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Abstract 

Background A better understanding of lung cancer etiology and the development of screening biomarkers have 
important implications for lung cancer prevention.

Methods We included 623 matched case–control pairs from the Cancer Prevention Study (CPS) cohorts. Pre-
diagnosis blood samples were collected between 1998 and 2001 in the CPS-II Nutrition cohort and 2006 and 2013 
in the CPS-3 cohort and were sent for metabolomics profiling simultaneously. Cancer-free controls at the time of case 
diagnosis were 1:1 matched to cases on date of birth, blood draw date, sex, and race/ethnicity. Odds ratios (ORs) 
and 95% confidence intervals (CIs) were estimated using conditional logistic regression, controlling for confounders. 
The Benjamini–Hochberg method was used to correct for multiple comparisons.

Results Sphingomyelin (d18:0/22:0) (OR: 1.32; 95% CI: 1.15, 1.53, FDR = 0.15) and taurodeoxycholic acid 3-sulfate 
(OR: 1.33; 95% CI: 1.14, 1.55, FDR = 0.15) were positively associated with lung cancer risk. Participants diagnosed 
within 3 years of blood draw had a 55% and 48% higher risk of lung cancer per standard deviation increase in natural 
log-transformed sphingomyelin (d18:0/22:0) and taurodeoxycholic acid 3-sulfate level, while 26% and 28% higher risk 
for those diagnosed beyond 3 years, compared to matched controls. Lipid and amino acid metabolism accounted 
for 47% to 80% of lung cancer-associated metabolites at P < 0.05 across all participants and subgroups. Notably, ever-
smokers exhibited a higher proportion of lung cancer-associated metabolites (P < 0.05) in xenobiotic- and lipid-associ-
ated pathways, whereas never-smokers showed a more pronounced involvement of amino acid- and lipid-associated 
metabolic pathways.

Conclusions This is the largest prospective study examining untargeted metabolic profiles regarding lung cancer 
risk. Sphingomyelin (d18:0/22:0), a sphingolipid, and taurodeoxycholic acid 3-sulfate, a bile salt, may be risk factors 
and potential screening biomarkers for lung cancer. Lipid and amino acid metabolism may contribute significantly 
to lung cancer etiology which varied by smoking status.
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Background
According to Global Cancer Statistics 2020, lung cancer 
accounts for 11.4% of the 19.3 million newly diagnosed 
cancer cases and remains the leading cause of cancer 
mortality [1]. Lung cancer is a heterogeneous tumor 
with several differentiation types. It is often diagnosed at 
an advanced stage and the 5-year survival rate is 24.6% 
[2–4]. The pathogenesis of lung cancer is believed to be 
influenced by gene-environment interaction [5, 6]. Varia-
bility in cellular, molecular, and genetic characteristics in 
lung cancer histological types has been well-documented 
[2]. Along with the change in the environmental and 
behavioral risk factors, the distribution of lung cancer 
displays great demographic, temporal, and geographical 
variability [7]. Surprisingly, epidemiological findings have 
shown that approximately 25% of lung cancer cases are 
not attributable to tobacco smoking, and the rate of lung 
cancer in never-smokers is increasing [8, 9]. Numerous 
studies have shown disparities in epidemiological, clini-
cal, and molecular characteristics arising in smokers and 
never-smokers, indicating the possibility of distinct eti-
ologies for the development of lung cancer in each group 
[8, 10]. A better understanding of the heterogeneity in 
lung cancer etiology has important implications in pre-
vention, early detection and diagnosis, tumor classifica-
tion, prognosis, and personalized therapeutic decision.

Over the past decades, metabolomics has emerged as 
a promising technique of studying the comprehensive 
metabolic profile in biospecimen, providing valuable 
information for the practice of precision medicine [11]. 
As substantially altered metabolism has been proven to 
be a hallmark in cancer cells [12, 13], the application of 
metabolomics in lung cancer provides an outstanding 
opportunity to elucidate the etiology and identify poten-
tial screening and early detection biomarkers. A growing 
number of metabolomics studies have examined lung 
cancer-driven metabolic changes in different biosamples 
[14]. Most studies have focused on characterizing the 
metabolic signatures differentiated by histological types 
in blood-based samples [15–17], while few have focused 
on stage-differentiated metabolic signatures [17–20]. 
Notably, these previous studies were mostly targeted 
metabolomics analyses, which focused on a limited num-
ber of metabolic endpoints. Overall, the existing findings 
display considerable heterogeneity among the studies. No 
metabolites were replicated and validated across stud-
ies, thereby limiting broad inference and the potential 
for their development as clinically applicable biomark-
ers [14]. To our knowledge, only one untargeted metab-
olomics application has been conducted in lung cancer 
research [21] and none have been performed in the USA.

To address these critical knowledge gaps, we conducted 
a comprehensive and exploratory metabolomics study 

on lung cancer within the Cancer Prevention Studies 
(CPS) [22, 23]. These well-constructed large prospective 
cohorts have pre-diagnosis samples with comprehensive 
information on lifestyle factors, and long-term follow-
up provides a unique opportunity to better understand 
potential metabolic signatures in pre-diagnosis stage 
associated with lung cancer etiology.

Methods
Study design and population
Lung cancer cases and matched controls included in 
this analysis are participants from the CPS-II Nutrition 
cohort and ongoing CPS-3 cohort. At enrollment of the 
CPS-II Nutrition cohort in 1992–1993, participants com-
pleted a self-administered questionnaire that included 
anthropometric, demographic, dietary, lifestyle, and 
medical information. Follow-up questionnaires were sent 
to the cohort participants in 1997 and every other year 
thereafter to update exposures and to ascertain newly 
diagnosed cancers. A subset of 39,371 CPS-II Nutrition 
cohort participants provided a non-fasting blood samples 
between 1998 and 2001, and the information on demo-
graphic characteristics and other covariates in the analy-
sis was assessed from the survey collected at blood draw 
or the 1999 survey. At enrollment of the CPS-3 cohort 
between 2006 and 2013, participants provided informed 
consent, a non-fasting blood sample and completed a 
brief enrollment survey on demographic characteristics 
and other covariates. Follow-up questionnaires were sent 
to active participants in 2015 and every 3 years to update 
exposures and ascertain newly diagnosed cancer cases. 
Detailed descriptions of the two cohorts can be found 
elsewhere [22, 23]. All aspects of the CPS-II Nutrition 
cohort (IRB00045780) and CPS-3 cohort (IRB00059007) 
were reviewed and approved by the Emory University 
Institutional Review Board.

A total of 1913 lung cancer cases were identified in the 
CPS-II Nutrition cohort through June 2015 and 176 lung 
cancer cases were identified in the CPS-3 Cohort through 
December 2015. Cases in the CPS-II Nutrition cohort 
were first identified through self-report and then were 
verified with medical records, state cancer registry link-
age, or linkage with the National Death Index (defined 
by ICD-10 codes C33 and C34, excluding histology 
codes ≥ 9590). Cases in the CPS-3 cohort were identified 
primarily through linkage with state cancer registries, 
and a small proportion were identified by self-report that 
were verified by medical records during tumor collection. 
We applied a series of exclusion criteria to include par-
ticipants (Additional file 1: Fig. S1). As a result, 500 and 
123 lung cancer cases from the CPS-II Nutrition cohort 
and CPS-3 cohort were included in the analysis, respec-
tively. Controls who were cancer-free at the time of case 



Page 3 of 15Tang et al. BMC Medicine          (2024) 22:262  

diagnosis were matched 1:1 to cases on age at blood draw 
(± 6  months), sex, race/ethnicity, and blood draw date 
(± 30 days).

Metabolomics profiling
The pre-diagnosis blood samples collected from both 
cohorts were sent to Metabolon, Inc. (Durham, NC, 
USA) for untargeted metabolomics profiling simultane-
ously, using ultrahigh-performance liquid chromatogra-
phy-tandem mass spectrometry (UPLC-MS/MS) analysis 
techniques. A detailed process was described elsewhere 
[24, 25] and in supplemental materials.

A total of 1,401 metabolites were detected. After fil-
tering metabolites that were unknown (n = 238), were 
missing technical intraclass correlation coefficient (ICC) 
(n = 34), with ICC <   50% (n = 201), and were undetect-
able in > 90% of samples (n = 41), 887 known metabolites 
were included in the statistical analysis with an average 
ICC of 84% (interquartile range (IQR): 77–94%) and the 
coefficient of variation (CV)% of 24% (IQR: 12–30%).

Statistical analysis
As metabolomics assessments were conducted simulta-
neously for cases and controls in both cohorts, we per-
formed a pooled analysis. Metabolites were naturally 
log-transformed and auto-scaled to approximate normal 
distribution before formal analysis.

Covariate data obtained in each cohort were harmo-
nized. The characteristics between lung cancer cases and 
matched controls were compared using Student’s t-test 
for continuous variables and Pearson’s chi-squared test 
for categorical variables. For the primary pooled analy-
sis, we applied conditional logistic regression to estimate 
the odds ratio (OR) and 95% confidence interval (CI) 
per one standard deviation increase in the naturally log-
transformed level of each known metabolite with lung 
cancer risk. The statistical models were conditioned on 
the matching variables and controlled for the body mass 
index (BMI) group (underweight: < 18.5  kg/m2, nor-
mal weight: 18.5–25  kg/m2, overweight: 25–30  kg/m2, 
obese: ≥ 30  kg/m2), hours since last meal (continuous; 
to account for length of fasting), physical activity (con-
tinuous; hours/week), fruits and vegetables consumption 
(continuous; servings/week), smoking status (categorical: 
never, former, current, and unknown), and hormone use 
(categorical: not a current user, current user, not appli-
cable, unknown). Physical activity estimates the average 
total hours per week of walking or exercise in the CPS-
II Nutrition cohort, while it estimates the average hours 
per day during the past 2  years in the CPS-3 cohort. 
We harmonized the variables and converted them into 
hours per week. The covariates were selected based on 
the literature review and a Directed Acyclic Graph. We 

removed the observations with any missing data for con-
tinuous covariates. We assigned an unknown category 
for missing data for categorical covariates. If a case was 
removed, its matching control was removed simultane-
ously, and vice versa. For the primary pooled analysis, 
116 case–control pairs were removed due to missing 
values in hours since the last meal, physical activity, and 
fruit and vegetable consumption for either case or its 
matching control (Additional file 1: Fig. S1). Benjamini–
Hochberg approach was used to calculate false discovery 
rates (FDRs) to correct for multiple comparisons. Metab-
olites associated with lung cancer risk at FDR < 0.2 were 
deemed statistically significant. To gain more biologi-
cal responses of lung cancer, we focused on metabolites 
associated with lung cancer risk at P < 0.05 (P-value from 
statistical models before multiple comparison correc-
tions) and further described and summarized the path-
ways in which these metabolites were involved.

We conducted an agglomerative hierarchical clustering 
analysis to group the lung cancer-associated metabolites 
(P < 0.05) based on their similarities. Pearson correla-
tion was calculated between each pair of metabolites and 
then used for distance measure. Euclidean distance was 
computed between each pair of metabolites and returned 
the distance matrix. We then used the Ward clustering 
method to compute the similarity of the two clusters for 
merging [26]. The R package “pheatmap” was used for 
this analysis and result visualization.

We further examined the associations stratified by 
sex and by years between blood draw and lung cancer 
diagnosis (< 3 years, ≥ 3  years) using conditional logistic 
regression with the same set of covariates but excluding 
hormone use for males. The goal of the stratified analysis 
by years since the blood draw was to identify metabolites 
that may potentially serve as early detection biomarkers 
of lung cancer. Additionally, we stratified the analysis by 
smoking status (never, ever), by stage (localized, regional, 
distant), and by histological subtypes (squamous cell car-
cinoma, adenocarcinoma) using unconditional logistic 
regression, adjusting for matching variables as well as 
BMI group, hours since last meal, physical activity, fruits 
and vegetables consumption, hormone use, and smok-
ing status (only for stage- and subtype-stratified analy-
ses). For stratified analyses by smoking status, stage, and 
subtype where the unconditional logistic regression was 
applied, matching factors were adjusted as covariates in 
the model. If a case was removed due to missing covari-
ates, its matching control would not be removed if the 
control has completed the covariates information, and 
vice versa. The lung cancer stage was examined accord-
ing to the Surveillance, Epidemiology and End Results 
(SEER) stage at diagnosis: localized (invasive tumors 
confined to the lung); regional (tumors that extend to 
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adjacent tissue or regional lymph nodes); distant (tumors 
are metastasized). The lung cancer histological subtype 
was categorized using ICD-O-3 morphology codes [27]. 
The morphology codes for each subtype can be found 
in supplementary materials. P for interaction was calcu-
lated using the likelihood ratio test. To test heterogeneity 
by stage and by subtype, we used the “eh_test_subtype” 
function in the R package “riskclustr” [28]. This func-
tion is designed for the test of etiologic heterogeneity 
across disease subtypes in the context of the case–control 
study. P-heterogeneity < 0.05 was considered statistically 
significant.

To examine the robustness of the results, we conducted 
a series of sensitivity analyses: (1)  we recategorized 
the smoking variables into 7 categories (never, current 
smoker for < 50  years, current smoker for ≥ 50  years, 
former smoker quit < 10  years ago, former smoker quit 
10–20  years ago, former smoker quit ≥ 20  years ago, 
unknown) based on smoking status and duration of 
time and adjusted it in the main analysis; (2) we further 
adjusted for cohort (CPS-II Nutrition, CPS-3) in the 
analysis to evaluate if any differences between cohorts 
(e.g., age of blood samples) would affect the main analysis 
results; (3) we also examined the associations stratified 
by years between blood draw and lung cancer diagnosis 
(< 5 years, ≥ 5 years).

All analyses were conducted using R (version 4.1.0.).

Results
Population characteristics
A total of 623 case–control pairs with an average age of 
66.9 (± 8.6) years at blood draw were included in the anal-
ysis. Among the 1246 participants, 52.5% were female 
and the majority (96.1% in cases and 96.6% in controls) 
were white. Compared with controls, the average hours 
since the last meal for lung cancer cases was smaller. 
Additionally, cases were more likely to be current and 
former smokers (Table  1). Lung cancer cases were on 
average diagnosed at an age of 72.9 (± 10.3) years and the 
median time between blood draw and lung cancer diag-
nosis was 5.0 years (IQR: 7.0 years). Among cases, 46.5% 
were at a distant stage and 50.1% were adenocarcinoma.

Sixty‑two metabolites were associated with lung cancer 
risk, mainly in lipid and amino acid metabolism
In the main analysis, two metabolites were significantly 
associated with lung cancer risk: sphingomyelin (SM) 
(d18:0/22:0) (OR: 1.32, 95% CI: 1.13, 1.53; FDR = 0.15) 
and taurodeoxycholic acid 3-sulfate (OR: 1.33, 95% CI: 
1.14, 1.55; FDR = 0.15) (Figs.  1 and 2, Additional file  2: 
Table S1). A total of 62 metabolites were associated with 
lung cancer risk at P < 0.05 (Fig. 2). Among the 62 metab-
olites, 37 metabolites showed positive associations (OR 

range: 1.15–1.33) and 25 had negative associations (OR 
range: 0.78–0.87) with lung cancer risk. Agglomerative 
hierarchical clustering analysis among the 62 metabolites 
revealed that an additional 2 SMs and 1 dihydroceramide 
are moderately to highly correlated with SM (d18:0/22:0) 
(Fig. 3). These metabolites were characterized mainly as 
lipids (39%), amino acids (24%), and xenobiotics (11%). 
(Additional file  1: Fig. S2). The lipid metabolism can 
include seven categories including sphingolipids, bile 
acids, phospholipids, fatty acids, glycerolipids, steroids, 
and eicosanoids. Specifically, higher levels of the metab-
olites identified in sphingolipid metabolism (OR range: 
1.15–1.32), bile acid metabolism (OR range: 1.17–1.33), 
and fatty acid metabolism (OR range: 1.18–1.28) were 
associated with a higher risk of developing lung cancer 
(Additional file 2: Table S2). For the metabolites in sphin-
golipid metabolism, three were dihydrophingomyelins, 
two were dihydroceramides, and one was sphingomyelin. 
For metabolites in bile acid metabolism, one belonged 
to primary bile acid metabolism, while the other five 
belonged to secondary bile acid metabolism. The amino 
acids metabolism mainly contains arginine and proline 
metabolism, branched-chain amino acid metabolism, 
and aromatic amino acid metabolism. Likewise, higher 
levels of the metabolites identified in branched-chain 
amino acid metabolism (OR range: 1.16–1.19) were asso-
ciated with a higher risk of developing lung cancer (Addi-
tional file 2: Table S3).

SM (d18:0/22:0) and taurodeoxycholic acid 3‑sulfate were 
consistently positively associated with lung cancer risk 
across strata
SM (d18:0/22:0) was consistently positively associated 
with lung cancer risk across strata, though the asso-
ciations in some strata were not statistically significant 
(P < 0.05). When stratified by sex, SM (d18:0/22:0) was 
associated with (P < 0.05) higher lung cancer risk in 
both men and women (P-heterogeneity = 0.50) (Table 2). 
Notably, among cases diagnosed within 3 years of blood 
draw (n = 177), one standard deviation increase in natu-
ral log-transformed SM (d18:0/22:0) levels was associ-
ated with 55% higher risk of lung cancer (OR: 1.55, 95% 
CI: 1.12, 2.13), while the same amount of increase was 
associated with 26% higher risk among cases diagnosed 
beyond 3 years after blood draw (OR: 1.26, 95% CI: 1.06, 
1.50) (n = 446), compared to matched controls. However, 
the association of SM (d18:0/22:0) with lung cancer risk 
did not differ by follow-up time (P-heterogeneity = 0.33). 
When stratified by smoking status, SM (d18:0/22:0) was 
associated with higher lung cancer risk among ever-
smokers (P = 0.02). The association was also positive, 
albeit non-significant, among never-smokers (P = 0.61). 
There was no interaction between SM (d18:0/22:0) and 
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Table 1 Participant characteristics of a nested, matched a case–control study in the Cancer Prevention Study-II (CPS-II) Nutrition and 
CPS-3 Cohort (for primary pooled analysis)

NA Not applicable
a  Controls were matched to cases by age at blood draw (± 6 months), sex, race, and date of blood draw (± 30 days). Seven matched controls became cases later. b 
P-Values were obtained from independent t-tests (continuous) or chi-square tests (categorical). c This category were all males. d Three lung cancer cases from CPS-II 
Nutrition cohort did not match on the controls on race, so three other/unknown race cases were matched to white controls. All other matching criteria were satisfied. 
e The lung cancer stage was examined according to the Surveillance, Epidemiology and End Results (SEER) stage at diagnosis. Localized: invasive tumors confined to 
the lung; regional: tumors that extend to adjacent tissue or regional lymph nodes; distant: tumors are metastasized. f The lung cancer subtype was categorized using 
ICD-O-3 morphology code. The details can be found in supplementary materials

Case (n = 623) Control (n = 623) P‑value b

Age at blood draw (years), mean (SD) 66.9 (8.57) 66.9 (8.57) Matched

Sex, n (%) Matched

 Male 296 (47.5) 296 (47.5)

 Female 327 (52.5) 327 (52.5)

Race, n (%) Matchedd

 White 599 (96.1) 602 (96.6)

 Black 8 (1.3) 8 (1.3)

Other/unknown 16 (2.6) 13 (2.1)

Body mass index group, n (%) 0.09

 < 18.5 kg/m2 10 (1.6) 7 (1.1)

 18.5–25 kg/m2 235 (37.7) 274 (44.0)

 25–30 kg/m2 245 (39.3) 235 (37.7)

 ≥ 30 kg/m2 133 (21.3) 107 (17.2)

Hours since last meal, mean (SD) 2.12 (2.06) 2.40 (2.26) 0.02

Physical activity (hours/week), mean (SD) 3.20 (7.08) 3.81 (8.48) 0.16

Fruits and vegetables consumption (servings/week), mean 
(SD)

30.0 (16.0) 31.7 (16.7) 0.06

Smoking status, n (%)  < 0.01

 Never 114 (18.3) 318 (51.0)

 Former 387 (62.1) 275 (44.1)

 Current 114 (18.3) 15 (2.4)

 Unknown 8 (1.3) 15 (2.4)

Hormone use, n (%) 0.96

 Not a current user 192 (30.8) 199 (31.9)

 Current user 117 (18.8) 111 (17.8)

 Not applicable c 296 (47.5) 296 (47.5)

 Unknown 18 (2.9) 17 (2.7)

Age at diagnosis (years), mean (SD) 72.9 (10.3) NA NA

Stage e, n (%) NA

 Localized 150 (24.1) NA

 Regional 151 (24.2)

 Distant 290 (46.5)

 Unknown 32 (5.1)

Subtype f, n (%) NA

 Squamous cell carcinoma 97 (15.6) NA

 Small cell carcinoma 54 (8.7)

 Adenocarcinoma 312 (50.1)

 Large cell carcinoma 15 (2.4)

 Non-small cell carcinoma 70 (11.2)

 Other carcinoma 75 (12.0)
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smoking status (P-heterogeneity = 0.49). No heterogene-
ity was observed when stratified SM (d18:0/22:0) asso-
ciations by lung cancer stage (P-heterogeneity = 0.77) and 
subtype (P-heterogeneity = 0.12).

Taurodeoxycholic acid 3-sulfate was associated with 
higher lung cancer risk in male, female, cases diag-
nosed within and beyond 3  years of blood draw, and 
those at localized stage (P < 0.05) (Table  2). Likewise, 
among cases diagnosed within 3  years of blood draw 
(n = 177), one standard deviation increase in natu-
ral log-transformed taurodeoxycholic acid 3-sulfate 

levels was associated with 48% higher risk of lung 
cancer (OR: 1.48, 95% CI: 1.08, 2.03), while the same 
amount of increase was associated with 28% higher 
risk among cases diagnosed beyond 3 years after blood 
draw (OR: 1.28, 95% CI: 1.07, 1.53) (n = 446), compared 
to matched controls. No heterogeneity was observed 
when stratified taurodeoxycholic acid 3-sulfate asso-
ciations by sex (P-heterogeneity = 0.91), follow-up time 
(P-heterogeneity = 0.50), smoking status (P-heterogene-
ity = 0.62), lung cancer stage (P-heterogeneity = 0.08), 
and subtype (P-heterogeneity = 0.29).

Fig. 1 A volcano plot of associations between metabolites and lung cancer risk in the entire population. The X-axis denotes the odds ratio of lung 
cancer-metabolite associations. Odds ratios (95% confidence intervals) per one standard deviation increase in natural log-transformed level of each 
known metabolite with lung cancer risk were estimated from conditional logistic regression models, matched on age at blood draw, sex, race, 
and date of blood draw. Models were adjusted for body mass index group (underweight, healthy weight, overweight, obesity), hours since last 
meal (continuous), physical activity (continuous, hours/week), fruits and vegetables consumption (continuous, servings/week), smoking status 
(never, former, current, unknown), hormone use (not a current user, current user, not applicable, unknown). The Y-axis denotes the negative  log10 
of the P-value in the lung cancer-metabolite association. Different colors were used to represent different pathways where the metabolites are 
involved. The dark red dashed line represents P-value = 0.05. SM (d18:0/22:0) and taurodeoxycholic acid 3-sulfate were associated with lung cancer 
risk (FDR < 0.2). SM (d18:0/22:0), behenoyl dihydrosphingomyelin (d18:0/22:0)



Page 7 of 15Tang et al. BMC Medicine          (2024) 22:262  

Lung cancer‑associated metabolic profiles varied 
between ever‑ and never‑smokers
We observed that the distribution of metabolic pathways 
containing lung cancer-associated metabolites (P < 0.05) 
varied by smoking status, sex, tumor stage, and histo-
logical subtypes (Additional file  1: Fig. S3). Results for 
stratified analyses can be found in supplementary mate-
rials (Additional file  2: Table  S4–S14). We identified 65 

metabolites associated with lung cancer risk (FDR < 0.2) 
in ever-smokers (Additional file 1: Fig. S4–S5, Additional 
file 2: Table S9), while none in never-smokers (Additional 
file  2: Table  S8). Interestingly, the four most significant 
metabolites in ever-smokers were tobacco metabolites, 
which were cotinine, hydroxycotinine, cotinine N-oxide, 
and 3-hydroxycotinine glucuronide. Looking closely at 
the pathways where metabolites associated with lung 

Fig. 2 A forest plot of associations between metabolites and lung cancer risk (P < 0.05) in the entire population. Odds ratios (95% confidence 
intervals) per one standard deviation increase in natural log-transformed level of each known metabolite with lung cancer risk were estimated 
from conditional logistic regression models, matched on age at blood draw, sex, race, and date of blood draw. Models were adjusted for body mass 
index group (underweight, healthy weight, overweight, obesity), hours since last meal (continuous), physical activity (continuous, hours/week), 
fruits and vegetables consumption (continuous, servings/week), smoking status (never, former, current, unknown), hormone use (not a current user, 
current user, not applicable, unknown). Each dot represents the odds ratio of the association, with the whiskers representing the 95% confidence 
interval. The dots are arranged in ascending order based on the P-values of the associations, starting from the smallest P to the largest. Blue dots 
represent the metabolites associated with lung cancer risk at FDR < 0.2. The dashed vertical line represents the odds ratio of one. SM (d18:0/22:0), 
behenoyl dihydrosphingomyelin (d18:0/22:0); SM (d18:0/20:0, d16:0/22:0), sphingomyelin (d18:0/20:0, d16:0/22:0); SM (d18:0/18:0, d19:0/17:0), 
sphingomyelin (d18:0/18:0, d19:0/17:0); SM (d18:1/16:0 (OH)), hydroxypalmitoyl sphingomyelin (d18:1/16:0(OH)). * Putative identifications that are 
not confirmed with a purified standard (not tier 1). ** Putative identifications for which a standard is not available (not tier 1). Metabolites that are 
structurally similar but have a side group that could not be placed definitively in the molecule were given the same chemical name followed 
by a number in parentheses to differentiate them from each other
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cancer risk (P < 0.05) were involved, there were greater 
proportion of metabolites in xenobiotic- and lipid-asso-
ciated metabolic pathways in ever-smokers compared to 
never-smokers (Fig.  4). However, the amino acid- and 
lipid-associated metabolic pathways were more pro-
nounced in never-smokers. As for stratified analysis 
by follow-up time, the proportion of lipid- and amino 
acid-associated metabolic pathways were similar (Fig. 4), 

but lung cancer-associated metabolites (P < 0.05) were 
largely different (Additional file 2: Table S6–S7). A more 
distinct perturbation of metabolites in lipid pathways 
was observed in female cases than in male cases, those 
at regional and distant stages than those at a localized 
stage, adenocarcinoma cases than squamous cell carci-
noma cases (Additional file  1: Fig. S3). A more distinct 
perturbation of metabolites in amino acids pathways was 

Fig. 3 Agglomerative hierarchical clustering heatmap of the Pearson’s correlation coefficients among the sixty-two metabolites associated 
with lung cancer risk (P-value < 0.05). * Putative identifications that are not confirmed with a purified standard (not tier 1). ** Putative identifications 
for which a standard is not available (not tier 1). Metabolites that are structurally similar but have a side group that could not be placed definitively 
in the molecule were given the same chemical name followed by a number in parentheses to differentiate them from each other
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Table 2 Associations between sphingomyelin (d18:0/22:0), taurodeoxycholic acid 3-sulfate and lung cancer stratified by sex, by 
follow-up time, by smoking status, by stage, and by subtype

OR Odds ratio, CI Confidence interval, NA Not applicable
a  ORs (95% CI) were estimated from conditional logistic regression models, conditioned on age at blood draw, sex, race, and date of blood draw and adjusted for 
body mass index group, hours since last meal, physical activity, fruits and vegetables consumption, smoking status, and hormone use (for overall population and 
females). b ORs (95% CI) were estimated from unconditional logistic regression models, adjusted for age at blood draw, sex, race, date of blood draw, body mass 
index group, hours since last meal, physical activity, fruits, and vegetables consumption, hormone use, and smoking status (only for stage-stratified and subtype-
stratified analyses). The lung cancer stage was examined according to the Surveillance, Epidemiology and End Results (SEER) stage at diagnosis. Localized: invasive 
tumors confined to the lung; regional: tumors that extend to adjacent tissue or regional lymph nodes; distant: tumors are metastasized. The lung cancer subtype was 
categorized using ICD-O-3 morphology code. The details can be found in supplementary materials. c For stratified analysis by sex, follow-up time, and smoking status, 
likelihood ratio test was used to test the interaction; for lung cancer stage and subtype, we used the “eh_test_subtype” function in R package “riskclustr”. The model 
was adjusted for age at blood draw, sex, race, date of blood draw, body mass index group, hours since last meal, physical activity, fruits and vegetables consumption, 
and smoking status. We took off the hormone use variable here, given that the model could not converge due to the collinearity between sex and hormone use. d 
FDR = 0.148

Strata Number of lung 
cancer cases

Number of 
controls

OR (95%CI) P‑value P-heterogeneityc

Sphingomyelin (d18:0/22:0)
Overall a 623 623 1.32 (1.15, 1.53)  < 0.001d NA

Sex a 0.50

 Male 296 296 1.27 (1.01, 1.60) 0.039

 Female 327 327 1.35 (1.10, 1.65) 0.004

Follow-up time a 0.33

 < 3 years 177 177 1.55 (1.12, 2.13) 0.008

 ≥ 3 years 446 446 1.26 (1.06, 1.50) 0.008

Smoking status b 0.49

 Never-smoker 118 348 1.07 (0.83, 1.36) 0.609

 Ever-smoker 539 300 1.21 (1.04, 1.42) 0.017

Stage b 0.77

 Localized 158 663 1.15 (0.94, 1.41) 0.179

 Regional 162 663 1.24 (1.01, 1.53) 0.040

 Distant 311 663 1.13 (0.96, 1.32) 0.144

Subtypeb 0.12

 Squamous cell carcinoma 102 663 1.30 (1.01, 1.68) 0.043

 Adenocarcinoma 334 663 1.09 (0.93, 1.27) 0.293

Taurodeoxycholic acid 3‑sulfate
Overall a 623 623 1.33 (1.14, 1.55)  < 0.001d NA

Sex a 0.91

 Male 296 296 1.34 (1.06, 1.68) 0.013

 Female 327 327 1.31 (1.05, 1.63) 0.017

Follow-up time a 0.50

 < 3 years 177 177 1.48 (1.08, 2.03) 0.015

 ≥ 3 years 446 446 1.28 (1.07, 1.53) 0.008

Smoking status b 0.62

 Never-smoker 118 348 1.09 (0.87, 1.38) 0.449

 Ever-smoker 539 300 1.16 (1.00, 1.34) 0.053

Stage b 0.08

 Localized 158 663 1.22 (1.00, 1.49) 0.045

 Regional 162 663 1.22 (1.00, 1.50) 0.052

 Distant 311 663 1.09 (0.93, 1.28) 0.266

Subtypeb 0.29

 Squamous cell carcinoma 102 663 1.14 (0.89, 1.46) 0.308

 Adenocarcinoma 334 663 1.03 (0.99, 1.19) 0.729
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observed in cases at localized stages than those at other 
stages. For subtype-stratified analysis, we identified 12 
metabolites significantly associated with lung cancer risk 
(FDR < 0.2) in squamous cell carcinoma (Additional file 2: 
Table  S13), while one in adenocarcinoma (Additional 
file 2: Table S14). Notably, lipid and amino acid metabo-
lism are major metabolic pathways involved in lung can-
cer development, accounting for 47% to 80% of all lung 
cancer-associated metabolites at P < 0.05, either among 
all participants or in subgroup analyses (Fig.  4, Addi-
tional file 1: Fig. S2–S3).

Sensitivity analyses
Sensitivity analyses revealed that 63% of lung cancer-
associated metabolites (P <  0.05) remained when replac-
ing four-category smoking variables with seven-category 
smoking variables that further included smoking dura-
tion in the model. The associations of SM (d18:0/22:0), 
taurodeoxycholic acid 3-sulfate, and lung cancer risk in 

cases diagnosed within 5  years of blood draw remained 
significant (OR: 1.47, 95% CI: 1.15, 1.89, P = 0.003 and 
OR: 1.60, 95% CI: 1.25, 2.07, P < 0.001, respectively). 
The number and identities of metabolites (P < 0.05) and 
their corresponding ORs from models were nearly the 
same before and after including the cohort variable in 
the model, which indicates that the effects of any differ-
ences between cohorts were too small to detect (results 
not shown).

Discussion
In this large pooled analysis of prospective cohort stud-
ies on examining metabolic profiles in association with 
lung cancer risk using untargeted metabolomics, SM 
(d18:0/22:0), a sphingolipid, and taurodeoxycholic acid 
3-sulfate, a bile salt, were positively associated with lung 
cancer risk regardless of smoking status, follow-up time, 
sex, stage, and subtype, though the associations in some 
strata did not survive P < 0.05. Lipid (sphingolipid, bile 

Fig. 4 Descriptive distribution of metabolic pathways that contain the lung cancer-associated metabolites at P-value < 0.05 by smoking status 
and follow-up time
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acid, phospholipids, and fatty acids pathways) and amino 
acid metabolism (arginine and proline metabolism, 
branched-chain amino acids, and aromatic amino acids) 
may play an important role in lung cancer etiology. Dis-
tinct metabolic profiles between never and ever-smokers 
suggest heterogeneity in lung cancer etiology by smoking 
status.

Lipid metabolism has been associated with the initia-
tion and progression of lung cancer [29]. Consistently, 
we observed an extensive perturbation of metabolites 
in lipid pathways in our study. Sphingolipids are ubiqui-
tous bioactive components of cell membranes and also 
play an important role in cell signaling in various physi-
ological processes [30–32]. Previous studies have ranked 
sphingolipid metabolism as one of the top dysregulated 
pathways in lung cancer development in human stud-
ies [33, 34]. In particular, several key sphingolipids (e.g., 
sphingosine-1-phosphate (S1P), ceremide) and related 
enzymes (e.g., sphingosine kinases (SphK1/2), ceramide 
kinases (Cerk)) were found to play crucial roles in lung 
cancer etiology by disrupting universe cellular processes, 
regulating downstream signaling pathways, and affect-
ing tumor microenvironment [32, 35–39]. In our study, 
higher levels of several sphingolipids were associated 
with a higher risk of lung cancer, suggesting the aber-
rantly active activity of sphingolipids in lung cancer 
development. Upregulation of these metabolites, as pre-
cursors of ceramide, may be an indicator of increased 
synthesis of ceramide/S1P or abnormal ceramide-to-S1P 
ratio. Specifically, the imbalance of ceramide/S1P has 
been suggested to be associated with unrelenting airway 
inflammation which could ultimately cause increased 
oxidative stress and aberrant signaling [40, 41], increased 
apoptosis and senescence [42–44], impaired immunity 
[45, 46], lung remodeling [47, 48], increased lung perme-
ability, and altered surfactant [49].

Perturbation of bile acid metabolism in lung cancer 
cases also warrants attention. Bile acids are known for 
the promotion of the absorption of lipids, and they also 
play an important role in cell signaling and maintaining 
human body homeostasis. Recent studies have charac-
terized the role of bile acids in cancer development and 
progression, albeit the research is in its infancy [50–52]. 
In our study, we identified one conjugated primary bile 
acid and five conjugated secondary bile acids and their 
derivatives, which were all positively associated with lung 
cancer risk. Consistently, another study reported much 
higher serum-free secondary bile acids (deoxycholic acid 
and ursodeoxycholic acid) and primary bile acid (cheno-
deoxycholic acid) in non-small cell lung cancer (NSCLC) 
patients than the healthy controls [52]. Due to the close 
link between bile acids and microbes in the gut [50, 53, 
54], higher expression of secondary bile acids identified 

in the current study may be an indicator of the abnormal 
structure of microbial communities. However, details 
remain unclear on how bile acid metabolism is regulated 
in lung cancer. Further investigations on bile acid metab-
olism and the interaction between secondary bile acids 
and gut microbiota in lung cancer etiology are needed.

Particularly, we observed higher levels of SM 
(d18:0/22:0), a sphingolipid, was consistently associated 
with lung cancer risk among all participants (FDR < 0.2) 
and across different strata (P < 0.05). SM (d18:0/22:0) is 
involved in the dihydrosphingomyelins pathway. Addi-
tionally, we observed higher levels of taurodeoxycholic 
acid 3-sulfate, a bile salt, was associated with higher lung 
cancer risk in the entire population (FDR < 0.2) and sev-
eral subgroups (male, female, cases diagnosed within 
and beyond 3  years of blood draw, and those at local-
ized stage) (P < 0.05). Taurodeoxycholic acid 3-sulfate 
is involved in secondary bile acid metabolism. Notably, 
the association of SM (d18:0/22:0) and taurodeoxycholic 
acid 3-sulfate with lung cancer was the strongest among 
cases diagnosed within 3 years of follow-up, but the asso-
ciation was still significant though weaker among cases 
diagnosed beyond 3  years of follow-up, which shows 
their great potential as an early detection and possibly 
a screening biomarker for lung cancer. In addition, we 
identified three additional SMs positively associated with 
lung cancer risk before correcting for multiple compari-
sons, including SM (d18:1/16:0 (OH)), SM (d18:0/18:0, 
d19:0/17:0), and SM (d18:0/20:0, d16:0/22:0). Previ-
ous studies have shown the changes of SMs alone or in 
combination with other molecules can predict the recur-
rence of specific types of lung cancer [55, 56] and can 
differentiate early-stage lung cancer from controls [57]. 
Additionally, our study replicated several metabolites 
previously found to be associated with lung cancer risk, 
including cotinine, lactate, and glutamate [14]. Increased 
plasma cotinine levels were associated with a 33% higher 
risk of lung cancer in the present study, which is consist-
ent with previous findings [14, 58, 59].

In addition, we observed a certain degree of pertur-
bation of amino acids metabolism in lung cancer cases 
compared to matched controls, including arginine and 
proline metabolism (arginine and proline metabolism, 
creatine metabolism), branched-chain amino acids 
metabolism (leucine, isoleucine, and valine metabo-
lism), and aromatic amino acids metabolism (tryptophan 
metabolism). Amino acid metabolism plays a crucial 
role in various cellular processes including protein syn-
thesis and energy production, which was found involved 
in tumor development and progression. More specifi-
cally, arginine and proline metabolism plays an impor-
tant role in metabolic reprogramming in cancer [60, 61]. 
An increase in branched-chain amino acids (BCAAs) 
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metabolism was thought to provide energy sources 
and contribute to tumor growth [62]. Tryptophan and 
its metabolites have been reported to be significantly 
involved in the immune escape of lung cancer, such as 
promoting immune suppression [63].

We observed distinct metabolic profiles associated with 
lung cancer risk by smoking status, suggesting the heter-
ogeneity in lung cancer etiology between never-smokers 
and ever-smokers to a certain degree, though the detailed 
mechanisms were not clear. Specifically, we identified 65 
metabolites associated with lung cancer risk (FDR < 0.2) 
in ever-smokers, while none in never-smokers. When 
considering lung cancer-associated metabolites at 
P < 0.05, we observed a more prominent perturbation of 
metabolites in xenobiotic-associated and lipid-associated 
pathways in ever-smokers compared to never-smokers. 
The SM(d18:0/22:0) association was stronger in ever-
smokers than in never-smokers, suggesting that this 
pathway may be particularly relevant to lung cancers that 
develop as a result of cigarette smoking. Our findings 
provide extra evidence that lung cancer mechanisms may 
differ by smoking status. Consistent with previous find-
ings, lung cancer in never-smokers and ever-smokers was 
suggested as two distinct disease processes, with differ-
ent epidemiologic, clinical, and genetic characteristics [8, 
10, 64–67]. Lung cancer-associated metabolites (P < 0.05) 
varied greatly between cases diagnosed within and 
beyond 3 years of blood draw, among different stages, as 
well as between squamous cell carcinoma and adenocar-
cinoma cases. These findings may suggest potential dif-
ferences in metabolome associated with different rates of 
progression, stages, and subtypes. Limited studies have 
reported several metabolites in serum were differentially 
expressed in early stage versus advanced stage of lung 
cancer [68]. It is noteworthy that the number of cases is 
not very large in some strata in our analysis, which may 
lead to insufficient statistical power. Our findings should 
be validated by future studies. Overall, the perturba-
tion of lipid levels was found to be a dominant charac-
teristic across the entire study population, as well as in 
other subgroups, with the exception of lung cancer cases 
who were never-smokers, males, and at localized stage. 
A caveat is that the pathway differentiation by smoking 
status or by other strata was simply descriptive and did 
not involve statistical testing to determine the signifi-
cance across the subgroups. We observed certain degrees 
of metabolites in xenobiotic-related pathways across the 
entire study population and subgroups, with the highest 
proportions in ever-smoking lung cancer cases (30%) fol-
lowed by squamous cell carcinoma cases (27%). This may 
imply residual confounding arising from dietary factors 
as well as concurrent exposure to drugs and other chemi-
cal agents. Specifically, among ever-smoking lung cancer 

cases and squamous cell carcinoma cases, we observed 
ten and eight metabolites of caffeinated and decaffein-
ated coffee (e.g., caffeine, 1-methylurate, and 1,3-dimeth-
ylurate) [69], which were positively associated with the 
lung cancer risk. Previously, smoking has been associated 
with higher caffeine consumption [70, 71].

Previously, Seow et al. conducted a prospective nested 
case–control study with a focus on lung cancer-associ-
ated metabolic perturbation in urine samples collected 
from never-smoking Chinese women [21]. They found 
extensive urinal metabolic perturbation among lung can-
cer cases compared to controls, which suggests system-
atic changes in 1-carbon metabolism, oxidative stress 
and inflammation pathways, and nucleotide metabolism. 
Among never-smoking cases in our study, we did observe 
pathways related to 1-carbon metabolism, oxidative 
stress, and inflammation, including methionine, cysteine, 
and taurine metabolism, tocopherol metabolism, gluta-
mate metabolism, and histidine metabolism. It is not rea-
sonable to directly compare the results between our and 
Seow’s studies given differences in biosamples and meta-
bolic profiling procedures, and heterogeneities in popu-
lations including races, ages, sex proportion, and dietary 
patterns.

To our knowledge, this is the largest prospective study 
of untargeted metabolomics on lung cancer risk. The 
current study has a large sample size, based upon the 
established cohort with well-characterized risk factors 
(e.g., detailed smoking histories, hormone use). We can 
perform stratified and in-depth analyses. Besides, pre-
diagnosis blood samples provide valuable information 
on metabolic perturbations associated with lung can-
cer initiation and development, which is beneficial for 
early-detection biomarkers identification. In this study, 
we only included 887 known metabolites, with high lev-
els of confidence in the annotation (Levels 1 and 2) [72] 
and high data quality, which makes our results more reli-
able compared to prior studies that reported all detected 
signals in the biosamples and claimed all the signals are 
unique compounds. Our study also has limitations. This 
analysis is based on one-time metabolic measurement, 
neglecting within-person variations over time. Thus, the 
dynamics of metabolites during lung cancer develop-
ment were unknown. Additionally, Metabolic profiling 
using non-fasting blood samples, potentially introduced 
measurement errors in diet-related metabolites. Yet, the 
impact of fasting status was minimized by controlling for 
hours since the last meal in analyses. From the perspec-
tive of hypothesis generation, a loose threshold, P < 0.05, 
was used for gaining more information on biological 
pathways associated with lung cancer by smoking status. 
Simultaneously, the possibility of a false discovery rate 
increased [73]. It is noteworthy that the metabolome is 
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sensitive and susceptible to influences from both endoge-
nous and exogenous factors along with the computational 
nature of this study, caution is warranted in interpreting 
the results as the causality was not able to be established. 
Potential selection bias may exist, as population charac-
teristics including sex, race, BMI, and smoking differed 
between the lung cancer cases included in the present 
analysis and those excluded due to unavailable blood 
samples. Also, our findings may lack generalizability to 
races other than white or younger populations.

Conclusions
In this large pooled analysis of nested case–control stud-
ies of lung cancer metabolomics, we identified that pre-
diagnosis changes in lipid metabolism and amino acid 
metabolism may play important roles in lung cancer eti-
ology. Notably, SM (d18:0/22:0) and taurodeoxycholic 
acid 3-sulfate may be risk factors and potential screen-
ing biomarkers for lung cancer. Distinctive metabolic 
profiles by smoking status suggest heterogeneity in lung 
cancer etiology. Future studies are needed to validate our 
findings.
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