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Abstract 

Background Thyroid nodule (TN) patients in China are subject to overdiagnosis and overtreatment. The imple‑
mentation of existing technologies such as thyroid ultrasonography has indeed contributed to the improved diag‑
nostic accuracy of TNs. However, a significant issue persists, where many patients undergo unnecessary biopsies, 
and patients with malignant thyroid nodules (MTNs) are advised to undergo surgery therapy.

Methods This study included a total of 293 patients diagnosed with TNs. Differential methylation haplotype blocks 
(MHBs) in blood leukocytes between MTNs and benign thyroid nodules (BTNs) were detected using reduced rep‑
resentation bisulfite sequencing (RRBS). Subsequently, an artificial intelligence blood leukocyte DNA methylation 
(BLDM) model was designed to optimize the management and treatment of patients with TNs for more effective 
outcomes.

Results The DNA methylation profiles of peripheral blood leukocytes exhibited distinctions between MTNs and BTNs. 
The BLDM model we developed for diagnosing TNs achieved an area under the curve (AUC) of 0.858 in the valida‑
tion cohort and 0.863 in the independent test cohort. Its specificity reached 90.91% and 88.68% in the validation 
and independent test cohorts, respectively, outperforming the specificity of ultrasonography (43.64% in the validation 
cohort and 47.17% in the independent test cohort), albeit with a slightly lower sensitivity (83.33% in the validation 
cohort and 82.86% in the independent test cohort) compared to ultrasonography (97.62% in the validation cohort 
and 100.00% in the independent test cohort). The BLDM model could correctly identify 89.83% patients whose 
nodules were suspected malignant by ultrasonography but finally histological benign. In micronodules, the model 
displayed higher specificity (93.33% in the validation cohort and 92.00% in the independent test cohort) and accuracy 
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Background
Thyroid nodule (TN) is a widespread occurrence, with 
a prevalence that can reach as high as 49% [1]. Among 
these TNs, thyroid cancer (TC) emerges in approximately 
7–15% of cases, with papillary thyroid carcinoma (PTC) 
constituting the majority at around 85% [2]. Individuals 
harboring palpable TNs or those identified through other 
imaging methodologies are advised to undergo a thyroid 
ultrasonography as the first step in risk assessment. This 
evaluation aids in determining whether a fine needle 
aspiration (FNA) is warranted [3].

In 2017, the American College of Radiology (ACR) 
introduced a thyroid imaging reporting and data system 
(TI-RADS) to systematically assess TNs [4]. This system 
is extensively employed for thyroid imaging and man-
agement. ACR TI-RADS employs a scoring system to 
classify TNs into five distinct categories, where elevated 
scores correlate with higher potential for malignancy. 
Decisions regarding FNA or subsequent monitoring are 
determined by the risk assessment and the nodule’s max-
imum diameter. The implementation of ACR TI-RADS 
has significantly enhanced diagnostic precision while 
concurrently reducing the need for unnecessary biopsies. 
Nonetheless, a retrospective study demonstrated that a 
considerable 57.4% of biopsied were benign thyroid nod-
ules (BTNs) [5]. Another study unveiled that the specific-
ity and positive predictive value (PPV) of ACR TI-RADS 
4 and ACR TI-RADS 5 stood at 75% and 47% respectively 
[6]. Thus, the imperative to devise a new approach aimed 
at heightening diagnostic efficacy and curbing unneces-
sary biopsies becomes evident.

In pursuit of early diagnosis and widespread implemen-
tation, obtaining blood samples proves to be a less inva-
sive and more convenient alternative compared to tissue 
samples. Numerous cancer studies have revealed a sig-
nificant association between cancer risk and DNA meth-
ylation in peripheral blood leukocytes, encompassing 
various types of tumors such as colorectal, bladder, gas-
tric, breast, and head and neck cancers [7–12]. Recently, 
a diagnostic model for colorectal cancer (CRC) based on 
five methylation markers in peripheral blood mononu-
clear cells demonstrated the ability to identify colorectal 
patients earlier compared to conventional methods [13]. 

DNA methylation is a well-known stable epigenetic mod-
ification that plays a pivotal role in the development of 
thyroid tumors. Research based on peripheral blood cell-
free DNA (cfDNA), such as the study by Shubin Hong 
et al., has developed a diagnostic tool with 6 markers to 
distinguish between PTCs and BTNs. When combined 
with ultrasonography, this approach achieved a sensi-
tivity of 95.7% and a specificity of 70.8% [14]. However, 
there have been no reported studies on thyroid diagnos-
tic models based on blood leukocytes. Blood leukocytes 
have a higher abundance and are more convenient for 
detection compared to blood cfDNA. Leukocyte DNA 
methylation signatures hold promising applications 
because they can be non-invasively repeated and are con-
ducive to the dynamic assessment of disease risk. With 
improved diagnostic accuracy, individuals with BTNs or 
malignant thyroid nodules (MTNs) can make informed 
decisions regarding surgery, thermal ablation, or follow-
up, taking into account medical recommendations and 
their own health conditions.

In this study, we developed a blood leukocyte DNA 
methylation (BLDM) model to assist ultrasonography in 
improving the specificity and accuracy of distinguish-
ing between MTNs and BTNs, aiding in the selection of 
patients suitable for further FNA testing, thereby facili-
tating the triage in the diagnosis and treatment of TNs.

Methods
Patient enrollment and sample collection
Between June 2021 and January 2024, a total of 293 
peripheral blood samples from treatment-naive patients 
diagnosed with TNs were collected at the Department 
of Interventional Radiology, Zhongshan Hospital, Fudan 
University and Department of Ultrasound, Xinhua Hos-
pital Affiliated to Shanghai Jiao Tong University School 
of Medicine. The diagnosis of MTN and BTN was con-
firmed through pathological examination of puncture 
samples. Following the 2017 World Health Organiza-
tion classification of endocrine tumors, two experienced 
pathologists independently evaluated all corresponding 
sections stained with hematoxylin and eosin as well as 
immunohistochemical staining sections. The ultrasonog-
raphy of TNs was evaluated using the ACR-TIRADS. 

(88.24% in the validation cohort and 87.50% in the independent test cohort) for diagnosing TNs. This performance 
surpassed the specificity and accuracy observed with ultrasonography. A TN diagnostic and treatment framework 
that prioritizes patients is provided, with fine‑needle aspiration (FNA) biopsy performed only on patients with indica‑
tions of MTNs in both BLDM and ultrasonography results, thus avoiding unnecessary biopsies.

Conclusions This is the first study to demonstrate the potential of non‑invasive blood leukocytes in diagnosing TNs, 
thereby making TN diagnosis and treatment more efficient in China.

Keywords Benign thyroid nodule, Blood leukocyte, DNA methylation, Malignant thyroid nodule, Methylation model
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Demographic information, results of laboratory examina-
tions, and ultrasonic imaging findings from the research 
cohort are displayed in Additional file 1: Table S1. All eli-
gible participants provided consent forms, and this study 
was approved by the Institutional Review Committee of 
Zhongshan Hospital, Fudan University (B2022-390R) and 
Xinhua Hospital Affiliated to Shanghai Jiao Tong Univer-
sity School of Medicine (XHEC-C-2023-028-1).

Sample size considerations
The formula for estimating sample size at a confidence 
level of (1-α) % is derived as follows:

Here, P represents the predetermined value of sensitiv-
ity (or specificity), Z1−α/2 represents the z-value for the 
standard normal distribution with a left-tail probability 
(1-α/2), and d corresponds to half the desired width of 
the confidence interval [15]. For this study, the objective 
is to assess sensitivity/specificity at 90% with a 95% confi-
dence level and a maximum marginal error of 0.1. Conse-
quently, a dataset comprising a minimum of 35 malignant 
thyroid nodules and 35 benign thyroid nodules would be 
required.

DNA methylation sequencing and data preprocessing
Approximately 8 ml of venous blood was collected using 
Streck Cell-Free DNA BCT tubes (xjydna, Fujian, China). 
To isolate peripheral blood leukocyte, the blood samples 
were promptly centrifuged twice at 1600  g for 15  min 
each time at 4  °C. Genomic DNA was then extracted 
from the peripheral blood leukocyte using QIAamp DNA 
Mini Kit (Qiagen, Hilden, Germany) following the manu-
facturer’s instructions. The DNA quantity was measured 
using the Qubit 4 Fluorometer (ThermoFisher, MA, USA) 
and the Qubit 1X dsDNA High Sensitivity (HS) Assay Kit 
(ThermoFisher, MA, USA). All DNA samples were pro-
cessed using reduced representation bisulfite sequencing 
(RRBS) at Singlera Genomics (Shanghai) Ltd. In brief, 
50 ng of input DNA underwent digestion with MspI and 
subsequent ligation with a methylated adapter contain-
ing a complementary sticky end. The ligated product 
was subjected to bisulfite conversion and amplification 
to incorporate Illumina sequencing indices. A specific 
length range of DNA was selected for sequencing. DNA 
sequencing was carried out using a NovaSeq 6000 Sys-
tem (Illumina, Inc., CA, USA). Adapters and bases with a 
quality value < 20 were removed, and reads > 30 base pairs 
were retained using Trim-Galore (version 0.6.0). Subse-
quently, the paired-end reads were merged using PEAR 
(version 0.9.6) with the parameters “-v 20 -n 30” [16] and 

n =

Z1−α/2
2
P(1− P)

d2

then aligned to the hg19 genome. The methylation of 
CpGs was extracted using Bismark (version 1.2.2) [17].

Identification of differential methylation regions 
and gene‑related annotation
The de novo identification of differential methylation 
regions (DMRs) between MTN (n = 49) vs. BTNs (n = 59) 
within the discovery cohort was carried out using 
metilene (v0.2–8) [18] with default parameters. P-value 
was adjusted using the false discovery rate (FDR). DMRs 
meeting the criteria of FDR < 0.05 and |Δβ|≥ 0.02 were 
selected for gene annotation using the Homer annotate-
Peaks tool.

Measurement of methylation haplotype blocks
Methylation haplotype blocks (MHBs), a well-established 
concept that leverages genetic linkage disequilibrium to 
assess the degree of co-methylated CpGs, were identified 
as previously described [19]. We determined methylation 
levels within an MHB using six types of measurements: 
average methylation fraction (AMF), methylated haplo-
type load (MHL), unmethylated haplotype load (UMHL), 
and proportion of discordant reads (PDR), as well as 
MHL3 and UMHL3, which assign a different weight 
corresponding to MHL and UMHL, respectively. The 
calculation formulae of these measurements have been 
detailed in our previously published study [20].

A blood leukocyte DNA methylation model development 
and validation
Using DNA methylation measurements of MHBs from 
peripheral blood leukocytes, we developed a diagnostic 
model to distinguish between MTNs and BTNs. A total 
of 33,871 MHBs with coverage ≥ 10X and < 500X in ≥ 80% 
of the samples were identified in the discovery data-
set. For each MHB, we selected one measurement type 
from the six types based on the lowest P-value using the 
Mann–Whitney U test between MTNs and BTNs. A total 
of 70 markers with P-value < 0.001 were initially obtained. 
The selection of the 60 markers was carried out using a 
Python function called “REFCV”, with the RandomForest 
estimator and 10-fold cross-validation. The optimal set of 
markers was determined recursively through cross-vali-
dation. Missing values in the discovery data were imputed 
using the KNNImputer from scikit-learn, with five neigh-
boring samples. Each validated sample had missing val-
ues imputed by the same method and was then combined 
with all discovery samples. The model was trained using 
the z-score standardized features and hyperparameters 
were determined through tenfold cross-validation on 
the discovery dataset. A validation cohort consisting of 
97 samples and an independent test cohort consisting of 
88 samples were used to evaluate the performance of this 
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model. The samples for both the discovery and valida-
tion sets were exclusively obtained from the Department 
of Interventional Radiology, Zhongshan Hospital, Fudan 
University, amounting to 205 cases. Meanwhile, samples 
for the independent test cohort were collected from the 
Department of Ultrasound, Xinhua Hospital Affiliated 
to Shanghai Jiao Tong University School of Medicine, 
totaling 88 cases. Sensitivity, specificity, PPV, and nega-
tive predictive value (NPV) were calculated using a cut-
off value which is determined through three repetitions 
of fivefold cross-validation on the discovery dataset. The 
average Youden index from discovery sets is adopted as 
the model’s cutoff threshold (Additional file 1: Fig. S1).

Statistical analysis
All statistical analyses were performed using the R soft-
ware (Version 4.1.1, R Foundation for Statistical Comput-
ing, Vienna, Austria). Categorical variables were assessed 
using Fisher’s exact tests, while continuous variables were 
analyzed using Kruskal-Wallis test. A significance level 
of 0.05 was used for statistical significance. A heatmap 
based on the selected MHB markers was generated using 
Morpheus, employing hierarchical clustering and the 
Euclidean distance as a similarity measure. For pathway 

enrichment analyses, R package clusterProfiler was 
utilized.

Results
Study design and clinical characteristics of participants
The study design is depicted in Fig. 1. This study consists 
of three phases. (1) In the discovery phase, 59 BTN and 
49 MTN patients, who had not undergone treatment, 
were enrolled to assess the genome-wide DNA methyla-
tion profiling in peripheral blood leukocyte using RRBS. 
There were no statistically significant differences in age or 
sex between patients with MTNs and BTNs (Additional 
file 1: Table S1). Differential methylation CpGs, regions, 
and haplotype blocks were identified (Additional file 2). 
Subsequently, we utilized machine learning algorithms 
for feature and model selection to construct a diagnos-
tic model for distinguishing MTN and BTN patients. (2) 
In the validation phase, this model was validated in this 
cohort comprising 55 BTN and 42 MTN patients, with 
clinical characteristics similar to the discovery cohort. 
Specifically, the model’s performance was evaluated in 
ACR TI-RADS category ≥ 4, as well as in patients with 
non-micronodules and micronodules, respectively. (3) In 
the independent test phase, 53 patients with BTNs and 35 

Fig. 1 Study design and the workflow of building a BLDM model. Upon patient admission, clinical information was collected, and peripheral 
blood was obtained for RRBS. A discovery cohort included 59 BTNs and 49 MTNs. Differential leukocyte DNA methylation between MTNs and BTNs 
were identified, and methylation features were selected to develop a methylation model. The performance of multiple methylation models 
was compared, and the optimal RF model was selected as the final model and named the BLDM model. The principle of the RF model was shown 
in the diagram, incorporating a total of 60 MHB biomarkers into the model. The model output methylation scores. The validation cohort comprised 
55 cases of BTN and 42 cases of MTN. An independent test cohort consisted of 53 BTNs and 35 MTNs. The performance of the BLDM model 
was assessed, the correlation between the methylation scores and the benign/malignant nature was analyzed, the performance of the BLDM 
model in ACR TI‑RADS category 4 and 5, and its performance in both micronodules and non‑micronodules was assessed. TN, thyroid nodule; BTN, 
benign thyroid nodule; MTN, malignant thyroid nodule; RRBS, reduced representation bisulfite sequencing; DMR, differential methylation region; 
MHB, methylation haplotype block; RF, random forest
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patients with MTNs from an external validation cohort 
were enrolled to further validate the performance of the 
model. Finally, a TN diagnostic and treatment framework 
that prioritizes patients is provided.

Peripheral blood leukocyte DNA methylation differences 
between MTNs and BTNs
For the profiling of DNA methylation in peripheral 
blood, we employed the RRBS approach, which yielded 
a substantial number of CpG sites (> 90,000) with a con-
version rate exceeding 99%. This method provided highly 
quantitative methylation data at a base-pair (bp) resolu-
tion. The global methylation ratios in peripheral blood 
showed similar patterns across the two groups (Addi-
tional file 1: Fig. S2A). Principal component analysis did 
not distinguish between MTNs and BTNs, except for 
the clear distinction based on sex differences, as evident 
in the first component (Additional file  1: Fig. S2B). We 
identified 366 DMRs between MTNs and BTNs while 
controlling FDR at a significance level of 0.05, with a 
criterion of |Δβ|≥ 0.02. The volcano plot of these DMRs 
revealed a greater number of hypomethylated regions 
in MTNs (Additional file  1: Fig. S3A), which aligned 
with the previous finding [13]. Notably, several genes 
related to immune response, including fucosyltrans-
ferase 4 (FUT4) [21], suppressor of cytokine signaling 3 
(SOCS3) [22], interferon-induced transmembrane pro-
tein 1 (IFITM1) [23], CD40 molecule (CD40) [24], and 
solute carrier family 7 member 8 (SLC7A8) [25], were 
identified and depicted in the volcano plot (Additional 
file 1: Fig. S3A). The distribution of gene locations, CpG 
islands and their shores of these DMRs was represented 
in pie charts (Additional file  1: Fig. S3B and C). Fur-
thermore, we noted that 6.83% (22 out of 366) of DMRs 
exhibited overlaps with enhancer regions, each spanning 
no less than 12 bps, as confirmed through alignment 
with enhancer database [26]. In investigating differential 
methylation within MHBs between MTNs and BTNs, we 
identified a total of 3184 MHBs. The heatmap, which has 
been scaled by subtracting the mean value and dividing 
by the standard deviation, showcases the methylation 
differential trends of top 100 MHBs (Fig. 2). As the dif-
ferentially MHBs annotated genes did not shed light on 
the biological mechanisms underlying tumorigenesis, 
we delved into enriched pathways. We found that MTNs 
exhibited significant enrichment in calcium signaling 
pathway (Additional file 1: Fig. S4).

Development and validation of a TN diagnostic model
Next, we attempt to develop a diagnostic model for 
distinguishing between MTNs and BTNs by utiliz-
ing the well-established MHBs that have already been 
employed in model construction [20, 27]. We conducted 

RFECV using a Random Forest model to further refine 
the marker set. This process resulted in a final set of 60 
MHB markers. A heatmap depicts the methylation differ-
ences among the two groups for 60 markers (Additional 
file 1: Fig. S5). Among these markers, 15 were PDR-based 
markers, 8 AMF-based markers, 10 MHL-based markers, 
5 UMHL-based markers, 6 MHL3-based markers, and 
16 UMHL3-based markers. These 60 MHB markers were 
annotated to 58 genes, and notably, 18 of these genes 
have previously reported to be associated with thyroid 
dysfunction or thyroid diseases, and 27 were involved in 
immune regulation (Additional file 1: Table S2 [28–94]).

The mean area under the curve (AUC) was 
0.930 ± 0.064 (±1 standard deviation) in the three repeti-
tions of the fivefold cross-validation analysis of the dis-
covery data (Fig. 3A). This diagnostic model exhibited a 
high AUC of 0.858 (95% CI 0.820–0.902) in the validation 
cohort (Fig. 3B), using a cutoff value of 0.51 determined 
from the discovery data (Fig.  3C). Based on this crite-
rion, the BLDM model correctly identified 50 out of 55 
BTNs as benign, and it accurately detected 35 out of 42 
MTNs as malignancy (Additional file 3). While the sen-
sitivity of the BLDM model was lower compared to ultra-
sonography (83.33% vs. 97.62%), its specificity showed a 
significant improvement (90.91% vs. 43.64%; Fig. 3D and 
Table  1). The PPV of the BLDM model outperformed 
that of ultrasonography (87.50% vs. 56.94%), although 
the NPV of it was lower compared to ultrasonography 
(87.72% vs. 96.00%; Fig. 3E).

Independent test of the BLDM model to distinguish MTNs 
and BTNs
The BLDM demonstrated an AUC of 0.863 (95% CI 
0.837–0.900) in the independent test cohort (Fig.  3B). 
It correctly identified 47 out of 53 BTNs as benign and 
accurately recognized 29 out of 35 MTNs as malignant 
(Additional file  4). Compared to ultrasonography (sen-
sitivity: 100.00%; specificity: 47.17%), the sensitivity of 
the BLDM model was lower (82.86%), while its specific-
ity showed a significant improvement (88.68%) (Fig.  3D 
and Table 1). The PPV of the BLDM model outperformed 
that of ultrasonography (82.86% vs. 55.56%), although 
the NPV of it was lower compared to ultrasonography 
(88.68% vs. 100.00%) (Fig.  3E). Therefore, the BLDM 
model exhibits substantial potential as a diagnostic tool 
for TNs in specimens displaying distinctive epigenetic 
signatures.

The BLDM model for enhanced diagnosis of suspicious TNs
In the validation and independent tests, there were 
initially 20 and 17 patients presenting moderately sus-
picious MTNs, respectively, categorized as ACR TI-
RADS category 4. Additionally, in both cohorts, 11 
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patients with highly suspicious MTNs classified under 
ACR TI-RADS category 5 were all histologically con-
firmed as benign following core needle biopsy. Remark-
ably, employing our model, 19 out of 20 cases (95.00%) 
within ACR TI-RADS 4 and 10 out of 11 cases (90.91%) 
in ACR TI-RADS 5 were accurately predicted as benign 
in the validation cohort (Fig.  3F). In the independent 
test cohort, our model accurately predicted 15 out of 
17 benign cases (88.24%) within ACR TI-RADS 4 and 
correctly identified 9 out of 11 benign cases (81.82%) in 

ACR TI-RADS 5. This achievement reflects the impres-
sive accuracy of the model, reaching 89.83%.

The performance of the BLDM model in ACR TI‑RADS 
categories 4 and 5
In the context of ACR TI-RADS ≥ 4, the BLDM model 
exhibited an impressive AUC of 0.869 (95% CI: 0.769–
0.968) and 0.822 (95% CI: 0.710–0.935) in the valida-
tion cohort and independent test cohort, respectively, 
surpassing that of ultrasonography. The sensitivity, 

Fig. 2 A heatmap displaying top 100 differential MHB markers identified in MTN and BTN groups using Z‑scores, with clinicopathological details 
presented on the right side. Significant methylation differences can be observed between the MTN and BTN groups. MHB, methylation haplotype 
block; BTN, benign thyroid nodule; MTN, malignant thyroid nodule; PTC, papillary thyroid carcinoma; PTMC, papillary thyroid microcarcinoma



Page 7 of 15Wang et al. BMC Medicine          (2024) 22:147  

specificity, and accuracy of the BLDM model in the 
validation cohort reached noteworthy levels at 88.57%, 
93.55%, and 90.91%, respectively (Additional file  1: Fig. 
S6A). Furthermore, within the ACR TI-RADS 4 sub-
group, the BLDM model performed exceptionally well, 
achieving an AUC of 0.910 (95% CI: 0.786–1.000). Com-
paratively, the BLDM model displayed a higher specific-
ity, accuracy, and NPV in ACR TI-RADS 4, surpassing 

ACR TI-RADS 5 (Additional file  1: Fig. S6B and C). In 
the independent test cohort, the BLDM model achieved 
impressive sensitivity, specificity, and accuracy lev-
els of 82.86%, 85.71%, and 84.13%, respectively (Addi-
tional file  1: Fig. S6D). Within the ACR TI-RADS 4 
subgroup, the BLDM model obtained an AUC of 0.843 
(95% CI: 0.676–1.000). In ACR TI-RADS 5, the BLDM 
model attained an AUC of 0.783 (95% CI: 0.583–0.982). 

Fig. 3 The performance of the BLDM model comparison with ACR TI‑RADS. Receiver operating characteristic (ROC) curves of the BLDM 
model, showcasing its performance in the discovery cohort (A), a validation cohort and an independent test cohort, respectively (B). The 
area under the curve (AUC) scores are presented, along with 95% confidence interval values. C Methylation scores assigned to TN specimens 
in the validation cohort and independent test cohort. A threshold of 0.51 was set to distinguish between MTNs and BTNs. D A comparison 
of the sensitivity and specificity of US and the BLDM model in predicting MTNs. E The PPV and NPV of US and the BLDM model. Sample numbers 
in each category are presented at the bottom of the chart. F The diagnostic performance of the BLDM model specifically in BTN patients with ACR 
TI‑RADS category ≥ 4 in the validation cohort and independent test cohort. BTN, benign thyroid nodule; MTN, malignant thyroid nodule; TN, thyroid 
nodule; US, ultrasonography; TP, true positive; FP, false positive; TN, true negative; FN, false negative; PPV, positive predictive value; NPV, negative 
predictive value

Table 1 Application of the BLDM model and ultrasonography in identifying MTN and BTN samples

MTN Malignant thyroid nodule, BTN Benign thyroid nodule, US Ultrasonography, PPV Positive predictive value, NPV Negative predictive value, AUC  Area under the 
curve

(%) Validation cohort Independent test cohort

 > 10 mm  ≤ 10 mm  > 10 mm  ≤ 10 mm

BLDM US BLDM US BLDM US BLDM US BLDM US BLDM US

Sensitivity 83.33 97.62 66.67 83.33 86.11 100 82.86 100.00 75.00 100.00 83.87 100.00

Specificity 90.91 43.64 90.00 57.50 93.33 6.67 88.68 47.17 85.71 67.86 92.00 24.00

Accuracy 87.63 67.01 86.96 60.87 88.24 72.55 86.36 68.18 84.38 71.88 87.50 66.07

PPV 87.50 56.94 50.00 22.73 96.88 72.00 82.86 55.56 42.86 30.77 92.86 62.00

NPV 87.72 96.00 94.74 95.83 73.68 100.00 88.68 100.00 96.00 100.00 82.14 100.00

AUC 0.86 0.85 0.87 0.87 0.86 0.65 0.86 0.82 0.87 0.98 0.86 0.68
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Similarly, the BLDM model demonstrated higher sen-
sitivity, specificity, accuracy, and NPV in the ACR TI-
RADS 4 category (Additional file 1: Fig. S6E and F).

Comparison of the BLDM model and ACR TI‑RADS 
for detecting non‑micronodules
The BLDM model demonstrated an AUC of 0.873 (95% 
CI: 0.770–0.976), similar to ACR TI-RADS (Fig.  4A), 
while maintaining notably higher specificity and accu-
racy compared to ACR TI-RADS (specificity: 90.00% 
vs. 57.50%; accuracy: 86.96% vs. 60.87%) in the vali-
dation cohort. In contrast, ACR TI-RADS achieved a 
higher sensitivity of 83.33% compared to BLDM’s 66.67% 
(Fig.  4B and Table  1). In the independent test cohort, 
the BLDM model demonstrated an AUC of 0.866 (95% 
CI: 0.694–1.000) (Additional file 1: Fig. S7A), featuring a 
specificity of 85.71% and an accuracy of 84.38%, consist-
ent with its performance in the validation cohort, out-
performing ACR TI-RADS. Additionally, the sensitivity 
of BLDM was lower than that of ACR TI-RADS (Table 1 
and Additional file  1: Fig. S7B). Among non-micro-
nodules in the validation cohort, 23 patients were cat-
egorized within ACR TI-RADS categories 1–3, and the 
BLDM model accurately predicted 20 as benign. On the 
other hand, there were 15 cases with ACR TI-RADS cate-
gory 4, but they were pathologically diagnosed as benign. 
In this scenario, the model correctly identified the vast 
majority (14 out of 15 cases) of benign patients. Among 

the three patients classified as ACR TI-RADS 5, two of 
them were BTNs, and the model made correct predic-
tions for both (Fig. 4C). Among the 8 cases categorized as 
ACR TI-RADS 4 but pathologically confirmed as benign 
in the independent test cohort, the model correctly iden-
tified 75.00% (6/8) of the BTNs. In the 3 cases classified 
as ACR TI-RADS 5, one patient was pathologically con-
firmed as benign, and the model accurately identified this 
case (Additional file 1: Fig. S7C).

The BLDM model effectively distinguished papillary 
thyroid microcarcinoma (PTMC) from benign micronodules
Considering the limitations in the diagnostic perfor-
mance of micronodules using ultrasonography, we con-
ducted further investigations to determine whether our 
model could effectively distinguish PTMC from BTN 
(≤ 10 mm). Remarkably, our model demonstrated excep-
tional discriminatory capabilities, achieving an AUC 
of 0.856 (95% CI: 0.717–0.994) in the validation cohort 
and 0.858 (95% CI: 0.794–0.968) in the independent test 
cohort (Fig. 4D and Additional file 1: Fig. S7D). In con-
trast, the AUC for ACR TI-RADS was 0.648 (95% CI: 
0.469–0.827) in the validation cohort and 0.677 (95% 
CI: 0.533–0.822) in the independent test cohort. The 
sensitivity of ACR TI-RADS was higher than that of the 
BLDM model (100% vs. 86.11% in the validation cohort 
and 100% vs. 83.87% in the independent test cohort), 
while its specificity and accuracy were lower than that 

Fig. 4 Performance of the BLDM model in classifying MTN and BTN samples in both non‑micronodules and micronodules within the validation 
cohort. A Area under the curve (AUC) scores of the BLDM model and US for non‑micronodules. B Comparing the performance of the BLDM model 
and US in non‑micronodules. C The diagnostic performance of the BLDM model for non‑micronodules across different ACT TI‑RADS categories. 
D AUC scores of the BLDM model and US for micronodules. E Comparing the performance of the BLDM model and US in micronodules. F The 
diagnostic performance of the BLDM model for micronodules across different ACT TI‑RADS categories. BTN, benign thyroid nodule; MTN, malignant 
thyroid nodule; US, ultrasonography
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of BLDM (specificity: 6.67% vs. 93.33% in the validation 
cohort and 24.00% vs. 92.00% in the independent test 
cohort; accuracy: 72.55% vs. 88.24% in the validation 
cohort and 66.07% vs. 87.50% in the independent test 
cohort; Fig.  4E and Additional file  1: Fig. S7E). Among 
patients with micronodules, the BLDM model correctly 
classified all patients with ACR TI-RADS 4 as patho-
logically benign (5/5), and the vast majority of patients 
with ACR TI-RADS 5 as pathologically benign (8/9) in 
the validation cohort (Fig.  4F). In the independent vali-
dation cohort, the BLDM model consistently identified 
all patients with pathologically confirmed BTNs in the 
ACR TI-RADS 4 and 80.00% (8/10) of pathologically 
confirmed BTNs in ACR TI-RADS 5 category (Addi-
tional file 1: Fig. S7F). The BLDM model exhibits higher 
sensitivity, specificity, accuracy, and PPV compared to its 
performance in non-micronodules, highlighting its supe-
riority in micronodule patients.

Additionally, we observed that methylation scores 
were only associated with malignancy status (Fig.  5A 
and Additional file 1: Fig. S8A), with no significant cor-
relations observed with age, sex, ACR TI-RADS category, 
and nodule size (Fig.  5B–E and Additional file  1: Fig. 
S8B–E).

Application of the BLDM model in the diagnosis 
and treatment of TNs
All patients with TNs who visited the hospital under-
went ultrasonography examinations, which encom-
passed various parameters. Patients falling under ACR 
TI-RADS categories 1–3 were recommended for surgery, 
thermal ablation, or follow-up in accordance with guide-
lines [95–97]. On the other hand, patients categorized 
as ACR TI-RADS 4–5 were recommended to undergo 
blood tests. The BLDM predicted results indicated that 
patients predicted to have BTNs followed the same treat-
ment process as ACR TI-RADS 1–3 category patients. 

Patients predicted to have MTNs according to BLDM 
were advised to undergo cytological examination. Cyto-
logical examination for patients with BTNs followed the 
recommended guidelines for surgery, thermal ablation, 
or follow-up. For patients with MTNs identified through 
cytological examination, the choice of treatment, includ-
ing thermal ablation, was based on factors such as nodule 
size and malignancy (Fig. 6). Incorporating blood BLDM 
examinations can help avoid unnecessary FNA biopsies, 
and it can offer a more rational and efficient treatment 
approach for TN patients.

Discussion
The diagnosis of thyroid cancer has long presented chal-
lenges because of the overlapping ultrasonography fea-
tures seen in both BTNs and MTNs. Although various 
thyroid imaging systems have undeniably improved the 
accuracy of diagnostic evaluations, there is still room for 
further improvement in their performance. For a consid-
erable duration, the implementation of ACR TI-RADS 
has indeed contributed to the improved diagnostic accu-
racy of TNs. However, a significant issue persists where 
many patients undergo unnecessary biopsies, primar-
ily due to the relatively low specificity of ACR TI-RADS 
categories 4 and 5. A meta-analysis conducted by Kang 
et al. demonstrated that the sensitivity of ACR TI-RADS 
4 reached 94.37%, but its specificity was notably low, 
standing at only 52.24%. In comparison, the specific-
ity of ACR TI-RADS 5 was better at 86.96%, surpassing 
TR4 [98]. Furthermore, another prospective study that 
compared the diagnostic performance of ACR TI-RADS, 
K-TIRADS, and ATA guidelines revealed that the speci-
ficity of ACR TI-RADS 4/5 was only 66.3%, with a PPV 
of 30.6%. Notably, the rate of unnecessary FNA for cases 
classified under ACR TI-RADS was as high as 32.0% [99]. 
There are very few diagnostic models based on blood 
leukocytes. However, blood leukocytes not only provide 

Fig. 5 Association of clinical features and methylation scores in the validation cohort. The scatter plots depict methylation scores in relation 
to pathology (A), age (B), gender (C), ACR TI‑RADS (D), and nodule sizes (E). The black horizontal line represents the median methylation levels. 
BTN, benign thyroid nodule; MTN, malignant thyroid nodule; BTMN, benign thyroid micronodule; PTC, papillary thyroid carcinoma; PTMC, papillary 
thyroid microcarcinoma. **P < 0.01, ***P < 0.001
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the advantage of convenient and swift sampling but are 
also highly adaptable to testing. In this context, we have 
introduced an innovative approach centered on periph-
eral blood leukocyte DNA methylation to differenti-
ate between MTNs and BTNs. In our study, the BLDM 
model exhibited superior specificity when compared to 
ACR TI-RADS, with a specificity of 90.91% versus 43.64% 
in the validation cohort and a specificity of 88.68% ver-
sus 47.17% in the independent test cohort. This superior 
performance was particularly notable in ACR TI-RADS 4 
and ACR TI-RADS 5 categories. This enhanced diagnos-
tic capability of the BLDM model effectively identified 
cases of BTNs initially suspected as thyroid cancer based 
on ultrasonography.

Furthermore, for micronodules, the diagnostic per-
formance of ACR TI-RADS had a sensitivity of 78.3%, 
specificity of 57.1%, and overall accuracy of 73.9%. 
These findings were consistent with those of another 
study by Qi et  al., which assessed the diagnostic effi-
cacy of five different systems (C-TIRADS, ACR 
TI-RADS, Kwak-TIRADS, KSThR-TIRADS, and EU-
TIRADS) using a total of 1096 nodules (682 benign 
and 414 malignant). For micronodules, ACR TI-
RADS demonstrated a sensitivity of 70.4%, specificity 

of 68.4%, PPV of 53.2%, and an accuracy of 69.1%. In 
comparison, EU-TIRADS exhibited values of 77.5% for 
sensitivity, 60.4% for specificity, 50.0% for PPV, and 
66.2% for accuracy, respectively [100]. In our study, the 
BLDM model exhibited a strong capacity to differenti-
ate between PTMC and micronodular BTN. It achieved 
a sensitivity of 86.11%, specificity of 93.33%, and an 
overall accuracy of 88.24% in the validation cohort and 
a sensitivity of 83.87%, specificity of 92.00%, and accu-
racy of 87.50% in the independent test cohort. All of 
these confirm that the application of the BLDM model 
has the potential to significantly improve diagnostic 
accuracy, particularly in patients with indeterminate 
TNs on ultrasonography and in the case of micronod-
ules, with the potential to reduce unnecessary biop-
sies. Worth mentioning is, in both the validation and 
independent test cohorts, the percentage of MTNs in 
patients with nodules ≤ 10  mm (micronodules) was 
higher (36/51 cases, 70.59% and 31/56 cases, 55.36%) 
compared to the proportion of MTNs in patients with 
TNs larger than 10  mm (non-micronodules) (6/36 
cases, 13.04% and 4/32 cases, 12.50%). This situation 
arises due to the majority of patients with micronod-
ules enrolled in the department of interventional 

Fig. 6 Patient examination and treatment flowchart. 1. Patient admission; 2. Ultrasonography examination and ACR TI‑RADS classification; 3. 
Management recommendations (ACR TI‑RADS 1–3) or blood tests (ACR TI‑RADS 4–5) according to ACR TI‑RADS categories; 4. Management 
recommendations (BLDM predicted BTNs) or pathological examination (BLDM predicted MTNs) according to methylation scores. The red lines 
represent the clinical application of the BLDM model, while the green lines represent the patient management recommended by guidelines 
or expert consensus. TN, thyroid nodule; BTN, benign thyroid nodule; MTN, malignant thyroid nodule; PTMC, papillary thyroid microcarcinoma



Page 11 of 15Wang et al. BMC Medicine          (2024) 22:147  

radiology had ACR TI-RADS grades of 4–5. This 
highlights that our model effectively addresses the 
challenge of low ultrasonography specificity in TN 
patients, particularly those with micronodules (ACR 
TI-RADS 4–5 micronodules). Leveraging the excel-
lent diagnostic performance of the BLDM model can 
facilitate early diagnosis and non-invasive monitoring 
for individuals with TNs. This offers them the option 
to undergo minimally invasive treatments. It is crucial 
to emphasize that the model is not intended to replace 
ultrasonography or FNA but rather to reduce the 
necessity for unnecessary biopsies.

Blood leukocytes play a crucial role in the immune 
system, participating in various aspects of the immune 
signaling pathways. This includes the presence of mul-
tiple receptors on the surface of blood leukocytes, 
such as T cell receptors, B cell receptors, and antigen-
presenting receptors [101, 102]. These receptors are 
responsible for recognizing foreign antigens and trig-
gering immune signal transduction pathways. Blood 
leukocytes also play a significant role in inflammation 
response and immune cell activation [103–105]. Meth-
ylation can influence the expression of immune-related 
genes in leukocytes, including antigen-presenting 
genes, immune checkpoint genes, and effector mol-
ecules of cytotoxic T cells, with profound implications 
for immune evasion, and immune suppression [106, 
107]. Furthermore, this study revealed that the calcium 
signaling pathway is the most significantly enriched 
pathway. Calcium signaling plays a crucial role in B cell 
development and can be intricately regulated through 
B cell receptor (BCR)-dependent pathways, which sig-
nificantly contribute to the mechanisms that maintain 
self-tolerance. Numerous studies have established a 
link between the disruption of calcium signaling and 
the breakdown of tolerance, which ultimately leads 
to the development of autoimmunity in genetically 
modified mouse strains [108, 109]. The role of altered 
calcium flux in B cells has also been discussed in the 
context of thyroid autoimmunity in a prior study [110]. 
These findings may provide an explanation for why 
the calcium signaling pathway emerges as the most 
prominent pathway in MTN patients. Does the origin 
of DNA methylation markers in the diagnostic model 
lie exclusively with B cells? This will be further investi-
gated in our subsequent research to explore the source 
and mechanisms of these markers. In this study, the 
BLDM model is designed for distinguishing between 
MTNs and BTNs and is not suitable for general health 
screening in the population. In subsequent studies, we 
will incorporate samples from healthy individuals to 
develop a more convenient and non-invasive method 
for TN screening.

Conclusions
This is the first study to demonstrate that blood leuko-
cyte DNA methylation is a non-invasive diagnostic tool 
for TNs, thus reducing the need for unnecessary FNA. 
Our research findings indicate that blood leukocyte 
DNA methylation is well-suited for TN diagnosis when 
ultrasonography is inconclusive, aiding in patient triage. 
Therefore, we propose a thyroid nodule diagnostic and 
treatment framework, offering more treatment options 
for certain BTN patients and those with microcarcino-
mas. We aim to improve the current issue of overdiag-
nosis and overtreatment of TNs in China, making the 
diagnosis and treatment process for TNs more rational 
and efficient.
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