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Abstract 

Background  Previous studies have shown that lifestyle/environmental factors could accelerate the develop‑
ment of age-related hearing loss (ARHL). However, there has not yet been a study investigating the joint associa‑
tion among genetics, lifestyle/environmental factors, and adherence to healthy lifestyle for risk of ARHL. We aimed 
to assess the association between ARHL genetic variants, lifestyle/environmental factors, and adherence to healthy 
lifestyle as pertains to risk of ARHL.

Methods  This case–control study included 376,464 European individuals aged 40 to 69 years, enrolled between 2006 
and 2010 in the UK Biobank (UKBB). As a replication set, we also included a total of 26,523 individuals considered 
of European ancestry and 9834 individuals considered of African-American ancestry through the Penn Medicine 
Biobank (PMBB). The polygenic risk score (PRS) for ARHL was derived from a sensorineural hearing loss genome-
wide association study from the FinnGen Consortium and categorized as low, intermediate, high, and very high. We 
selected lifestyle/environmental factors that have been previously studied in association with hearing loss. A compos‑
ite healthy lifestyle score was determined using seven selected lifestyle behaviors and one environmental factor.

Results  Of the 376,464 participants, 87,066 (23.1%) cases belonged to the ARHL group, and 289,398 (76.9%) indi‑
viduals comprised the control group in the UKBB. A very high PRS for ARHL had a 49% higher risk of ARHL than those 
with low PRS (adjusted OR, 1.49; 95% CI, 1.36–1.62; P < .001), which was replicated in the PMBB cohort. A very poor 
lifestyle was also associated with risk of ARHL (adjusted OR, 3.03; 95% CI, 2.75–3.35; P < .001). These risk factors showed 
joint effects with the risk of ARHL. Conversely, adherence to healthy lifestyle in relation to hearing mostly attenuated 
the risk of ARHL even in individuals with very high PRS (adjusted OR, 0.21; 95% CI, 0.09–0.52; P < .001).

Conclusions  Our findings of this study demonstrated a significant joint association between genetic and lifestyle 
factors regarding ARHL. In addition, our analysis suggested that lifestyle adherence in individuals with high genetic 
risk could reduce the risk of ARHL.
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Background
Age-related hearing loss (ARHL), also known as pres-
bycusis, is a disease of complex etiology resulting from 
the cumulative effects of aging on auditory function, 
although the underlying mechanisms of ARHL remain 
incompletely elucidated. It is characterized by hearing 
difficulty in the high-frequency sound range and has a 
bilateral, symmetrical, progressive pattern [1]. Accord-
ing to the World Health Organization, the prevalence of 
moderate to severe hearing loss (HL) increases exponen-
tially with age worldwide [2]. ARHL can develop into a 
common social and health problem, and untreated HL 
can lead to social isolation, depression, and loss of self-
esteem [3, 4]. Therefore, ARHL can have significant 
adverse effects on the quality of life in older adults and 
can be perceived as a serious disability for the elderly 
even when mild [5, 6]. ARHL may be caused by aging of 
the cochlea, specifically the development of synaptopathy 
between sensory hair cells and cochlea nerve fibers [7]. 
Additionally, synaptopathy can be induced by pre-exist-
ing ear conditions, chronic disease, noise exposure, oto-
toxic drugs, and lifestyle, along with genetic factors [8, 9].

In 2009, the first genome-wide association study 
(GWAS) on ARHL was reported with 1692 participants, 
and several further GWAS concerning hearing sta-
tus have since been published [10–14]. However, while 
many single-nucleotide polymorphisms (SNPs) have 
been linked to ARHL, their impacts are limited. Recently, 
polygenic risk score (PRS) has been widely used to pre-
dict complex traits or diseases in humans by summariz-
ing the effects of genetic variants across the genome [15]. 
Cherny et  al. demonstrated that a PRS calculated from 
UK Biobank (UKBB) GWAS results could predict HL 
status in the TwinsUK cohort as defined from question-
naire and hearing test results [16]. Previous studies have 
reported associations of HL with several modifiable envi-
ronmental factors including noise exposure, smoking, 
alcohol, and comorbidity [17–19]. In addition, it has been 
shown that healthy lifestyle behaviors could attenuate the 
development of HL [17]. This suggests that gene-envi-
ronment interactions and epigenetic changes may play 
important roles in regulating the genes that specifically 
affect aging-related traits [20].

Despite these reports, there is to our knowledge no 
study that has investigated the joint association between 
genetics and lifestyle behavior in relation to risk of 
ARHL. Therefore, we constructed a PRS for ARHL and 
assessed its performance in two independent datasets. 
We further investigated the association between life-
style behavior and genetic risk for ARHL in UKBB par-
ticipants. Finally, we demonstrated that healthy lifestyle 
behavior could reduce the development of the disease in 
individuals having a high genetic predisposition.

Methods
Study population
The UKBB is a large prospective observational cohort 
study that has recruited > 500,000 adults across 22 cent-
ers located throughout the UK. The full protocol of the 
UKBB study is publicly available, and the study design 
and measurement methods have been described else-
where [21]. Participants aged 40–69 years were enrolled 
between 2006 and 2010 and were followed up with for 
subsequent health events. We excluded individuals with 
any single International Classification of Diseases (ICD)-
10 code for conductive HL or a congenital disorder that 
causes impairment of hearing (H90.0, H90.1, H90.2, 
H91.3, Q16.1, Q16.3, Q16.4, Q16.5, or Q16.9) at the base-
line period (n = 626). All ICD-9 and ICD-10 diagnosis 
codes, and laboratory measurements up to July 2020 were 
extracted from the electronic health records (EHRs).

The Penn Medicine Biobank (PMBB) is a large aca-
demic medical biobank in which participants are agnosti-
cally recruited from the outpatient setting and consented 
for access to their EHR data and permission to generate 
genomic and biomarker data [22]. The study flowchart is 
illustrated in Additional file 1: Fig. S1.

Definition of ARHL
For UKBB participants, we defined AHRL according to 
self-report questionnaires, which have previously been 
found useful for large-scale study of HL [16]. If a partici-
pant answered, ‘Yes’ to ‘Do you use a hearing aid most 
of the time?’ or ‘Yes’ to both ‘Do you have any difficulty 
with your hearing?’ and ‘Do you find it difficult to follow 
a conversation if there is background noise (such as TV, 
radio, children playing)?’, they were classified as an ARHL 
case. Participants who answered ‘No’ to all these ques-
tions were classified as controls. Individuals who selected 
the answer ‘I am completely deaf ’ or declined to answer 
were excluded. For the PMBB, we classified ARHL cases 
using ICD-9 or ICD-10 codes in the EHR system. The 
detailed definition criteria of ARHL in each cohort are 
described in Additional file 1: Method S2. [11, 23–25].

Definitions of variables
Covariate definition
We included several covariates, including demographics, 
biomarkers, body compositions, sociodemographic char-
acteristics, and major chronic comorbidities, as potential 
confounding factors in the ARHL association analyses. A 
detailed description of the considered covariates can be 
found in Additional file 1: Methods S3 and S4 [21, 26].

Lifestyle and environmental factors
During the enrollment process in the UKBB, partici-
pants provided information on their sociodemographic 



Page 3 of 14Jung et al. BMC Medicine          (2024) 22:141 	

characteristics, health/medical history, and lifestyle/envi-
ronmental factors through a self-administered touch-
screen questionnaire and in-person baseline interviews. 
We selected lifestyle/environmental factors that have 
been previously studied in association with HL [17, 18, 
23, 24] (Additional file 1: Method S5).

Healthy lifestyle score
We developed a composite healthy lifestyle score (HLS), 
which provides a comprehensive measure of lifestyle-
related risk factors for ARHL, based on seven selected 
lifestyle behaviors and one environmental factor: Listen-
ing to music (loud music exposure frequency, Field ID: 
4836), Computer games (Field ID: 2237), Obesity (body 
mass index [BMI] at baseline), Smoking history (Never/
Ever, Field ID: 20116), Alcohol history (Never/Ever, Field 
ID:20117), Use of ototoxic drugs (aspirin and/or ibupro-
fen consumption, Field ID: 6154), Sleep (Sleeplessness/
insomnia, Field ID: 1200), and Noisy workplace (Field ID: 
4825). We excluded participants with missing variables 
required for constructing the composite HLS, a total of 
85,588 participants eligible for the joint analysis with 
composite HLS (Additional file  1: Fig. S2 and Method 
S6). To generate the HLS, each variable was assigned a 
score of 0 or 1, with 1 representing a healthy behavior. 
Participant lifestyles as reflected by the HLS were catego-
rized into four groups: very poor (0–2 healthy behaviors), 
poor (3–4 healthy behaviors), intermediate (5–6 healthy 
behaviors), and ideal (≥ 7 healthy behaviors). Detailed 
information on the HLS is given in Additional file  1: 
Method S7.

AHA lifestyle and MetS health scores
To compare the proposed HLS with the previously used 
lifestyle score, we generated an American Heart Asso-
ciation (AHA) lifestyle score and metabolic syndrome 
(MetS) health score based on the International Diabe-
tes Federation consensus report [29–32]. According to 
AHA, five factors are primarily considered to define life-
style behaviors: current smoking, alcohol consumption, 
obesity, physical activity, and eating habits. Collectively, 
lifestyle behaviors are categorized into three groups: poor 
(0–1 healthy lifestyle factor), intermediate (2 healthy 
lifestyle factors), and ideal (≥ 3 healthy lifestyle factors). 
MetS health score was categorized into three groups: 
ideal (0–1 MetS factor), intermediate (2–3 MetS factors), 
and poor (≥ 4 MetS factors). Detailed descriptions and 
definitions of the variables considered in scores can be 
found in Additional file 1: Method S8.

Genotype data quality control and imputation
Genotyping and quality control (QC) procedures 
and imputation followed standard practices and were 

performed per cohort-genotyping platform pair. We have 
filtered out related individuals (with second-degree or 
closer relatives) in both biobanks.

UK Biobank
UKBB samples (version 3; March 2018) were geno-
typed for > 800,000 SNPs using either the Affymetrix 
UK BiLEVE Axiom array or the Affymetrix UKBB 
Axiom array. Imputation was carried out centrally 
by UK Biobank researchers using the merged 1000 
Genomes Project panel and UK 10K panel; SHAPEIT3 
was used for phasing and IMPUTE2 was used for impu-
tation (GRCh37/hg19) [33, 34]. After QC and imputa-
tion, 376,464 European (White-British) individuals were 
determined eligible for the validation genetic analyses. 
Further details are described in Additional file 1: Method 
S9 [33–39].

Penn Medicine Biobank
The PMBB consists of 43,623 samples that have been 
genotyped with the GSA genotyping array. We per-
formed genotype imputation for the PMBB dataset using 
Eagle2 and Minimac4 software on TOPMed Imputa-
tion Server [35–37]. After QC and imputation, a total 
of 26,523 individuals considered of European (non-His-
panic White) ancestry and 9834 individuals considered 
of African American (non-Hispanic Black) ancestry were 
determined eligible for the genetic replication analyses. 
Further details are described in Additional file 1: Method 
S9 [33–39].

Polygenic risk score
The HL PRS was generated based on the large-scale 
sensorineural HL GWAS summary statistics (28,310 
cases and 302,750 controls) from the FinnGen Consor-
tium (Data Freeze R8v4) using the Bayesian polygenic 
prediction method PRS-CS [40, 41]. Individual PRSs 
were computed from beta coefficients as the weighted 
sum of the risk alleles by applying PLINK version 1.90 
with the –score command [42]. Additionally, we gener-
ated PRSs using several alternative methods, including 
LDpred2, lassosum, and PRSice-2, and compared their 
performance. Details of the PRS analysis are described in 
Additional file 1: Method S10 [40–47].

Statistical analysis
Demographic and clinical characteristics are presented as 
mean ± standard deviation (SD) or as number (percent-
age). Continuous variables were compared by Student’s 
t test or the Mann–Whitney U test as appropriate. Cat-
egorical variables were compared by the chi-square test 
or Fisher’s exact test as appropriate.
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We used a multivariate logistic regression model to 
evaluate the association of the HL PRS and lifestyle/
environmental factors with ARHL. In the primary 
analysis, we calculated odds ratios (ORs) and 95% 
confidence intervals (CIs) after adjusting for age, sex, 
the first ten principal components (PCs) of ancestry, 
and genotyping array type. The PRS was categorized 
as follows: low (< 20%), intermediate (20–80%), high 
(80–99%), and very high (> 99%) risk groups to quan-
titatively assess the ARHL risk. The low (< 20%) risk 
group bin was used as the reference to estimate rela-
tive ORs across PRS risk increases. In sensitivity anal-
yses, regression models were additionally adjusted for 
baseline demographics and major chronic comorbidi-
ties. Subsequently, we conducted joint association and 
multiplicative interaction analyses to investigate the 
interplay between genetic and lifestyle/environmental 
factors.

We further performed a Cox proportional hazards 
regression analysis in PMBB participants with age at 
ARHL onset and age at the last clinical visit as the time 
variables and ARHL diagnosis as the status; with this, 
we calculated hazard ratios (HRs) and 95% CIs. Kaplan–
Meier curves were then conducted to check if survival 
differed significantly between genetic risk groups.

All statistical tests were two-sided, and P < 0.05 was 
considered statistically significant. All statistical analy-
ses were conducted using the R Statistical Software 
(version 4.1.0; R Foundation for Statistical Computing, 
Vienna, Austria) and PLINK version 1.90 [44]. Details of 
the statistical analyses are described in Additional file 1: 
Method S11.

Results
Population characteristics
In total, 376,464 participants who did not have con-
ductive or congenital HL history were included in this 
study. The mean age of participants was 57.5 years (SD, 
7.9 years), and 46.3% were men. Of included participants, 
87,066 (23.1%) were cases (the ARHL group) and 289,398 
(76.9%) were controls. A comparison of participant char-
acteristics in each group is presented in Table 1. Baseline 
demographics and clinical characteristics stratified by 
PRS group, as well as according to composite HLS analy-
sis inclusion criteria are given in Additional file 1: Tables 
S1 and Additional file 1: Table S2, respectively.

For the replication set, a total of 36,357 PMBB par-
ticipants of European (n = 26,523) and African Ameri-
can (n = 9834) descent were included (Additional file  1: 
Table  S3). The mean age of participants was 55.7  years 
(SD, 16.4 years).

PRS with ARHL and validation in the PMBB cohort
We used public large GWAS data to compute the PRS 
for ARHL and found the HL PRS to be robustly associ-
ated with ARHL prevalence (Additional file 1: Fig. S3). 
Table  2 presents the OR for ARHL association with 
PRS risk group. In the adjusted Model 1, we observed 
that individuals with a very high PRS had 1.58-fold 
increased risk of ARHL (95% CI, 1.47–1.70; P < 0.001). 
In the fully adjusted Model 4, individuals with a very 
high PRS had 1.49-fold increased risk of ARHL (95% 
CI, 1.36–1.62; P < 0.001), which remained significant.

We then replicated the PRS for ARHL in a cohort 
from the PMBB (Additional file 1: Table S3). We found 
a significant association between PRS and ARHL prev-
alence across ancestry in the overall PMBB cohort 
(Additional file  1: Table  S4). The performance of each 
PRS based on the alternative methods (LDpred2, las-
sosum, and PRSice-2) is shown in Additional file  1: 
Table S5.

Individuals with a very high PRS had the highest 
ARHL OR of 2.22 (95% CI, 1.55–3.18; P < 0.001). In 
the PMBB dataset, sufficient environmental/lifestyle 
variables are not available, but relatively accurate dis-
ease onset information can be obtained. Therefore, we 
evaluated the association of PRS with ARHL occur-
rence using a Cox proportional hazard model. Again, 
higher PRS was significantly associated with increased 
HR for ARHL (low PRS, HR = 1 [reference]; interme-
diate PRS, HR = 1.10; high PRS, HR = 1.31; very high 
PRS, HR = 1.93; P < 0.001) (Additional file 1: Table S6). 
Individuals with a very high risk PRS showed a marked 
increase in the cumulative incidence of ARHL begin-
ning at age 60 (Additional file 1: Fig. S4). Additionally, 
we calculated the incidence risk according to genetic 
risk across different age-at-onset groups. We observed 
a consistent increase in incidence risk with higher 
genetic risk across all age groups (Additional file  1: 
Table S7).

Association of lifestyle/environmental factors with ARHL
In the adjusted Model, demographic data and lifestyle/
environmental factors were associated with increased 
risk of ARHL (Additional file 1: Table S8 and Fig. S5). In 
particular, ARHL was highly associated with tinnitus fre-
quency (OR, 6.39; 95% CI, 6.08–6.71), tinnitus severity 
(OR, 3.76; 95% CI, 3.29–4.29), time in a noisy workplace 
(OR, 2.57; 95% CI, 2.47–2.67), and loud music exposure 
frequency (OR, 2.09; 95% CI, 1.97–2.22). Additionally, we 
performed a multivariate regression analysis considering 
the mutual adjustment of lifestyle/environmental factors, 
and estimated the respective significances in Additional 
file 1: Table S9.
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Table 1  Characteristics of participants in the UK Biobank

Total
(n = 376,464)

Control
(n = 289,398)

ARHL case
(n = 87,066)

P-value*

  Age, mean (SD), years 57.5 ± 7.9 56.8 ± 8.0 59.6 ± 7.3  < .001

  Sex, No. (%)  < .001

    Male 174,205 (46.3%) 124,974 (43.2%) 49,231 (56.5%)

    Female 202,259 (53.7%) 164,424 (56.8%) 37,835 (43.5%)

  Education years, mean (SD), years 13.8 ± 5.1 13.8 ± 5.1 13.7 ± 5.2  < .001

  Number in household, mean (SD) 2.4 ± 1.2 2.4 ± 1.3 2.3 ± 1.2  < .001

  Townsend deprivation index, mean (SD)  − 1.6 ± 2.9  − 1.6 ± 2.9  − 1.5 ± 3.0  < .001

  Average total household income before tax  < .001

    Less than £18,000 71,597 (22.1%) 52,299 (21.0%) 19,298 (25.7%)

    18,000 to 30,999£ 83,698 (25.8%) 63,034 (25.3%) 20,664 (27.5%)

    31,000 to 51,999£ 85,554 (26.4%) 66,666 (26.8%) 18,888 (25.2%)

    52,000 to 100,000£ 66,229 (20.4%) 53,021 (21.3%) 13,208 (17.6%)

    Greater than 100,000£ 16,994 (5.2%) 13,983 (5.6%) 3011 (4.0%)

Body composition
  Body mass index, mean (SD), kg/m2 27.4 ± 4.8 27.3 ± 4.8 27.8 ± 4.7  < .001

  Height, mean (SD), cm 168.8 ± 9.3 168.5 ± 9.2 169.6 ± 9.3  < .001

  Weight, mean (SD), kg 78.3 ± 15.9 77.8 ± 15.8 80.3 ± 15.9  < .001

  Waist circumference, mean (SD), cm 90.4 ± 13.5 89.7 ± 13.4 92.7 ± 13.4  < .001

  Systolic blood pressure, mean (SD), mmHg 140.3 ± 19.7 139.9 ± 19.7 141.5 ± 19.4  < .001

  Diastolic blood pressure, mean (SD), mmHg 82.3 ± 10.7 82.3 ± 10.7 82.4 ± 10.6 .005

Hearing condition
  Speech reception threshold (SRT), No. (%)  < .001

    Normal (SRT <  − 5.5 dB) 120,676 (79.1%) 93,660 (83.5%) 27,016 (66.9%)

    Insufficient (− 5.5 dB to − 3.5 dB) 25,559 (6.8%) 15,901 (14.2%) 9658 (23.9%)

    Poor (SRT >  − 3.5 dB) 6262 (4.1%) 2577 (2.3%) 3685 (9.1%)

  Tinnitus, No. (%)  < .001

    No, never 86,181 (70.8%) 70,981 (77.2%) 15,200 (51.1%)

    Yes, but not now, but have in the past 13,382 (11.0%) 9503 (10.3%) 3879 (13.0%)

    Yes, now some of the time 10,913 (9.0%) 6706 (7.3%) 4207 (14.1%)

    Yes, now a lot of the time 3114 (2.6%) 1557 (1.7%) 1557 (5.2%)

    Yes, now most or all of the time 8072 (6.6%) 3155 (3.4%) 4917 (16.5%)

  Tinnitus severity/nuisance, No. (%)  < .001

    Not at all 11,412 (32.4%) 7750 (37.4%) 3662 (25.3%)

    Slightly 16,980 (48.2%) 9987 (48.1%) 6993 (48.3%)

    Moderately 5766 (16.4%) 2590 (12.5%) 3176 (21.9%)

    Severely 1075 (3.1%) 415 (2.0%) 660 (4.6%)

Environmental factor
  Noisy workplace, No. (%)  < .001

    No 93,779 (76.4%) 74,566 (80.4%) 19,213 (64.0%)

    Yes, for less than a year 6681 (5.4%) 4892 (5.3%) 1789 (6.0%)

    Yes, for around 1–5 years 7068 (5.8%) 4775 (5.1%) 2293 (7.6%)

    Yes, for more than 5 years 15,268 (12.4%) 8566 (9.2%) 6702 (22.3%)

  Workplace very noisy, No. (%)  < .001

    Rarely/never 51,657 (54.8%) 40,018 (56.2%) 11,639 (50.6%)

    Sometimes 33,097 (35.1%) 24,852 (34.9%) 8245 (35.8%)

    Often 9469 (10.0%) 6351 (8.9%) 3118 (13.6%)

  Daytime sound level of noise pollution, mean (SD), dB 55.3 ± 4.2 55.3 ± 4.2 55.3 ± 4.2 .530

  Evening sound level of noise pollution, mean (SD), dB 51.6 ± 4.2 51.6 ± 4.2 51.6 ± 4.2 .531

  Night-time sound level of noise pollution, mean (SD), dB 46.5 ± 4.2 46.5 ± 4.2 46.5 ± 4.2 .530
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Joint associations of HL PRS and lifestyle/environmental 
factors with ARHL
To explore the effect of lifestyle/environmental factors 
on ARHL risk according to genetic risk, we stratified the 

lifestyle/environmental factors by PRS category (Fig.  1). 
We observed a monotonic association of increasing 
PRS and number of lifestyle/environmental factors with 
higher risk of ARHL. In particular, participants with very 

Table 1  (continued)

Total
(n = 376,464)

Control
(n = 289,398)

ARHL case
(n = 87,066)

P-value*

  16-h sound level of noise pollution, mean (SD), dB 54.4 ± 4.2 54.4 ± 4.2 54.4 ± 4.2 .530

  24-h sound level of noise pollution, mean (SD), dB 56.0 ± 4.2 56.0 ± 4.2 56.0 ± 4.2 .530

Lifestyle factor
  Loud music exposure frequency, No. (%)  < .001

    No 107,501 (88.0%) 82,466 (89.2%) 25,035 (84.1%)

    Yes, for less than a year 3728 (3.1%) 2719 (2.9%) 1009 (3.4%)

    Yes, for around 1–5 years 5692 (4.7%) 3874 (4.2%) 1818 (6.1%)

    Yes, for more than 5 years 5285 (4.3%) 3388 (3.7%) 1897 (6.4%)

  Plays computer games, No. (%)  < .001

    Rarely/never 292,742 (77.8%) 225,755 (78.0%) 66,987 (77.0%)

    Sometimes 69,425 (18.5%) 53,254 (18.4%) 16,171 (18.6%)

    Often 14,108 (3.7%) 10,249 (3.5%) 3859 (4.4%)

  Sleeplessness/insomnia, No. (%)  < .001

    Rarely/never 82,336 (21.9%) 66,033 (22.8%) 16,303 (18.7%)

    Sometimes 178,250 (47.4%) 138,822 (48.0%) 39,428 (45.3%)

    Usually 115,588 (30.7%) 84,314 (29.2%) 31,274 (35.9%)

  Alcohol drinker status, No. (%)  < .001

    Never 11,452 (3.0%) 9085 (3.1%) 2367 (2.7%)

    Previous 12,697 (3.4%) 9464 (3.3%) 3233 (3.7%)

    Current 351,947 (93.6%) 270,555 (93.6%) 81,392 (93.6%)

  Smoking status, No. (%)  < .001

    Never 204,200 (54.4%) 161,672 (56.1%) 42,528 (49.0%)

    Previous 133,033 (35.5%) 97,518 (33.8%) 35,515 (40.9%)

    Current 37,957 (10.1%) 29,246 (10.1%) 8711 (10.0%)

Laboratory result
  Total cholesterol, mean (SD), mmol/l 220.7 ± 44.2 221.4 ± 44.0 218.3 ± 45.1  < .001

  Triglycerides, mean (SD), mmol/l 155.6 ± 90.6 153.4 ± 89.6 163.1 ± 93.3  < .001

  HDL cholesterol, mean (SD), mmol/l 56.1 ± 14.8 56.6 ± 14.8 54.3 ± 14.4  < .001

  LDL cholesterol, mean (SD), mmol/l 137.9 ± 33.6 138.2 ± 33.5 136.8 ± 34.1  < .001

Major chronic comorbidity
  Hypercholesterolemia, No. (%) 69,494 (18.5%) 48,556 (16.8%) 20,938 (24.0%)  < .001

  Hypertension, No. (%) 111,888 (29.7%) 81,520 (28.20%) 30,368 (34.9%)  < .001

  Heart failure, No. (%) 2619 (0.7%) 1779 (0.6%) 840 (1.0%)  < .001

  Chronic kidney disease, No. (%) 5738 (1.5%) 4110 (1.4%) 1628 (1.9%)  < .001

  Any stroke, No. (%) 7948 (2.1%) 5439 (1.9%) 2509 (2.9%)  < .001

  Diabetic hypoglycemia, No. (%) 2171 (0.6%) 1536 (0.5%) 635 (0.7%)  < .001

  Type 2 diabetes mellitus, No. (%) 14,971 (4.2%) 10,487 (3.8%) 4484 (5.5%)  < .001

  Coronary artery disease, No. (%) 21,576 (5.7%) 14,161 (4.9%) 7415 (8.5%)  < .001

Medication
  Use of ototoxic drugs, No. (%)
  (aspirin and/or ibuprofen consumption)

59,806 (22.5%) 44,584 (21.5%) 15,222 (25.9%)  < .001

Abbreviations: ARHL age-related hearing loss, SD standard deviation
* P-value indicates the significance of the difference between the control and ARHL case groups
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high PRS who worked in a noisy workplace for more than 
a year had the highest risk for ARHL (OR, 3.43; 95% CI, 
2.65–4.45; P < 0.001), followed by those with very high 
PRS who listened to loud music for more than a year 
(OR, 3.37; 95% CI, 2.29–4.96; P < 0.001). We also con-
firmed that the risk for ARHL is high in groups for which 
a very high PRS is combined with the other unfavorable 

factors examined, except for alcohol history. The interac-
tions were not significant (P > 0.05) in all lifestyle/envi-
ronmental factors (Additional file 1: Table S10).

Joint association of HL PRS and composite HLS on ARHL
In a fully adjusted Model 4, an ideal HLS based on 
selected lifestyle behaviors and environmental factors 

Fig. 1  Odds ratio for ARHL according to genetic risk, lifestyle, and environmental factors. Model was adjusted by age, sex, genotype array, and PC 1 
to 10. P for trends were significant in all analyses (P < .001). Abbreviations: ARHL, age-related hearing loss; OR, odds ratio; CI, confidence interval
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was significantly associated with lower risk of ARHL 
compared to very poor HLS (OR, 0.38; 95% CI, 0.33–
0.43; P < 0.001) (Table 3 and Additional file 1: Table S11). 
We compared composite HLS with previously reported 
health-related scores. Firstly, AHA lifestyle score had a 
significant association (ideal, OR = 1[reference]; inter-
mediate, OR = 1.06; poor, OR = 1.17) with risk of ARHL. 
MetS health score had a significant association (ideal, 
OR = 1; intermediate, OR = 1.17; poor, OR = 1.35) in the 
crude model, but its significance was limited after adjust-
ing for baseline demographic information (age and sex). 
As a result, HLS showed a stronger association (ideal, 
OR = 1; intermediate, OR = 1.44; poor, OR = 2.11; very 
poor, OR = 3.03) for ARHL risk in the adjusted model 
compared to previous health-related scores (Additional 
file 1: Table S12).

We next stratified HLS by PRS using the group with 
very poor lifestyle and very high PRS as the reference. We 
found that the ideal lifestyle was associated with lower 
risk of ARHL in all genetic risk groups. In participants 
with very high genetic risk, an ideal lifestyle decreased 
the OR for ARHL to 0.21 (95% CI, 0.09–0.52; P < 0.001). 
Meanwhile, in participants with low genetic risk but very 
poor lifestyle, the OR for ARHL was 0.40 (95% CI, 0.20–
0.80; P < 0.001) and those with low PRS and ideal lifestyle 
was 0.12 (95% CI, 0.06–0.23; P < 0.001) (Fig. 2).

Stratification analysis according to sex and tinnitus history
The prevalence of ARHL was higher in males than in 
females (28.26% vs. 18.71%), but the degree to which OR 
increased in conjunction with increased PRS was higher 
in females (Additional file  1: Table  S13). When stratify-
ing according to tinnitus history, a similar association of 
increasing genetic risk and ARHL prevalence was found 
in those with tinnitus history relative to those without 
(Additional file 1: Table S14). However, there was no dif-
ference between groups when considering the joint asso-
ciation of ARHL incidence with HLS according to sex 
and tinnitus history (Additional file  1: Tables S15 and 
S16).

Discussion
In this study, we demonstrated a joint association of 
genetic and lifestyle/environmental risk in influencing 
ARHL in a large-scale population of 376,464 UKBB par-
ticipants. We also found that adherence to an ideal life-
style in hearing-related respects could attenuate the risk 
of ARHL even in individuals with high genetic risk. To 
our knowledge, this is the first study to evaluate the joint 
effect among lifestyle/environmental risk factors and 
genetic risk and also adherence to healthy lifestyle on risk 
for ARHL.

Fransen et  al. performed a GWAS including common 
and rare variants accounting for environmental factors, 
but found no variants that attained genome-wide sig-
nificance for ARHL [12]. This finding suggests that the 
genetic structure of ARHL is highly polygenic, which 
structure is not readily explained by variants within major 
genes. Recently, a PRS calculated from self-reported HL 
in adults aged 40 to 69 years is associated with the hear-
ing ability of children aged 11 to 12 years and also their 
parents [48]. This indicates that polygenic risk may play 
a role together with environmental risk factors in the 
development of ARHL. It has also been shown in an EHR-
derived dataset that loss-of-function variants in known 
HL genes are strongly associated with risk for ARHL 
[49]. We demonstrated that the PRS for HL generated 
from the FinnGen dataset based on ICD code regarding 
the sensorineural HL could predict risk of ARHL in the 
UKBB dataset, which replicated in PMBB cohort. Our 
PRS for ARHL demonstrated a degree of predictive valid-
ity in the African American population, though it did not 
reach the level of significance observed in the European 
cohort. This discrepancy is likely attributable to the lack 
of non-European HL GWAS and the limited sample size 
in this study. Furthermore, we emphasize the need for 
careful consideration of approaches and linkage disequi-
librium reference panels in PRS studies when estimating 
results across diverse populations. Future research neces-
sitates enhanced data collection across different eth-
nicities and expanded cross-ancestry analysis to further 
validate and refine the predictive accuracy of the PRS for 
ARHL in diverse populations.

The effects of noise exposure on ARHL risk observed in 
this study are consistent with the results of previous stud-
ies [27]. Both noise-induced HL and ARHL are sensori-
neural HL resulting from dysfunction in the inner ear or 
cochlea, where sound-induced vibrations are converted 
by sensory hair cells into electrical signals; however, 
long-term prospective studies on the effect of continuous 
noise exposure on ARHL risk are lacking [50]. We further 
showed that not only noise exposure in the occupational 
environment but also loud music in daily life could be a 
significant risk factor for ARHL. Although the UKBB 
dataset did not provide precise information about noise 
exposures, we observed that more than 5 years of expo-
sure to a noisy workplace or loud music was significantly 
associated with risk of ARHL.

While the effect of noise exposure on HL is well-estab-
lished, it is still unclear whether there is a joint associa-
tion between genetic risk and noise exposure. A mouse 
strain with ARHL is reportedly more sensitive to noise 
than other strains, suggesting a genetic predisposition 
to noise-induced HL in animals [51]. Fetoni et  al. also 
suggested the connection between ARHL and noise 
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exposure based on a mouse study, demonstrating that 
noise exposure at a young age accelerates and worsens 
ARHL phenotypes in mice due to damage in the cochlea 
[52]. Here, using a large population cohort, we showed 
that having genetic risk for HL significantly increases 
the risk of developing ARHL with increased exposure 
to noise in daily life. Accordingly, we could suggest that 
there is a significant association between genetic risk of 
ARHL and noise exposure.

Previous studies have consistently shown that smok-
ing increases the risk of developing ARHL, but findings 
concerning the effect of alcohol have been mixed. In 
our results, smoking status clearly showed an additional 
risk for developing ARHL according to the ARHL PRS, 
whereas alcohol intake did not show a significant addi-
tional effect. In a cross-sectional study, alcohol intake 
was associated with decreased HL risk, whereas smok-
ing status, including passive smoking, was associated 
with increased risk [18]. Fransen et al. also reported that 
smoking and high BMI increased ARHL risk and that 
moderate alcohol consumption had a protective role [23]. 
Meanwhile, several prospective studies have found no 
significant association between alcohol consumption and 
HL [28, 53, 54]. This discrepancy may be because differ-
ent studies used different definitions of alcohol exposure, 
and more research is needed in the future.

Interestingly, when stratifying according to sex, 
the prevalence of ARHL was higher in males, but the 
degree to which greater PRS increased the odds of 
developing ARHL was higher in females. Epidemio-
logical studies indicate that gender differences in ARHL 
prevalence cannot be attributed to differences in noise 
exposure [55]. Nolan et  al. suggested that differences 

in cochlear physiology between females and males 
may exist from birth, so that hearing with aging may 
be modulated by sex [56]. The sex difference in ARHL 
risk according to genetic risk observed here can be 
explained by the Carter effect or gene-by-environment 
interaction. In particular, according to Carter’s model, 
the heritability of a trait may be higher in the sex with 
lower prevalence [57].

Among the many factors that lead to HL, exposure to 
noise, smoking, and ototoxic drugs can all be avoided 
through individual efforts as well as public health poli-
cies or clinical interventions. Using UKBB data, Yévenes-
Briones et  al. previously showed that a combination of 
healthy lifestyle behaviors is associated with lower risk of 
HL [17]; however, they did not consider genetic factors. 
Our study is the first to analyze the effect of adherence 
to healthy hearing-related lifestyle on ARHL risk accord-
ing to genetic risk. We revealed that individuals with very 
high genetic risk for ARHL had an 80% reduction in odds 
when they maintained an ideal lifestyle. We also observed 
that ARHL genetic burden could be mostly overcome by 
lifestyle modification, suggesting that lifestyle modifica-
tion is imperative for people with high ARHL PRS.

We first combined lifestyle/environmental factors and 
PRS to investigate the effect on and joint association with 
ARHL and found that a healthier lifestyle decreased risk 
much more significantly in individuals at high PRS per-
centiles. We then focused on the benefits of an integrated 
lifestyle in relation to genetic susceptibility to ARHL. 
Compared to previous modeling which considered envi-
ronmental and genetic factors separately, this approach 
allows complex disease traits and multiple dimensions of 
lifestyle behavior to be better assessed.

Fig. 2  Forest plot for ARHL risk reduced by composite healthy lifestyle score in each genetic risk group. Model was adjusted by age, sex, genotype 
array, and PC 1 to 10. Abbreviations: ARHL, age-related hearing loss; OR, odds ratio; CI, confidence interval
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Limitations
Our study has some limitations. First, most of the life-
style and environmental data was available only as of the 
time of the survey. Therefore, our study is a cross-sec-
tional analysis rather than a prospective analysis of the 
effect of lifestyle on ARHL risk. Given this study design, 
it is difficult to infer a causal relationship between life-
style and ARHL phenotype. Secondly, the population of 
this study consisted only of UKBB participants, who were 
aged 40 to 69 years at baseline and of European ancestry. 
We validated the PRS in an independent cohort and peo-
ple of other ancestry, but the joint effect between genetic 
risk and lifestyle behavior has not been validated. Third, 
in this study, phenotyping of ARHL was based on a ques-
tionnaire. There are no definitive diagnostic criteria for 
ARHL, but accurate phenotyping to rule out other causes 
of HL may be necessary and requires evaluation by an 
otolaryngologist or audiometry. Finally, in our study, the 
HLS analysis was conducted on 85,588 individuals due 
to the presence of missing values in the factors. These 
individuals were different from the entire cohort, pre-
senting with an older age, a higher proportion of males, 
and elevated income levels. Notably, these characteris-
tics are in line with previous studies that have observed 
a tendency for cohorts with lower socioeconomic status 
to have higher rates of nonresponse answers in UKBB 
[58]. While the subset of individuals analyzed may not 
perfectly represent the entire UKBB cohort, the insights 
derived remain a valuable contribution to understanding 
the factors associated with ARHL.

Conclusions
In conclusion, our findings demonstrate a joint effect 
between genetic risk and lifestyle/environmental factors 
in the development of ARHL. Furthermore, we found 
that an ideal lifestyle with regard to hearing is associated 
with reduced ARHL risk, even with genetic burden. Our 
results provided the evidence for clinicians to educate 
patients about the importance of behavioral modification 
for the prevention of ARHL. To demonstrate the clear 
benefits of modifying such risk factors in the prevention 
of ARHL, future prospective studies will be essential.
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