, and intra-
ventricular hemorrhage, have been well reported [5, 6]. 
While evidence has substantiated the potential efficacy of 
innovative statistical tools for prediction models in this 
domain [7, 8], it is noteworthy that existing prediction 
models predominantly focus on aiding healthcare prac-
titioners and families during pre-discharge counseling [9, 
10].

High dropout rates exceeding 50% in LFUP make reli-
ably evaluating VPI’s development challenging. This 
uncertainty and developmental status changes may make 
parents think their child is improving and drop out of fol-
low-up clinics before 1 year [11]. Based on findings from 
the California low birthweight cohort study, early pres-
ence at a visit within the first 12 months emerged as the 
most significant determinant of sustained LFUP partici-
pation, alongside factors such as maternal education and 
proximity to the clinic [12]. Notably, lack of awareness of 
early intervention is significantly related to attendance 
[13].

The accuracy and interpretability of neurodevelop-
mental prediction models influence caregivers’ decision-
making regarding counseling in clinics or hospitals [14, 
15]. There remains a gap in prediction models for routine 
clinical use and NDI research [9]. The machine learn-
ing methods have produced excellent results in predic-
tion models for a variety of diseases [16], but complex 
machine learning models have been the subject of recent 
criticisms due to their lack of transparency. Furthermore, 
although the performance of simpler parametric models 

with lots of variables is not inferior to machine learning 
methods, even simple algorithms like logistic regres-
sion (LR) can become complicated by including numer-
ous predictors [17, 18]. Recently, our novel evolutionary 
learning method was able to establish clinical prediction 
models by identifying a small set of features and maxi-
mizing the prediction accuracy [19, 20].

This study aims to create practical predictive models at 
6-month and 12-month visits for 24-month outcomes of 
CA with transparency, explainability, and transportability 
to help parents-physician discussion about early inter-
vention and follow-up plans.

Methods
Study population
VPI was defined as preterm infants born before 31 weeks’ 
6 days of gestation weighing 401–1500 g. Between Janu-
ary 1, 2010, and December 31, 2014, 5615 VPI were dis-
charged alive from 21 neonatal care centers registered in 
the Taiwan Premature Infant Follow-up Network (TPFN) 
database, comprising the original cohort [21, 22]. For 
establishing accurate prediction models, we excluded 
3071 infants, including infants who missed the Bay-
ley Scales of Infant Development 3rd edition (BSIDIII) 
at the 6 or 12  months, as they were key variables, and 
those whomissed BSIDIII scores at 2 years CA alone due 
to main predictive outcome, or any follow-up with the 
Bayley Scales of Infant Development 2nd edition. There 
were 2544 VPI with BSIDIII cognitive and motor scores 
at 2  years of CA in the development cohort. An exter-
nal cohort consisting of 1347 VPI was obtained from 
the TPFN database from January 1, 2016, to December 
31,2017, using the same criteria (Fig.  1). This study was 
approved by the ethical standards of the Institutional 
Review Board of the Kaohsiung Medical University Hos-
pital (IRB number: KMUHIRB-SV(I)- 20190008), and 
due to the study’s retrospective nature and the use of dei-
dentified data, the need for written informed consent was 
waived.

Neurodevelopmental outcome
Neurodevelopmental outcome in this study was based on 
BSIDIII score at 2 years of age of VPI. The TPFN follow-
up plan included BSIDIII scores at 6, 12, and 24 months 
after CA by unblinded and experienced pediatric psy-
chologists. Considering the BSIDIII score at 6  months 

Conclusions Our EL‑NDI demonstrated good performance using simpler, transparent, explainable models for clini‑
cal purpose. Implementing these models for VPI during follow‑up visits may facilitate more informed discussions 
between parents and physicians and identify high‑risk infants more effectively for early intervention.
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may not be a reliable predictor of NDI at 24 months [23, 
24], we designed different NDI outcome models at 6- and 
12-month CA for clinical use, comprising two regression 
models at 6 months and two delay models at 12 months.

Two delay models were used at 12  months: the cog-
nitive delay model (CDelay) defined NDI as a BSIDIII 
cognitive score of < 85 at 24  months CA and the motor 
delay model (MDelay) defined NDI as a BSIDIII motor 
score < 85 at 24 months CA. Data for both models were 
collected up to 12  months after CA. Two regression 
models were used at 6  months: the cognitive regres-
sion (CRegres) defined NDI as a BSIDIII cognitive 
score decline greater than one standard deviation (SD) 
between 6 and 24 months CA and the motor regression 
(MRegres) model defined NDI as a BSIDIII motor score 
decline greater than one SD between 6 and 24  months 
CA, respectively. The data used in both regression mod-
els were up to 6-month CA, and the SD of BSIDIII com-
posite score was 15 points in two regression models.

Prediction variables
The TPFN database contains basic demographics of par-
ents, pregnancy, and neonatal variables at birth, hos-
pitalization, discharge, and follow-ups at 6-, 12-, and 
24-month CA. The anthropometric measures (weight, 
height, and head circumference) at four individual time 
points (admission, discharge, and 6- and 12-month CA) 
were redistributed into 8 intervals from less than − 3 Z to 

greater than 3 Z. We used the growth chart based on the 
INTERGROWTH-21st Project [25] at admission and dis-
charge and the WHO Child Growth Standards [26] at the 
6- and 12-month CA visit. Detailed definitions of all the 
variables are shown in Additional file 1.

A total of 484 variables in the TPFN database were 
obtained from preterm births to 12  months CA. First, 
we excluded variables with missing values in > 30% of 
the cohort, and there were 89 variables retained. We 
arranged missing data with imputation using the k-near-
est neighbor method. However, we excluded six variables 
(peak bilirubin levels, blood transfusion, nasogastric tube 
feeding after discharge, apnea, partial pressure of oxy-
gen, and carbon dioxide in the initial blood gas analysis) 
from consideration due to their absence in the external 
cohort dataset. Two distinct feature utilization strategies 
are employed in constructing prediction models. In light 
of the specific characteristics of random forest (RF) and 
lasso regression (Lasso) for handling a substantial num-
ber of predictors, an “all-features-in” approach is initially 
adopted for model development. Consequently, the CDe-
lay and MDelay models are constructed with 83 vari-
ables, while the CRegres and MRegres models retain 75 
variables for utilization in the Lasso and RF frameworks 
because the data used in regression models were only up 
to 6-month CA.

Second, we employ a Coarse-to-fine feature selec-
tion technique to facilitate model development, which 

Fig. 1 A Illustrated flowchart of patients’ inclusion and exclusion in the original cohort. B Illustrated flowchart of patients’ inclusion and exclusion 
in the external cohort. Bayley III, Bayley Scales of Infant Development 3rd edition; Bayley II, Bayley Scales of Infant Development 2nd edition



Page 4 of 14Chung et al. BMC Medicine           (2024) 22:68 

applies to traditional machine learning methods and our 
novel approach. Coarse-to-fine feature selection from all 
recorded variables was performed as follows: Among 89 
variables, the remaining 29 variables that were signifi-
cantly related to NDI outcomes at 24  months based on 
Pearson’s and Spearman’s correlation coefficients were 
retained in a set of fine features for model development. 
The 29 variables for each prediction model and results of 
the correlation coefficients are shown in Additional file 2.

Evolutionary learning method
A novel evolutionary learning method, called evolution-
ary learning neurodevelopmental impairment (EL-NDI), 
was proposed to predict the NDI of VPI at 24 months of 
CA in this study. Figure 2 depicts the flowchart of devel-
oping EL-NDI. After excluding and including process in 
step 1, we divided the original cohort into development 
and independent test datasets at 7:3 in step 2. In the 
development datasets, each of the four NDI outcomes 
exhibited an imbalance. Subsequently, in step 3, we estab-
lished four distinct balanced developmental cohorts. 
These cohorts were independently created by randomly 

pairing positive and negative cases at a 1:1 ratio drawn 
from the developmental dataset split in step 2. Conse-
quently, each machine learning model was trained on a 
unique, balanced developmental cohort derived from the 
initially imbalanced development dataset, leading to vari-
ations in the cohort sizes. The 29-candidate features were 
obtained from the maternal, neonatal, and follow-up data 
with imputation using the k-nearest neighbor method. 
The predictive approach EL-NDI employed a widely rec-
ognized support vector machine (SVM) classifier, a sta-
tistically grounded supervised learning model. SVM are 
employed for classification or regression tasks through 
data transformation into a higher-dimensional feature 
space using a kernel function. The selection of both the 
cost parameter (C) and the kernel parameter (γ) in SVM 
is critical for modeling. We employed an intelligent evo-
lutionary algorithm (IEA) [19] to determine SVM’s opti-
mal feature selection and parameter settings. The process 
involved the use of the inheritable bi-objective combi-
natorial genetic algorithm (IBCGA) [27] in conjunction 
with IEA to identify a subset of features and to determine 
the values of the SVM parameters while maximizing the 

Fig. 2 Illustrated flowchart of developing EL‑NDI to predict neurodevelopmental impairment. EL‑NDI utilized the inheritable bi‑objective 
combinatorial genetic algorithm (IBCGA) alongside intelligent evolutionary algorithm (IEA) to identify feature subsets and optimize SVM parameters 
for maximum fitness. RF, random forest; LR, logistic regression; SVM, support vector machine
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fitness function. The fitness function aimed to maximize 
the prediction function of the tenfold cross-validation 
(CV) on the training dataset. The optimal feature selec-
tion problem, denoted as C(n, m), entails the selection 
of a small subset of features (m) from a more extensive 
set of candidates (n), where interactions among fea-
tures exist. IBCGA was employed to efficiently address 
this large-scale combinatorial optimization challenge 
to determine the value of m, the selected features, and 
the values of C and γ. For the application of IBCGA, all 
candidate features were encoded as binary variables for 
optimal feature selection. Simultaneously, the parameters 
(C, γ) were encoded into the chromosome for concurrent 
optimization. Based on the main effect difference (MED), 
the selected m features were ranked according to their 
prediction contributions. For more information about 
the use of IBCGA, we recommend referring to our previ-
ously published biomedicine studies [28, 29].

Models of machine learning
We used established machine learning models to com-
pare the EL-NDI models. The models using the R pack-
age implementation included lasso regression, logistic 
regression (glmnet), linear SVM (e1071), and RF (ran-
domForest). Additionally, we combined a small set of 
features selected by the EL-NDI with logistic regression 
as the evolutionary learning logistic regression (EL-LR) 
model to explore the relationship between the selected 
features and outcomes [9]. After optimizing 19 hyperpa-
rameters for each model, we fitted the entire training set 
with five repetitions of tenfold cross-validation using the 
R caret package.

Statistical analysis
Statistical analyses were performed using R, version 3.6.3 
(R Foundation for Statistical Computing), Python, ver-
sion 3.7 (Python Software Foundation), and MATLAB 
(version 2020a). A two-sided p ≤ 0.05 was considered sta-
tistically significant. We calculated 95% confidence inter-
vals (CIs) to compare the area under the curve (AUC). 
Descriptive statistics were expressed as mean ± standard 
deviation or median (range) as appropriate. The Mann–
Whitney U test was applied to compare continuous vari-
ables, while categorical variables were compared using 
Pearson χ2 analysis or Fisher’s exact test.

Results
Characteristics of the cohorts
The attrition rates at 24  months CA in the original and 
external test cohorts were 38.9% and 18.7%, respec-
tively. According to the study design, a total of 763 VPI 
from 2544 VPI in original cohorts were distributed to 
the independent test, and there were 1347 VPI who were 

analyzed from external test cohort. The rest of VPI were 
separated into the balanced model developmental set for 
which the numbers were 846 and 696 VPI in the CRegres, 
and MRegres for 6-month CA, and 532 and 660 VPI in 
the CDelay, and MDelay for 12-month CA, respectively. 
The mean GA in the original cohort and independent 
and external tests were 28, 27.9, and 27.9 weeks, respec-
tively. There was no significant difference in the NDI 
rates between the original and external test cohorts for 
all four models, with the rates being slightly higher in the 
external test cohort (CDelay: 16.0% vs 15.3%, p = 0.56; 
MDelay: 20.4% vs 18.5%, p = 0.15; CRegres: 26.1% vs 
23.7%, p = 0.09; MRegres: 21.4% vs 19.3%, p = 0.12). The 
NDI rate, z-score distribution of BBW, GA, and sex in the 
original cohort, balanced development model, and inde-
pendent and external tests are shown in Table 1.

The performance of evolutionary learning and other 
methods in original cohort
The results of different models in validation and inde-
pendent test were in Table 2.

The AUC of RF with all-features-in methods in the 
independent test at 24  months CA was 0.71 in CDe-
lay (sensitivity:48.0%; specificity:82.5%), 0.71 in MDe-
lay (sensitivity:56.5%; specificity:77.3%), 0.78 in CRegres 
(sensitivity:72.3%; specificity: 72.6%), and 0.86 in MRe-
gres (sensitivity:73.0%; specificity:84.5%). The AUC of 
EL-NDI in the independent test at 24  months CA was 
0.75 in CDelay (sensitivity:50.0%; specificity:82.5%), 0.73 
in MDelay (sensitivity:56.7%; specificity:79.6%), 0.81 
in CRegres (sensitivity:74.6%; specificity:72.6%), and 
0.83 in MRegres (sensitivity:76.5%; specificity:77.0%). 
EL-NDI had the highest AUC in CDelay, MDelay, and 
CRegres in the independent test, but RF had the high-
est AUC in MRegres with 75 variables (Table  2). The 
CDelay encompassed 10 variables: motor BSIDIII score 
at 12  months, cognitive BSIDIII scores at 12  months, 
abdominal surgery, intermittent positive pressure venti-
lation (IPPV) days, pH in first-time blood gas, oxygena-
tion supply≧ 40%, head circumstance (HC) at 6 months 
CA, maternal education ≦ 12 years, body length (BL) at 
6  months CA, and hemodynamic significant PDA. The 
MDelay encompassed 4 variables: motor BSIDIII scores 
at 12  months, cognitive BSIDIII scores at 12  months, 
NICU days, and post-menstrual age (PMA) while dis-
charge. The CRegres encompassed 4 variables: cogni-
tive BSIDIII scores at 6 months, motor BSIDIII scores at 
6 months, maternal MgSO4 use, and parental education 
≦ at 12  years. The MRegres encompassed 4 variables: 
motor BSIDIII scores at 6 months, antenatal steroid use, 
HC at admission, and prolonged rupture of membranes. 
The formulas of EL-LR to help interpret the influence 
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Table 1 Gestational age, gender, birth body weight, and outcome in different models and sets

No. (%)

2010–2014 original cohort 2010–2014 development set 
(balanced)

2010–2014 independent 
test

2016–2017 
external 
test

Variables

CDelay: BSIDIII cognitive score < 85 at 24 months CA
(n = 2544) (n = 532) (n = 763) (n = 1347)

GA, mean (SD), weeks 28.0 (2.0) 27.8 (2.0) 27.9 (2.0) 27.9 (2.1)

Male, N (%) 1295 (50.9) 285 (53.6) 423 (55.4) 716 (53.2)

BBW, N (%)

BBW≦ − 3Z 24 (0.9) 4 (0.7) 6 (0.8) 75 (5.6)

− 3Z < BBW ≦ − 2Z 69 (2.7) 14 (2.6) 20 (2.6) 89 (6.6)

− 2Z < BBW ≦ − Z 179 (7.1) 42 (7.9) 60 (7.9) 245 (18.2)

− Z < BBW ≦ mean 403 (15.8) 83 (15.6) 120 (15.7) 568 (42.2)

Mean < BBW ≦ Z 1161 (45.7) 237 (44.6) 342 (44.8) 349 (25.9)

Z < BBW ≦ 2Z 665 (26.1) 143 (26.9) 201 (26.4) 20 (1.4)

2Z < BBW ≦ 3Z 42 (1.6) 9 (1.7) 14 (1.8) 1 (0.1)

3Z < BBW 1 (0.1) 0 (0) 0 (0) 0 (0)

NDI outcome, N (%) 390 (15.3) 266 (50.0) 114 (14.9) 216 (16.0)

MDelay: BSIDIII motor score < 85 at 24 months CA
(n = 2544) (n = 660) (n = 763) (n = 1347)

GA, mean (SD), weeks 28.0 (2.0) 27.7 (2.1) 27.9 (2.0) 27.9 (2.1)

Male, N (%) 1295 (50.9) 356 (53.9) 423 (55.4) 716 (53.2)

BBW, N (%)

BBW≦ − 3Z 24 (0.9) 11 (1.7) 6 (0.8) 75 (5.6)

− 3Z < BBW ≦ − 2Z 69 (2.7) 19 (2.9) 20 (2.6) 89 (6.6)

− 2Z < BBW ≦ − Z 179 (7.1) 44 (6.6) 60 (7.9) 245 (18.2)

− Z < BBW ≦ mean 403 (15.8) 102 (15.5) 120 (15.7) 568 (42.2)

Mean < BBW ≦ Z 1161 (45.7) 296 (44.9) 342 (44.8) 349 (25.9)

Z < BBW ≦ 2Z 665 (26.1) 180 (27.3) 201 (26.4) 20 (1.4)

2Z < BBW ≦ 3Z 42 (1.6) 8 (1.2) 14 (1.8) 1 (0.1)

3Z < BBW 1 (0.1) 0 (0) 0 (0) 0 (0)

NDI outcome, N (%) 471 (18.5) 330 (50.0) 141 (18.5) 275 (20.4)

CRegres: BSIDIII cognitive score declines ≧ 15 between 6 and 24 months CA
(n = 2544) (n = 846) (n = 763) (n = 1347)

GA, mean (SD), weeks 28.0 (2.0) 28.0 (2.0) 27.9 (2.0) 27.9 (2.1)

Male, N (%) 1295 (50.9) 421 (49.8) 423 (55.4) 716 (53.2)

BBW, N (%)

BBW ≦ − 3Z 24 (0.9) 9 (1.0) 6 (0.8) 75 (5.6)

− 3Z < BBW ≦ − 2Z 69 (2.7) 25 (3.0) 20 (2.6) 89 (6.6)

− 2Z < BBW ≦ − Z 179 (7.1) 67 (7.9) 60 (7.9) 245 (18.2)

− Z < BBW ≦ mean 403 (15.8) 218 (25.8) 120 (15.7) 568 (42.2)

Mean < BBW ≦ Z 1161 (45.7) 370 (43.7) 342 (44.8) 349 (25.9)

Z < BBW ≦ 2Z 665 (26.1) 141 (16.7) 201 (26.4) 20 (1.4)

2Z < BBW ≦ 3Z 42 (1.6) 15 (1.8) 14 (1.8) 1 (0.1)

3Z < BBW 1 (0.1) 1 (0.1) 0 (0) 0 (0)

NDI outcome, N (%) 604 (23.7) 423 (50.0) 181 (23.7) 351 (26.1)

MRegres: BSIDIII motor score declines ≧ 15 between 6 and 24 months CA
(n = 2544) (n = 696) (n = 763) (n = 1347)

GA, mean (SD), weeks 28.0 (2.0) 28.1 (1.9) 27.9 (2.0) 27.9 (2.1)

Male, N (%) 1295 (50.9) 352 (50.6) 423 (55.4) 716 (53.2)
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of each selected variable on the predicted outcome are 
listed in Table 3.

External test validation
Among two different feature selection strategies, RF had 
the highest AUC in the all-features method, and EL-
NDI had the highest AUC in the coarse-to-fine selection 
method. The AUC of RF with all-features-in methods in 
the external cohort at 24  months CA was 0.78 in CDe-
lay (sensitivity:64.5%; specificity:74.8%), 0.82 in MDe-
lay (sensitivity:71.6%; specificity:76.8%), 0.68 in CRegres 
(sensitivity:67.9%; specificity:59.4%), and 0.76 in MRegres 
(sensitivity:68.4%; specificity:77.5%). The AUC of EL-NDI 
in the external cohort at 24 months CA was 0.78 in CDe-
lay (sensitivity:62.0%; specificity:77.5%), 0.82 in MDe-
lay (sensitivity:64.7%; specificity:82.3%), 0.76 in CRegres 
(sensitivity:68.9%; specificity:69.9%), and 0.79 in MRegres 
(sensitivity:76.0%; specificity:71.2%). The performance 
metrics of EL-NDI and RF with all-features-in methods 
in external validation cohorts are shown in Table 4. The 
performance metrics of RF and EL-NDI in independent 
test and external cohort are shown in Additional file  3. 
Additionally, the rankings of the top five variables for 
four prediction models, determined independently by RF 
with all-features-in methods and EL-NDI, are presented 
in Additional file 4.

Discussion
Previous NDI prediction models had limited sample 
sizes and often used black box models without clearly 
explaining model performance [9, 10, 30]. In this large 
national sample of VPI, EL-NDI models utilized fewer 
predictors (4 and 10) with similar AUC compared with 
RF and lasso with All-features-in methods, specifically 
in external validation cohort. The neurodevelopment 

prediction models estimated and compared in this 
study were developed at the visit level, which might 
allow the physician to identify which individuals are at 
risk as well as worsen in the future.

It is difficult to compare the NDI performance 
between different studies because of the variety of NDI 
definitions and target groups [9, 10]. External valida-
tion of the Neonatal Research Network (NRN) using 
the estimation of five risk factors (GA at birth, expo-
sure versus no exposure to antenatal corticosteroids, 
singleton versus multiple gestation, gender, and birth 
weight)—one of the most widely-used risk models—
showed AUCs were 0.64 and 0.71 for death and severe 
NDI [31]. Ambalavanan et al. used 21 variables to reach 
AUCs of 0.66 and 0.75 for mental and psychomotor 
development index, respectively, at 12 to 18 months of 
age and showed that neural network was not superior to 
the logic regression model [32]. In a recent study con-
ducted by Li et al., a machine learning prediction model 
based on perinatal factors, specifically utilizing SVM 
methodology, was found to outperform other modeling 
techniques such as multivariate LR, RF, and neural net-
work analysis [7]. Notably, the SVM model in Li et al.’s 
study achieved an AUC of 0.7 during an independent 
test involving 78 very preterm infants (VPI) for com-
posite NDI outcome, including moderate to severe cer-
ebral palsy, cognitive or motor scores below 2 standard 
deviations from the norm, bilateral hearing impairment 
necessitating hearing aids, or bilateral blindness [7]. 
Conversely, our EL-NDI model excelled during a com-
prehensive external validation test, encompassing small 
sets of perinatal and post-NICU data. It emphasizes 
more nuanced and specific NDI outcomes, demonstrat-
ing its potential to provide more precise prognostic 
information.

Table 1 (continued)

No. (%)

2010–2014 original cohort 2010–2014 development set 
(balanced)

2010–2014 independent 
test

2016–2017 
external 
test

BBW, N (%)

BBW≦ − 3Z 24 (0.9) 4 (0.6) 6 (0.8) 75 (5.6)

− 3Z < BBW ≦ − 2Z 69 (2.7) 17 (2.4) 20 (2.6) 89 (6.6)

− 2Z < BBW ≦ − Z 179 (7.1) 32 (4.6) 60 (7.9) 245 (18.2)

− Z < BBW ≦ mean 403 (15.8) 100 (14.4) 120 (15.7) 568 (42.2)

Mean < BBW ≦ Z 1161 (45.7) 338 (48.6) 342 (44.8) 349 (25.9)

Z < BBW ≦ 2Z 665 (26.1) 195 (28.0) 201 (26.4) 20 (1.4)

2Z < BBW ≦ 3Z 42 (1.6) 9 (1.3) 14 (1.8) 1 (0.1)

3Z < BBW 1 (0.1) 1 (0.1) 0 (0) 0 (0)

NDI outcome, N (%) 491 (19.3) 342 (49.1) 149 (19.5) 288 (21.4)
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Neuroimaging findings in preterm infants can poten-
tially serve as a predictive indicator of adverse neurode-
velopmental outcomes [33]. Moeskops et al. showed that 
the SVM method identified the change of brain MRIs of 
PMA between 30 and 40  weeks and reached AUCs of 
0.80 and 0.85 for cognitive and motor BSIDIII composite 
scores < 85 at 2–3  years CA, respectively [34]. The neu-
ral network method reported a 100% positive predictive 
value and a 90.6% negative predictive value for NDI at 
1 year of age using advanced brain MRIs at term-equiva-
lent age (TEA) [35]. A prognostic study for NDI based on 
Denver screen test II with 109 extremely preterm infants 
using multimodal model combining electroencephalog-
raphy, brain structure information, early postnatal mor-
bidities, and perinatal factors revealed high AUCs (0.91, 
95% CI, 86.4–97.0%) and demonstrated the potential of 
the brain functional information for prediction model 
[8]. The issue of overfitting and small sample sizes still 
needs to be addressed, regardless of whether the predic-
tive models are based on brain function, MRI, or risk fac-
tor modeling [9, 30].

Previous investigations of cognitive and motor regres-
sion models have mostly focused on grouping and risk 
factors [21]. Although the development of brain trajec-
tories correlates with future functional outcomes [36], 
the correlation between the degree of BSID score regres-
sion and future outcome is still unknown. However, our 
aim was to detect dynamic changes as early as possible 
and provide an opportunity to discuss the best follow-
up strategy. To the best of our knowledge, this is the first 

Table 2 Performance of different methods in original cohort

Balanced dataset (10-CV) Independent test

Method Variables 
numbers

ACC (%) AUC (95% 
CIs)

ACC (%) AUC (95% 
CIs)

CDelay: BSIDIII cognitive score < 85 at 24 months CA
 All-feature-in
  RF 83 66.0 0.68 

(0.62–0.74)
76.7 0.71 

(0.65–0.76)

  Lasso 72 61.1 0.64 
(0.59–0.69)

65.1 0.69 
(0.63–0.74)

 Coarse-to-fine features selection
  LR 29 65.6 0.70 

(0.66–0.74)
69.5 0.72 

(0.68–0.76)

  RF 29 61.1 0.66 
(0.62–0.70)

73.0 0.67 
(0.63–0.71)

  SVM 29 66.0 0.70 
(0.64–0.74)

66.9 0.72 
(0.67–0.77)

  EL‑NDI 10 71.9 0.74 
(0.71–0.77)

77.6 0.75 
(0.72–0.78)

  EL‑LR 10 67.1 0.72 
(0.66–0.78)

70.7 0.75 
(0.70–0.80)

MDelay: BSIDIII motor score < 85 at 24 months CA
 All-feature-in
  RF 83 72.7 0.76 

(0.70–0.82)
73.0 0.71 

(0.66–0.77)

  Lasso 77 66.7 0.73 
(0.65–0.81)

64.6 0.69 
(0.64–0.74)

 Coarse-to-fine features selection
  LR 29 70.3 0.77 

(0.71–0.83)
69.5 0.71 

(0.67–0.75)

  RF 29 70.5 0.74 
(0.69–0.79)

71.6 0.69 
(0.66–0.72)

  SVM 29 70.9 0.76 
(0.71–0.81)

75.2 0.70 
(0.66–0.74)

  EL‑NDI 4 72.4 0.78 
(0.74–0.82)

75.4 0.73 
(0.70–0.76)

  EL‑LR 4 71.7 0.77 
(0.72–0.83)

72.2 0.73 
(0.68–0.78)

CRegres: BSIDIII cognitive score declines≧ 15 between 6 and 
24 months CA
 All-feature-in
  RF 75 71.8 0.78 

(0.73–0.82)
71.7 0.78 

(0.74–0.82)

  Lasso 67 71.2 0.79 
(0.75–0.83)

70.1 0.79 
(0.76–0.83)

 Coarse-to-fine features selection
  LR 29 72.9 0.78 

(0.75–0.81)
71.6 0.80 

(0.77–0.83)

  RF 29 70.1 0.75 
(0.72–0.78)

70.6 0.74 
(0.71–0.77)

  SVM 29 70.6 0.78 
(0.74–0.82)

69.1 0.77 
(0.73–0.80)

  EL‑NDI 4 72.0 0.79 
(0.76–0.82)

73.0 0.81 
(0.77–0.85)

  EL‑LR 4 71.0 0.78 
(0.75–0.81)

70.8 0.80 
(0.77–0.83)

Table 2 (continued)

Balanced dataset (10-CV) Independent test

Method Variables 
numbers

ACC (%) AUC (95% 
CIs)

ACC (%) AUC (95% 
CIs)

MRegres: BSIDIII motor score declines ≧ 15 between 6 and 
24 months CA
 All-feature-in
  RF 75 75.4 0.79 

(0.76–0.82)
81.8 0.86 

(0.83–0.90)

  Lasso 64 71.0 0.79 
(0.76–0.82)

73.3 0.82 
(0.78–0.86)

 Coarse-to-fine features selection
  LR 29 70.1 0.78 

(0.74–0.82)
73.0 0.81 

(0.77–0.85)

  RF 29 69.7 0.76 
(0.73–0.79)

69.9 0.76 
(0.73–0.79)

  SVM 29 71.6 0.79 
(0.76–0.82)

74.1 0.81 
(0.78–0.84)

  EL‑NDI 4 74.3 0.82 
(0.79–0.85)

76.9 0.83 
(0.80–0.86)

  EL‑LR 4 74.0 0.81 
(0.78–0.84)

74.3 0.83 
(0.79–0.87)
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prediction model for Bayley score decline between two 
time points for VPI.

We identify the individual impacts of each risk factor 
from our models to avoid black box models, which would 
be useful in routine clinical practice [9]. Most determi-
nants associated with the variables in the four models 
align closely with findings from prior research on adverse 
NDI outcomes, including factors such as paternal educa-
tion, gastrointestinal surgery, and duration of mechanical 
ventilation, [7, 37, 38]. Among anthropometric measure-
ments in the dataset, only the BL and HC at 6 months CA 
were used in the CDelay. Although there is small amount 
of evidence to suggest that poor postnatal growth after 
discharge is associated with NDI in preterm infants [39, 

40], the literature raises concerns regarding the efficacy 
of a solitary anthropometric measure, such as BL or 
HC, as a direct predictor of NDI in children [41]. Even 
though previous studies have demonstrated that very 
low birth weight preterm infants face various complica-
tions that may hinder their ability to achieve catch-up 
growth and normal neurodevelopment [41], our study 
explored the correlation between anthropometric meas-
urements and other risk factors in preterm infants, par-
ticularly concerning predicting neurodevelopmental 
outcomes. Prolonged duration of mechanical ventilation 
was significantly inversely associated with NDI and brain 
development [42]. Surprisingly, IPPV days in the CDe-
lay model and PMA at discharge in the MDelay model 

Table 3 EL‑LR formula based on variables selected by the EL‑NDI

CDelay: BSIDIII cognitive score < 85 at 24 months CA
Variables (n = 10)

In
(

p
1−p

)

= 4.39− 2.22a− 3.71b+ 1.36c− 2.56d− 1.14e+ 0.28f− 1.48g+ 0.34h+ 0.8i− 0.15j

a. Motor BSIDIII score at 12 months
b. Cognitive BSIDIII scores at 12 months
c. Abdominal surgery
d. IPPV days
e. pH in 1st time blood gas
f. Oxygenation supply≧ 40%
g. Head circumstance at 6 months CA
h. Maternal education ≦ 12 years
i.  Body length at 6 months CA
j.  Hemodynamic significant PDA

MDelay: BSIDIII motor score < 85 at 24 months CA
Variables (n = 4)

In
p

1−p
= 4.98− 8.09a− 3.31b+ 2.89c− 1.66d

a. Motor BSIDIII scores at 12 months
b. Cognitive BSIDIII scores at 12 months
c. NICU days
d. PMA while discharge

CRegres: BSIDIII cognitive score declines ≧ 15 between 6 and 24 months CA
Variables (n = 4)

In
(

p
1−p

)

= −4.42+ 8.47a− 1.04b− 0.65c+ 0.23d

a. Cognitive BSIDIII scores at 6 months
b. Motor BSIDIII scores at 6 months
c. Maternal MgSO4 use
d. Parental education ≦ 12 years

MRegres: BSIDIII motor score declines ≧ 15 between 6 and 24 months CA
Variables (n = 4)

In
(

p
1−p

)

= −5.84+ 9.91a+ 0.52b+ 0.08c+ 0.007d

a. Motor BSIDIII scores at 6 months
b. Antenatal steroid use
c. Head circumference at admission
d. Prolonged rupture of membranes

CA 6‑month height/head circumstance categorized in 8 parts based on WHO boy girl growth chart Z score (− 3Z, − 2Z, − Z, mean, Z, 2Z, 3Z); head 
circumstance at admission categorized in 8 parts based on INTERGROWTH‑21st very preterm size at birth reference charts Z score (− 3Z, − 2Z, − Z, 
Mean, Z, 2Z, 3Z)
Note: p is the probability of outcomes
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were protective factors, based on the EL-LR model. A 
retrospective study of factors influencing the attendance 
of early intervention in Iran showed that length of stay 
(LOS) in NICU is a primary factor that affects attend-
ance [43]. A study of very preterm in Korea found that 
NICU graduates who adhered to LFUP had more severe 
morbidities during their NICU stay and a higher PMA at 
discharge [44]. Therefore, the IPPV days and PMA at dis-
charge in CDelay and MDelay models may be associated 
with adherence to LFUP and early intervention, which 
help identify and treat health problems early in NICU 
graduates to improve outcomes. Subsequent research 
should investigate the impact of these factors on paren-
tal behavior and their consequences for these children. In 
regression models at 6-month CA, higher BSIDIII score 
in both cognitive and motor models was indicated as a 
risk factor. The severity of the child’s NDI was directly 
proportional to the lower BSIDIII score at 6  months of 
CA. Thus, the BSIDIII scores in VPI with more severe 
NDI may exhibit less variability than their counterparts 
[21, 23].

Despite our innovative approach, EL-NDI for CDelay 
still requires the inclusion of more variables to maxi-
mize accuracy compared to the other three EL-NDI 
models, underscoring the inherent complexity of cogni-
tive function prediction. The difference between origi-
nal and external cohorts in our study, such as a higher 
BSID score in two checkpoints, lower PDA ligation rate, 
and an increase in the proportion of lower Z scores for 
anthropometric measurements in the external cohort, 
may result from improved survival rates, care strategy 
change, and higher follow-up rates among very preterm 
infants in different periods [45]. Predictive models are 
built upon historical data and aim to make forecasts 
based on past knowledge. Considering the advance-
ment in the care of VPI, this result emphasizes the 
limitations of existing risk factor models encompass-
ing all parameters for predicting NDI outcomes in this 
field. Consequently, it becomes evident that continu-
ous model updates are imperative to adapt to the ever-
evolving landscape of medical advancements [46].

Table 4 Performance of EL‑NDI and RF in external validation cohort (n = 1347)

BSIDIII cognitive score < 85 at 24 months CA
EL-NDI
Coarse-to-fine features selection

RF
All-features-in

Cognitive (CDelay) Motor (MDelay) Cognitive (CDelay) Motor (MDelay)

Variables 10 4 83 83

Accuracy 75.1% 79.1% 73.2% 75.7%

AUC 0.78 0.82 0.78 0.82

95% CIs 0.75–0.82 0.79–0.85 0.73–0.80 0.79–0.85

MCC 0.321 0.425 0.310 0.415

Sensitivity 62.0% 64.7% 64.5% 71.6%

Specificity 77.5% 82.3% 74.8% 76.8%

PPV 34.5% 48.4% 32.6% 44.2%

NPV 91.4% 90.1% 91.8% 91.3%

LR + 2.75 3.65 2.56 3.08

LR − 0.47 0.48 0.47 0.37

BSIDIII motor score declines≧ 15 between 6 and 24 months CA
Cognitive (CRegres) Motor (MRegres) Cognitive (CRegres) Motor (MRegres)

4 4 75 75

Accuracy 69.6% 72.2% 61.6% 75.6%

AUC 0.76 0.79 0.68 0.76

95% CIs 0.74–0.78 0.78–0.80 0.64–0.71 0.73–0.79

MCC 0.348 0.397 0.240 0.403

Sensitivity 68.9% 76.0% 67.9% 68.4%

Specificity 69.9% 71.2% 59.4% 77.5%

PPV 44.6% 41.8% 36.9% 45.3%

NPV 86.5% 91.6% 84.1% 90.0%

LR + 2.29 2.64 1.67 3.04

LR − 0.44 0.40 0.54 0.41
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Including individuals’ current status and postnatal 
data within our visit-based neurodevelopment predic-
tive modeling strategy represents a notable strength of 
our study. Increasing the adherence rate in follow-up has 
always been one of the challenges in the care of high-
risk newborns, particularly premature infants, to achieve 
early intervention. Including postnatal data in our pre-
diction model offers substantive proof, assuring parents 
that our scrutiny extends beyond historical considera-
tions. We are equally vested in monitoring their child’s 
present developmental trajectory and, more crucially, 
comprehending how these combined elements shape 
the child’s prospective welfare. This approach provides a 
comprehensive understanding of the factors influencing 
neurodevelopmental outcomes and serves as the corner-
stone for better decision-making between physicians and 
families during LFUP. We are the first prediction mod-
els for NDI in VPI with machine learning methods and 
external validation. Our research in developing such pre-
dictive models provides the foundation for future investi-
gations. Within the comprehensive research framework, 
we have gained insights into the potential of machine 
learning and have recognized the limitations of current 
risk factor-based models in this field. Unlike conventional 
approaches, the EL-NDI method incorporates a model-
specific signature, thereby preserving predictive accuracy 
across distinct cohort periods by effectively mitigating 
the influence of insignificant features. The integration of 
AI-based tools into clinical practice remains a paramount 
concern. AI products in clinical settings, especially those 
related to medical imaging, are significantly influenced 
by data quality [47]. We utilize routinely collected data 
and leverage the models to minimize parameters with 
reporting performance metrics, thus achieving the high-
est level of accuracy, which might promote ease of use 
and consistency in utilization. Research has shown that 
even before fully certifying the model’s functionalities, a 
convenient and effective tool can change the workflow of 
clinical professionals and ultimately optimize patient out-
comes [48].

Limitations
First, we carefully select predictors with strong linear 
correlations to optimize model efficiency, emphasiz-
ing the importance of interpretability in model develop-
ment [29]. However, this coarse-to-fine feature selection 
might need to include the essential features that have 
nonlinear relationships with the outcomes and interfere 
with enhancing the accuracy of the model [9]. Further-
more, the available data does not include information 
on nonmedical practices in NICU and the child’s early 
environment, which are known to promote brain growth 
and neurodevelopment [49, 50]. Therefore, future studies 

will need to investigate these factors in conjunction with 
machine learning methods for NDI outcomes. Second, 
all models picked up the BSIDIII score as variables in 
prediction models for best performance. These models 
would be limited during follow-up because of a lack of 
trained BSID evaluators and limited budgets [51]. In our 
investigation, we encountered a constraint in the dataset 
of infant cerebral information, which solely consisted of 
brain sonography results from the TPFN dataset. This 
limitation could potentially impact the predictive effi-
cacy of our models, as the inclusion of both morphologi-
cal and functional brain data has become a recognized 
practice in neurocritical care for premature infants [52]. 
Research has demonstrated that integrating MRI or elec-
troencephalography data with known risk factors can 
substantially enhance the predictive precision concerning 
NDI outcomes in preterm infants [8, 35]. Further predic-
tion model studies in this field should focus on these data 
with large cohort validation. Fourth, despite conducting 
external validation, it is essential to note that the pri-
mary composition of Taiwan’s national population is East 
Asian. We could not test the capacity of EL-NDI on other 
populations. In the future, we will seek opportunities to 
investigate the transportability of EL-NDI.

Conclusions
Our study demonstrated good performance of evolu-
tionary learning models with fewer variables for cogni-
tive and motor neurodevelopmental models at 6- and 
12-month CA, respectively, in predicting NDI outcomes 
at 24 months CA. With a qualified assessment under an 
evaluation framework, our models would be helpful for 
targeted surveillance and optimal management of clini-
cal progress in VPI and their families, promoting better 
decision-making. Further research is needed to explore 
the impact of these models on the attendance of LFUP in 
very preterm infants.
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