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Abstract 

Background Prediction of lymph node metastasis (LNM) is critical for individualized management of papillary thyroid 
carcinoma (PTC) patients to avoid unnecessary overtreatment as well as undesired under‑treatment. Artificial intel‑
ligence (AI) trained by thyroid ultrasound (US) may improve prediction performance.

Methods From September 2017 to December 2018, patients with suspicious PTC from the first medical center 
of the Chinese PLA general hospital were retrospectively enrolled to pre‑train the multi‑scale, multi‑frame, and dual‑
direction deep learning (MMD‑DL) model. From January 2019 to July 2021, PTC patients from four different cent‑
ers were prospectively enrolled to fine‑tune and independently validate MMD‑DL. Its diagnostic performance 
and auxiliary effect on radiologists were analyzed in terms of receiver operating characteristic (ROC) curves, areas 
under the ROC curve (AUC), accuracy, sensitivity, and specificity.

Results In total, 488 PTC patients were enrolled in the pre‑training cohort, and 218 PTC patients were included 
for model fine‑tuning (n = 109), internal test (n = 39), and external validation (n = 70). Diagnostic performances 
of MMD‑DL achieved AUCs of 0.85 (95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) in the test and validation cohorts, 
respectively, and US radiologists significantly improved their average diagnostic accuracy (57% vs. 60%, P = 0.001) 
and sensitivity (62% vs. 65%, P < 0.001) by using the AI model for assistance.

Conclusions The AI model using US videos can provide accurate and reproducible prediction of cervical lymph node 
metastasis in papillary thyroid carcinoma patients preoperatively, and it can be used as an effective assisting tool 
to improve diagnostic performance of US radiologists.

Trial registration We registered on the Chinese Clinical Trial Registry website with the number ChiCTR1900025592.
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Background
Papillary thyroid carcinoma (PTC) is the most common 
endocrine malignant tumor with persistently increasing 
incidence worldwide [1]. Lymph node metastasis (LNM) 
has been found in about 30–80% of PTC patients by 
pathologic examination [2]. It is considered a risk factor 
for local recurrence, distant metastases, and decreased 
survival rates [3, 4].

Ultrasound (US) is recommended as the first-line 
method to diagnose cervical LNM in PTC [5]. However, 
US is limited for deep structures and those acoustically 
shielded by air or bone, including patients with morbid 
obesity, poor neck extension, and remote cervical ade-
nopathy (high level II, VII, substernal, posterior tracheal, 
etc.). For lateral cervical LNM, it can provide relatively 
reliable information to assist in surgical management [6], 
but for central cervical LNM 42% can be misdiagnosed 
[7]. Previous studies showed that clinical characteristics 
combined with US images had limited predictive power 
with the prediction AUC ranging from 71.5 to 75.8% [8, 
9]. US-guided biopsy can be used to confirm the diagno-
sis. However, it is an invasive examination with the draw-
backs of a possible inadequate specimen or misdiagnosis 
[5].

Therefore, prophylactic central compartment neck 
dissection is recommended with the detection of occult 
LNM [10]. It can be used to refine the prognosis and 
follow-up reducing the risk of loco-regional recurrence 
[11] and allowing for a more tailored use of radioiodine 
therapy [12]. However, the related complications includ-
ing permanent recurrent laryngeal nerve injury and per-
manent hypo-parathyroidism, may significantly affect the 
quality of life [10]. Active surveillance and US-guided 
thermal ablation may be considered as alternative treat-
ment options for low-risk papillary thyroid micro-car-
cinoma [5, 13]. However, occult or missed LNM still 
exists, leading to 6.0% postoperative recurrence [14]. 
Therefore, accurate noninvasive prediction of LNM is 
critical for individualized management of PTC patients 
to avoid unnecessary overtreatment as well as undesired 
under-treatment.

Artificial intelligence (AI), especially deep learning 
(DL) based radiomics approaches, enables automatic 
and quantitative extraction of high throughput features 
from medical images to establish imaging markers for 
disease classification or prediction. Recently, AI mod-
els trained by thyroid US images have been increasingly 
applied to predict cervical LNM [15–21], but most of 
them are single-center retrospective studies with a rela-
tively small sample size. Yu et al. [22] conducted a study 
that investigated the diagnostic value of US radiomics in 
multi-center, cross-machine, multi-operator conditions, 
and the results showed that the highest sensitivity and 

specificity reached 94% and 77%, respectively, in pre-
dicting LNM in PTC patients. Unfortunately, it was still 
based on retrospectively collected data, and a higher-
level clinical trial is needed to verify the effectiveness of 
DL models.

Compared with static US images, real-time US vid-
eos can cover all sections of a thyroid lesion with much 
richer diagnostic information. DL was applied on US 
videos to classify benign and malignant thyroid nodules, 
which achieved satisfactory accuracy [23]. However, such 
an approach has not been used for LNM diagnosis yet. 
Moreover, some studies proved that US with AI could 
outperform skilled radiologists in diagnosing thyroid 
cancer [24], but whether AI could actually help radiolo-
gists to improve their prediction of LNM still remains 
questionable.

To address all those issues properly, we conducted a 
multi-center prospective clinical trial for PTC patients. A 
newly developed DL model was applied on dynamic US 
videos to predict cervical LNM preoperatively. The pri-
mary goal was to verify its performance by comparing it 
with the patients’ pathological report after surgery. The 
secondary goal was to investigate the impact of AI on the 
performance of radiologists with different experiences.

Methods
This current study has two phases, a retrospective model 
pre-training phase and a prospective model fine-tuning 
phase. There were three steps in the fine-tuning phase: 
training, test, and validation steps. Figure  1 shows the 
structure and development process of our multi-scale, 
multi-frame, and dual-direction deep learning (MMD-
DL) model. For both pre-training and fine-tuning phases, 
patients received a thyroidectomy after US examinations, 
and the postoperative pathological reports were used as 
the gold standard to determine whether the thyroid can-
cer was metastatic.

Retrospective model pre‑training phase
From September 2017 to December 2018, PTC patients 
who underwent thyroid examinations and surgeries 
from the first medical center of the Chinese PLA general 
hospital were enrolled in this study to pre-train the DL 
model. Maximum transverse and longitudinal gray-scale 
US images were collected by radiologists with more than 
five years of US experience.

The inclusion criteria were (1) patients confirmed to 
be PTC after thyroidectomy; (2) patients who underwent 
thyroid US examination within 2  weeks before surgery; 
(3) patients who received a thyroidectomy and lymph 
node dissection consistent with the Chinese Guide-
lines [25], and ground truth of LNM were evaluated by 
pathology.
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The exclusion criteria were (1) patients received a 
biopsy before US examination; (2) the US image quality 
was insufficient, or the number of US videos was incom-
plete; (3) other pathological types of thyroid cancer, such 
as medullary carcinoma and undifferentiated carcinoma; 

(4) presence of distant metastases; and (5) patients who 
underwent surgery in other hospitals.

Both transverse and longitudinal US images were 
involved for pre-training, so that our feature extractors 
learned basic perception ability for diagnosing LNM.

Fig. 1 Illustration of the multi‑scale, multi‑frame, and dual‑direction deep learning (MMD‑DL) model. a Flowchart of the training stages of MMD‑DL. 
b Architecture of the pre‑trained feature extractor. c Architecture of MMD‑DL with transverse and longitudinal ultrasound videos as inputs 
and lymph node metastasis probability as the output
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Prospective model fine‑tuning phase
Patient enrollment and sample size
The multicenter prospective study was approved by 
the institutional ethics committee of all involved hos-
pitals, with the ethics committee approval number of 
S2019-212–06 and a clinical trial registration number of 
ChiCTR1900025592.

Patients with suspicious PTC from four different cent-
ers, including the first medical center of the Chinese 
PLA general hospital, the fourth medical center of the 
Chinese PLA general hospital, Beijing Tongren hospital, 
and China–Japan Friendship hospital, were consecutively 
enrolled from January 2019 to July 2021. All of the cent-
ers are located in Beijing.

All patients were operated on by surgeons with more 
than 15 years of experience in thyroid surgery and more 
than 1000 annual volume. All pathological specimens 
were sent to the pathology department for paraffin fixa-
tion and histological analysis by two or more experienced 
pathologists. Inclusion and exclusion criteria were as 
listed above.

We assumed that at least 30% of enrolled patients 
would have cervical LNM. Therefore, we calculated the 
sample size necessary to estimate a receiver operating 
characteristic (ROC) curve with no less than 217 patients 
(α: 0.05, 1-β: 0.85, width of the confidence interval: 0.125, 
confidence level: 0.95). Given an expected dropout rate of 
20%, we should at least enroll 261 patients.

Clinical pathological data and US features
Clinical characteristics including age, sex, number of 
tumors, tumor size, location, presence of Hashimoto thy-
roiditis, type of thyroidectomy, type of lymph node dis-
section, Clinical T stage, and N stage were obtained from 
the patients’ medical records. Pathological T stage and 
lymph node metastatic results were obtained from the 
patients’ pathological report after surgery. The American 
Joint Committee on Cancer staging of thyroid cancer was 
applied to evaluate the TNM stage [26].

The multicenter standardized US videos were acquired 
with a Supersonic Aixplorer System using an S15–4 lin-
ear-array transducer (SuperSonic Imaging, France), with 
a center frequency of 8  Hz (ranging from 4 to 15  Hz), 
by radiologists with more than 6  years of experience. 
Patients were supine with the neck extended and the 
head turned to check the contralateral direction. The gain 
was 40%, the depth was 4 cm, the frame rate was 40 Hz 
and the focus was on target depth. Dynamic collection 
started from the edge of one side of the thyroid lobe, 
sweeping evenly and slowly until it reached the other side 
of the lobe. The direction is fixed from the top to the bot-
tom, from the left to the right, and no scanning back and 

forth. More details in standardized US video acquisition 
are shown in Additional file 1: Method S1.

US features of the tumors were obtained from US 
examinations according to the American College of Radi-
ology Thyroid Imaging, Reporting and Data System [27].

DL model development
DL model development is divided into two stages, as 
shown in Fig. 1a. In the first stage, we pre-train a feature 
extractor using the retrospective US images, the struc-
ture of which is shown in Fig.  1b. In the second stage, 
based on the pre-trained feature extractor, we build a 
multi-scale, multi-frame, and dual-direction deep learn-
ing (MMD-DL) model and fine-tune it. The structure of 
MMD-DL is shown in Fig. 1c.

In the first stage, the feature extractor adopts three net-
works to extract feature vectors of the US images in three 
scales, namely large, middle, and small. Here, ResNet18 
is adopted as the network because of its popularity and 
resistance to overfitting. The design of the multi-scale 
structure helps the model to focus on the lesion charac-
teristics of its exterior, edge, and interior areas and avoid 
the omission of features in the important regions. The 
features are fused by several fully connected layers to 
output the diagnostic results.

In the second stage, MMD-DL with two branches were 
used to extract the features from the horizontal scan and 
vertical scan after US video prerecession (Additional 
file 2: Method S2), respectively. Each branch consists of 
a multi-scale feature extractor, which has the same struc-
ture as the pre-trained feature extractor and has the same 
weight at the beginning of fine-tuning. In order to fuse 
temporal features, the feature extractor processes five 
frames obtained from the preprocessing of one US video 
one by one. Finally, a fully connected layer is used to fuse 
all features extracted from multi-scale, multi-frame, and 
dual-direction video frames, offering the diagnostic prob-
ability as the output. Details of our model and strategy 
of training our model are displayed in Additional file  3: 
Method S3.

Then, the model was transferred into the prospective 
US videos for test and validation. During training, test, 
and validation steps, we did not use the same population. 
Measuring the performance of our model can be found in 
Additional file 4: Method S4.

The impact of radiologists with different experiences by using 
AI for assistance
Two junior radiologists (Yi Mao and Guozheng Zhao) 
with 1 year of experience in thyroid US, two intermedi-
ate radiologists (Yan Wang and Lin Yuan) with 5  years 
of experience in thyroid US, and two senior radiologists 
(Mingbo Zhang and Mengjie Song) with over 8 years of 
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experience in thyroid US were invited to interpret the 
same US videos of the test and validation cohorts. The 
radiologists were shown ultrasound videos that they had 
not seen before. After they gave the prediction of LNM 
based on their evaluation of US videos, the AI-predicted 
probability and AI-generated heatmap were provided to 
them as assisting information (Additional file 5: Method 
S5). Then, they performed the second-round diagnosis. 
Their predictive performances with and without AI assis-
tance were compared.

Statistical analysis
The categorical and normally distributed continuous 
variables were presented as frequency (percentage) and 
mean with a 95% confidence interval (CI), respectively. 
Categorical variables were compared by the χ2 test. Stu-
dent’s t-test was used for comparison between normally 
distributed continuous variables. The area under the 
ROC curve (AUC) was used to measure the performance 
of prediction. All the statistical analyses above were per-
formed with SPSS software (version 26, Chicago, IL). The 
Delong test was employed to compare different AUCs 
using GraphPad Prism (version 8, CA, USA). A two-sided 
P < 0.05 was considered to indicate statistical significance.

Results
Study population and baseline characteristics
A total of 725 patients with suspicious PTC were ret-
rospectively enrolled (Fig.  2a), but 237 patients were 
excluded based on our exclusion criteria, resulting in 
488 patients and 976 B-mode US images used for pre-
training the MMD-DL model.

A total of 272 patients with suspicious PTC were 
prospectively enrolled (Fig.  2b), and 54 patients were 
excluded due to various reasons. Finally, 218 PTC 
patients (more than the minimum sample size required) 
and 436 US videos were included for model fine-tun-
ing (training cohort n = 109), internal test (test cohort 
n = 39), and external validation (validation cohort 
n = 70), which were from different hospitals.

Table  1 shows that all demographic and ultrasound 
characteristics were well balanced between the train-
ing, test, and validation cohorts (P > 0.05), except for 
the tumor size and height-to-width ratio, in which the 
validation cohort was significantly different from the 
training cohort (P = 0.03, P < 0.001). This was within the 
expectations, because patients were collected from dif-
ferent hospitals in these two cohorts (Fig. 2b).

Fig. 2 Flowchart of the retrospective and prospective patient enrollment and cohort buildings. a Inclusion and exclusion process 
of the retrospective patient enrollment. b Inclusion and exclusion process of the multicenter prospective patient enrollment. PTC, papillary thyroid 
carcinoma; BJTR, Beijing Tong Ren; FMC, the fourth medical center; CJF, China‑Japan friendship
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Table 1 Demographic and ultrasound characteristics of prospectively enrolled patients

Characteristics Training cohort  
(n =109)

Test cohort  (n= 39) P value Validation cohort  
(n = 70)

P value

Lymph node metastasis 0.64 0.67

 No. of metastases 55 (50.5) 18 (46.2) 33 (47.1)

 No. of no metastases 54 (49.5) 21 (53.8) 37 (52.9)

Age, years (median ± SD) 42.7 ± 11.7 40.7 ± 9.9 0.34 45.0 ± 11.6 0.20

Gender 0.16 0.16

 No. of males 24 (22.0) 13 (33.3) 22 (31.4)

 No. of females 85 (78.0) 26 (66.7) 48 (68.6)

No. of tumors 0.59 0.79

 1 79 (72.5) 30 (76.9) 52 (74.3)

  > 1 30 (27.5) 9 (23.1) 18 (25.7)

Tumor size, cm (median [IQR]) 1.21 ± 0.73 1.20 ± 0.62 0.93 0.98 ± 0.66 0.03
Location 0.86 0.13

 Left lobe 40 (36.7) 15 (38.5) 29 (41.4)

 Right lobe 40 (36.7) 14 (35.9) 31 (44.3)

 Isthmus 5 (4.6) 3 (7.7) 4 (5.7)

Bilateral 24 (22.0) 7 (17.9) 6 (8.6)

Echogenicity  > 0.99 0.08

 Hypoechoic 108 (99.1) 39 (100.0) 66 (94.3)

 Iso/hyperechoic 1 (0.9) 0 (0) 4 (5.7)

Margin 0.29 0.06

 Clear 32 (29.4) 8 (20.5) 12 (17.1)

 Unclear 77 (70.6) 31 (79.5) 58 (82.9)

Shape

 Regular 9 (8.3) 1 (2.6) 0.29 6 (8.6) 0.94

 Irregular 100 (91.7) 38 (97.4) 64 (91.4)

Height‑to‑width ratio 0.82  < 0.001
 Taller than wide (> 1) 47 (43.1) 16 (41.0) 51 (72.9)

 Wider than tall (< 1) 62 (56.9) 23 (59.0) 19 (27.1)

Calcification 0.75 0.08

 No calcification 26 (23.9) 7 (17.9) 13 (18.6)

 Macro‑calcification 21 (19.3) 8 (20.5) 24 (34.3)

 Micro‑calcification 62 (56.9) 24 (61.5) 33 (47.1)

US suspicious lymph node 0.07 0.06

 No. of positives 43 (39.4) 9 (23.1) 18 (25.7)

 No. of negatives 66 (60.6) 30 (76.9) 52 (74.3)

Hashimoto thyroiditis 0.49 0.49

 No. of negatives 93 (85.3) 35 (89.7) 57 (81.4)

 No. of positives 16 (14.7) 4 (10.3) 13 (18.6)

Clinical T stage 0.43 0.38

 T1 102 (93.6) 35 (89.7) 63 (90.0)

 T2–T3 7 (6.4) 4 (10.3) 7 (10.0)

Clinical N stage 0.26 0.07

 N0 63 (57.8) 26 (66.7) 49 (70.0)

 N1a 12 (11.0) 1 (2.6) 10 (14.3)

 N1b 34 (31.2) 12 (30.8) 11 (15.7)

Pathological T stage 0.31 0.95

 T1 103 (94.5) 35 (89.7) 66 (94.3)

 T2–T3 6 (5.5) 4 (10.3) 4 (5.7)

Type of thyroidectomy 0.89 0.07
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The diagnostic performance of MMD‑DL
Table 2 shows the diagnostic performances of the MMD-
DL model in the pre-training, training, test, and valida-
tion cohorts, respectively. It achieved AUCs of 0.91 (95% 
CI: 0.89, 0.94) and 0.85 (95% CI: 0.78, 0.92) in the pre-
training and training cohorts (Fig. 3a). In the internal test 
and external validation cohorts, AUCs researched 0.85 
(95% CI: 0.73, 0.97) and 0.81 (95% CI: 0.73, 0.89) (Fig. 3b 
and c). There were no statistically significant differences 
between the training, test, and validation cohorts (pair-
wise comparison P > 0.99, P = 0.25, P = 0.35). Moreover, 
there were no significant differences of AUCs (pairwise 
comparison P = 0.10, P = 0.63, P = 0.56) for the three 
independent hospitals in the validation cohort, suggest-
ing a high LNM diagnostic efficacy of MMD-DL was also 
highly reproducible.

Although we found that sensitivities were consistently 
lower than specificities for using MMD-DL in all four 
cohorts, such behavior was not the same in different 
hospitals. In the validation cohort, the AI model showed 
higher sensitivities in two hospitals, but a higher specific-
ity in the other hospital (Table 2), which was likely caused 
by different US operators.

We explored combining clinical features with AI mod-
els to model lymph node metastasis. Two clinical fea-
tures (age and US suspicious lymph node) were screened 
out using multi-variable logistic regression, as shown 
in Additional file  6: Table  S1. However, fully connected 
layers were used to fuse them with the diagnostic scores 
by our MMD-DL and the results showed no statisti-
cally significant difference in the results, whether in the 
test cohort or the validation cohorts (Additional file  7: 
Table S2).

Benefits from AI assistance
The AI model we built also generated heat maps, and 
examples are displayed in Supplementary Materi-
als (Additional file  7: Fig. S1 and Fig. S2). However, the 
radiologists did not find regular features of heat maps. 
Figure 3b and c shows that the six green symbols repre-
senting six radiologists in diagnosing LNM were mostly 
under the ROC curves given by MMD-DL in the test and 
validation cohorts, respectively. However, with MMD-DL 
assistance, most orange symbols got closer to the curves, 
and there was one radiologist in each cohort even located 
above the corresponding curve.

Table 1 (continued)

Characteristics Training cohort  
(n =109)

Test cohort  (n= 39) P value Validation cohort  
(n = 70)

P value

 Lobectomy 24 (22.0) 9 (23.1) 24 (48.6)

 Total thyroidectomy 85 (78.0) 30 (76.9) 46 (51.4)

Type of lymph node dissection 0.75 0.27

 CLND 81 (74.3) 30 (76.9) 57 (81.4)

 CLND + LLND 28 (25.7) 9 (23.1) 13 (18.6)

Unless otherwise specified, data in parentheses are percentages. SD, standard deviation; CLND, central lymph node dissection; LLND, lateral lymph node dissection

Table 2 Comparison of LNM predictions in different cohorts using the MMD‑DL model

Unless otherwise specified, data are percentages, with the number of patients in parentheses and 95% confidence intervals in brackets. AUC , area under the receiver 
operating characteristic curve; PPV, positive predictive value; NPV, negative predictive value

Cohorts AUC Accuracy Sensitivity Specificity PPV NPV

Pre‑training
(n = 488)

0.91
[0.89, 0.94]

85 (351/412) [81, 88] 83 (180/216) [78, 88] 87 (171/196) [82, 92] 88 (180/205) [83, 91] 83 (171/207) [78, 87]

Training
(n = 109)

0.85
[0.78, 0.92]

74 (81/109) [65, 82] 72 (36/50) [57, 83] 76 (45/59) [63, 86] 72 (36/50) [57, 83] 76 (45/59) [63, 86]

Test
(n = 39)

0.85
[0.73, 0.97]

80 (31/39) [64, 91] 63 (12/19) [39, 83] 95 (19/20) [73, 99] 92 (12/13) [62, 99] 73 (19/26) [52, 88]

Validation
(n = 70)

0.81
[0.73, 0.89]

80 (56/70) [69, 89] 69 (22/32) [50, 84] 89 (34/38) [75, 97] 85 (22/26) [68, 93] 77 (34/44) [69, 89]

 Hospital 1
(n = 23)

0.78
[0.57, 0.99]

83 (19/23) [61, 95] 89 (8/9) [51, 99] 79 (11/14) [49, 94] 73 (8/11) [39, 93] 92 (11/12) [60, 99]

 Hospital 2
(n = 28)

0.77
[0.59, 0.95]

79 (22/28) [54, 94] 89 (8/9) [51, 99] 74 (14/19) [51, 99] 62 (8/13) [32, 85] 93 (14/15) [66, 100]

 Hospital 3
(n = 19)

0.84
[0.67, 1.00]

79 (15/19) [59, 92] 60 (6/10) [27, 86] 100 (9/9) [63, 100] 100 (6/6) [52, 100] 70 (9/13) [39, 90]
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The quantitative comparison in the validation cohort 
(Table 3) further revealed that the average accuracy and 
sensitivity of all radiologists were improved from 57% 
(95% CI: 52%, 62%) to 60% (95% CI: 55%, 64%), as well as 
from 62% (95% CI: 55%, 69%) to 65% (95% CI: 58%, 72%), 
respectively by using MMD-DL as assistance, and the 
improvements were significant (P < 0.001). The specificity 
was also improved from 53% (95% CI: 46%, 59%) to 55% 
(95% CI: 48%, 61%), but the difference was not significant 
(P = 0.28).

Figure 4 demonstrates the diagnostic accuracies given 
by three groups of radiologists with different experiences 
in the test and validation cohorts together. Interestingly, 
the junior and senior radiologists (Fig. 4a and c) showed 
more distinct improvement than the intermediate 

radiologists (Fig.  4b). However, with AI assistance, the 
accuracy of intermediate radiologists changed from an 
elongated distribution to a more concentrated distribu-
tion, suggesting the LNM diagnosis was more stable with 
AI. The LNM diagnostic performances of all six radi-
ologists from different hospitals in the validation cohort 
are demonstrated in Additional file 10: Fig. S3 a to c. In 
general, most radiologists achieved better performances 
after using AI, confirming that the benefits from AI assis-
tance were highly reproducible.

Discussion
In this multi-center prospective control trial, we veri-
fied the performance of our newly developed multi-
scale, multi-frame, and dual-direction deep learning 

Fig. 3 Performances of MMD‑DL, radiologists, and radiologists with AI assistance in predicting lymph node metastasis. a Receiver operating 
characteristic (ROC) curves of MMD‑DL in the pre‑training and training cohorts. b, c ROC curves of MMD‑DL and diagnostic performances 
of radiologists with and without AI assistance in the test and validation cohorts, respectively. AUC, area under the curve
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Table 3 Comparison of LNM predictions between radiologists with and without AI assistance in the validation cohort

Unless otherwise specified, data are percentages with the number of patients in parentheses and 95% confidence intervals in brackets

Radiologists Accuracy P value Sensitivity P value Specificity P value

Senior 1 0.03 0.86  < 0.001
 Without AI 60 (42/70)

[48, 72]
43(14/32)
[27, 62]

74 (28/38)
[57, 86]

 With AI 67 (47/70)
[55, 78]

50 (16/32)
[32, 68]

82 (31/38)
[65, 92]

Senior 2 0.09 0.04 0.09

 Without AI 60(42/70)
[48, 72]

59 (19/32)
[41, 76]

61 (23/38)
[43, 76]

 With AI 61(43/70)
[49, 73]

53 (17/32)
[35, 70]

68 (26/38)
[51, 82]

Intermediate 1 0.82 0.31 0.78

 Without AI 54 (38/70)
[42, 66]

47 (15/32)
[30,65]

61 (23/38)
[43, 76]

 With AI 50 (35/70)
[38, 62]

71 (23/32)
[53, 86]

32 (12/38)
[18, 49]

Intermediate 2 0.19 0.05  > 0.99

 Without AI 59 (41/70)
[46, 70]

69 (22/32)
[50, 83]

50 (19/38)
[34, 66]

 With AI 59 (41/70)
[46, 70]

69 (22/32)
[50, 83]

50 (19/38)
[34, 66]

Junior 1 0.10  < 0.001 0.47

 Without AI 56 (39/70)
[43, 68]

81 (26/32)
[63, 92]

34 (13/38)
[20, 51]

 With AI 64 (45/70)
[52, 75]

78 (25/32)
[60, 90]

53 (20/38)
[36, 69]

Junior 2 0.55 0.04 0.31

 Without AI 53 (37/70)
[41, 65]

72 (23/32)
[53, 86]

37 (14/38)
[22, 54]

 With AI 56 (39/70)
[43, 68]

69 (22/32)
[50, 83]

45 (17/38)
[30, 62]

Average  < 0.001  < 0.001 0.28

 Without AI 57 (239/420)
[52, 62]

62 (119/192)
[55, 69]

53 (120/228)
[46, 59]

 With AI 60 (250/420)
[55, 64]

65 (125/192)
[58, 72]

55 (125/228)
[48, 61]

Fig. 4 Violin plots of the diagnostic accuracy given by a junior, b intermediate, and c senior radiologists with and without AI assistance in the test 
and validation cohorts together. ACC, accuracy
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(MMD-DL) model for predicting cervical lymph node 
metastasis (LNM) in papillary thyroid carcinoma (PTC) 
patients, which achieved AUCs of 0.85 (95% CI: 0.73, 
0.97) and 0.81 (95% CI: 0.73, 0.89) in the internal test and 
external validation cohorts, respectively. To the best of 
our knowledge, this is the first multi-center prospective 
clinical trial conducted to verify the actual performance 
of a deep learning (DL) based artificial intelligence (AI) 
model in such a clinical scenario. Moreover, we proved 
that US radiologists with different work experiences, 
who did not have any prior knowledge of using AI for 
computer-assisted diagnosis, significantly improved their 
average diagnostic accuracy (57% vs. 60%, P = 0.001) and 
sensitivity (62% vs. 65%, P < 0.001) by using the AI model 
for assistance. We believe this study provides high-level 
clinical evidence of how much an AI model can achieve 
and how much radiologists can benefit when adopt-
ing DL for assisted prediction of cervical LNM in PTC 
patients.

As a high-incidence and low-invasiveness tumor, the 
multimodal imaging diagnosis and cytopathological diag-
nosis of PTC have been studied in-depth with achieve-
ments [28–30]. However, PTC patients with pathologic 
LNM still require aggressive treatment, including lymph 
node dissection and radioactive iodine therapy, to pre-
vent local recurrence and distant metastases. In contrast, 
the absence of LNM is one of the characteristics of low-
risk PTC, which can be treated with active surveillance or 
US-guided thermal ablation [5]. Therefore, preoperative 
identification of LNM is crucial for establishing appropri-
ate management strategies. US is the first-line imaging 
method for non-invasive assessment of cervical LNM on 
PTC patients [5]. However, its diagnostic accuracy was 
affected by the capability of radiologists, obscuration of 
bones and gases, presence of occult lymph nodes, and 
many other factors in clinical practice [31]. There is an 
urgent need of a reliable method to improve the predic-
tion accuracy of cervical LNM during preoperative US 
evaluations on PTC patients, and our MMD-DL model 
was proposed to meet this need.

In recent years, investigations of applying AI and radi-
omic strategies on US images for cervical LNM predic-
tion in PTC patients have drawn great attention [22]. 
Chang et  al. developed an LNM nomogram combining 
DL signatures, clinical characteristics, and US features, 
which achieved an AUC of 0.83 in the validation cohort 
[32]. Wang et al. introduced a DL model with an AUC of 
0.78 in their test set [33]. Liu et  al. proposed a radiom-
ics model integrating B-mode and strain elastography US 
images, offering an AUC of 0.90 [15]. Jiang established 
a nomogram based on shear-wave elastography images 
with an AUC of 0.83 [17]. All these studies provided 
valuable insights about the potential and effectiveness 

of developing DL models to analyze US images for accu-
rate preoperative prediction of LNM in PTC patients. 
However, they were all retrospective studies that lacked 
independent multicenter validations. Yu et al. conducted 
a multicenter study with 1894 PTC patients involved in 
the training and validation of their transfer learning radi-
omics model, and the AUC reached 0.93 [22]. This study 
reported the highest AUC in cervical LNM prediction so 
far, but it was still a retrospective study with unbalanced 
patient characteristics in different cohorts, no standard-
ized US image acquisition and no strict quality control.

Unlike previous studies, this multi-center prospec-
tive trial used a standardized US video acquisition pro-
tocol, and the data from all participating hospitals were 
reviewed by two senior radiologists to guarantee quality 
control. In total, 18 demographic and US characteristics 
of enrolled patients were recorded, which were much 
more comprehensive, and most of them were well-bal-
anced between the training, test, and validation cohorts, 
minimizing possible biases in cross-cohort comparisons. 
Unlike some studies using needle biopsy as references, 
all patients in this study received a thyroidectomy, and 
the final pathological reports were used as the only gold 
standard. The validation cohort consisted of three hos-
pitals, which were independent from the training and 
test cohorts. This was better than some of the previous 
studies for evaluating the reproducibility of an AI model. 
Because of those reasons, although our proposed MMD-
DL model did not achieve the highest AUC compared 
with other reported studies, its LNM prediction perfor-
mance was still more credible and reliable for radiolo-
gists, head and neck surgeons, and endocrinologists.

The MMD-DL model was designed and trained differ-
ently from other reported DL models. First, it adopted 
the transfer learning (TL) strategy [34] and utilized ret-
rospectively collected 976 B-mode US images for pre-
training, whereas the other TL model was pre-trained 
by natural images in ImageNet, rather than US images 
[22]. Therefore, MMD-DL eliminated potential adverse 
impacts from non-US images while retaining the essence 
of TL. Second, it integrated multi-scale (large, middle, 
and small) and dual-direction (transverse and longitudi-
nal) analysis of a PTC nodule, so that the center, periph-
ery, and adjacent areas of the nodule were separately 
interpreted by DL algorithms in two directions, making 
better use of spatial features hidden in US images [35]. 
Our study showed that using a fewer number of frames 
or only part of the scales seriously weakens AUC by 
around 20% and that the simultaneous use of scanning 
data in both directions improves the performance by 
around 10% (Additional file 11: Table S3). Third, instead 
of using one or two static US images from a nodule, the 
inputs of MMD-DL were down-sampled frames from US 
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videos covering the entire nodule area. Therefore, it was 
able to analyze much richer information of a PTC nod-
ule and make the cervical LNM prediction, which was 
not capable by previous DL models [15, 17, 22, 32, 33]. 
All those efforts effectively helped MMD-DL overcome 
the overfitting problem, increase training efficiency, and 
reduce instability caused by different US operators.

After verifying the performance of MMD-DL, we fur-
ther investigated the actual clinical benefits for US radiol-
ogists with AI assistance. It should be pointed out that all 
six participating radiologists did not have any experience 
of using AI and had never seen any AI heatmaps before 
this trial. However, their diagnosis of cervical LNM was 
still improved regarding average accuracy, sensitivity, and 
specificity (Table  3) by introducing additional informa-
tion from the AI model. This provided solid evidence for 
the clinical significance of using AI for assisted diagnosis. 
However, such use of AI had certain limitations. Because 
the interpretation of heatmaps varied largely in different 
radiologists, this study did not find a simple and recog-
nizable pattern in these AI images, resulting in the inter-
mediate group benefitting less than the other groups. 
Therefore, it is necessary to establish an appropriate 
guideline for interpreting AI heatmaps for all radiologists 
to make the most use of AI assistance, which is the next 
step of our work in the future.

Our study has limitations. First, only US videos of the 
thyroid gland were applied to predict cervical LNM, but 
US images of cervical lymph nodes and laboratory indi-
ces, such as genetic testing and thyroid function, were 
not included in the prediction. Second, only one type of 
US instrument was used in this study, and whether the 
results were consistent between different US devices was 
not investigated. Third, the tumor size and height-to-
width ratio were significantly different between the train-
ing and validation cohorts, which may cause differences 
in diagnostic performance. Fourth, the sensitivity and 
specificity still had some variations across different hos-
pitals. The stability of MMD-DL needs to be further veri-
fied in a larger sample size.

Conclusions
In conclusion, the deep learning model using US vid-
eos can provide accurate and reproducible prediction of 
cervical lymph node metastasis on papillary thyroid car-
cinoma patients preoperatively, and it can be used as an 
effective assisting tool to improve the diagnostic perfor-
mance of US radiologists.
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